ETC P11976EJ2V0AN00

Application Note
USAGE AND APPLICATIONS OF 6-PIN MINI-MOLD,
6-PIN SUPER MINI-MOLD SILICON HIGH-FREQUENCY
WIDEBAND AMPLIFIER MMIC
µPC2711-15
µPC2745-49
µPC2791/92
µPC3210
Document No. P11976EJ2V0AN00 (2nd edition)
Date Published May 1999 N CP(K)
©
1997
Printed in Japan
[MEMO]
2
Application Note P11976EJ2V0AN00
The information in this document is subject to change without notice.
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
This application note introduces general types of applications for these products. The application circuits
and circuit constants described herein are only examples and are not intended for mass-production design.
You should also understand that the application circuit limitations and application circuit characteristics herein
are not intended to be used as product ratings nor specifications.
The characteristics of high-frequency ICs differ depending on your external components. Accordingly, you
should determine external factors to suit your planned system requirements while referring this note, then
confirm the characteristics before using these products.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.
M4A 96. 10
Application Note P11976EJ2V0AN00
3
[MEMO]
4
Application Note P11976EJ2V0AN00
CONTENTS
1.
INTRODUCTION ............................................................................................................................................
7
2.
PRODUCT LINEUP .......................................................................................................................................
7
2.1 Characteristics .....................................................................................................................................
7
2.2 Manufacturing Process........................................................................................................................
9
2.3 Application Examples ..........................................................................................................................
9
THEORETICAL DESCRIPTION ....................................................................................................................
10
3.1 Description of Internal Circuits ...........................................................................................................
10
3.
3.2 Description of External Circuits..........................................................................................................
12
3.3 Description of Test Circuit ..................................................................................................................
13
4.
EXTERNAL CIRCUIT COMPONENTS AND APPLICATION CHARACTERISTICS.................................
16
5.
EXAMPLE OF ADJUSTING CHARACTERISTICS VIA PERIPHERAL CIRCUITS .................................
18
5.1 Example of Adjusting Mismatched Voltage in the Systems.............................................................
18
5.2 Example of Adjustment between Stages ...........................................................................................
19
SUMMARY .....................................................................................................................................................
20
REFERENCES........................................................................................................................................................
20
APPENDIX TYPICAL S-PARAMETER VALUES ................................................................................................
21
6.
CAUTIONS
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to VCC line.
(4) The DC cut capacitor must be each attached to input and output pin. (Determine the capacitance value based
on the used frequency).
(5) Voltage should only be applied at the VCC pin. Voltage must not be applied via an input/output pin, nor should
the pin voltage be externally regulated such as via direct pull-down.
(6) The IC's internal circuit feedback cannot be modified externally.
Application Note P11976EJ2V0AN00
5
[MEMO]
6
Application Note P11976EJ2V0AN00
1.
INTRODUCTION
The application for high-frequency devices has grown to include not only TV/VCR tuners and cable TV converters
but also, more recently, DBS, cellular phones, pagers, and GPS. In response to these increasingly diverse needs,
NEC has developed an abundant lineup of high-frequency amplifier ICs.
This application note is intended to describe the selection for design purposes or the application as an external
circuit reference for certain characteristics in the 6-pin mini mold and super mini mold products, among NEC’s lineup
of silicon high-frequency wideband amplifier ICs.
Refer to the product data sheet for details of the product’s ratings, specifications, and test conditions.
2.
PRODUCT LINEUP
2.1 Characteristics
While a wide assortment of silicon high-frequency wideband amplifier ICs are listed in product references such as
NEC’s Selection Guide, this application note focuses on µPC2711 to 2715, µPC2745 to 2749, µPC2791/92, and
µPC3210, packaged in a 6-pin mini mold or super mini mold. Table 2-1 lists these products and their characteristics.
These products cover three power supply voltage ranges, the 5-V range, 3.4-V range, and 3-V range, and include
various frequencies, output levels, and power gains. These products are available in two package sizes: size 2915
(6-pin mini mold) and size 2012 (6-pin super mini mold). The dimensions of these packages are shown in Figure 2-1.
Three characters are marked instead of the part number shown on the molds, due to limited printing space on
these small molds. Each marking corresponds to a different product name. Due to space limitations, the pin 1 mark
is printed on the bottom side. Figure 2-2 illustrates an example of markings. The “T” or “TB” that appears after the
part number is a package code: “TB” indicates super mini mold and “T” indicates mini mold.
When two package codes appear on the same product, such as on a µPC2711, they indicate that the same
specifications apply to two package types in the product lineup. The marking is the same on both package types, but
the products can be distinguished by their package sizes.
All the products are available in taping form and the order code is “part name plus taping code (E3)”.
Application Note P11976EJ2V0AN00
7
Table 2-1. List of Characteristics in 6-pin Mini Mold and Super Mini Mold High-Frequency
Wideband Amplifier ICs (TA = +25°°C, ZL = ZS = 50 Ω ).
VCC
(V)
fU
(GHz)
PO(sat)
(dBm)
GP
(dB)
NF
(dB)
ICC
(mA)
4.5 to 5.5
DC to 2.9
+1.0
13
5.0
12
Part number
(Bulk part name)
µPC2711T
Package
6-pin mini mold
µPC2711TB
µPC2712T
Marking
C1G
6-pin super mini mold
4.5 to 5.5
DC to 2.6
+3.0
20
4.5
12
6-pin mini mold
µPC2712TB
C1H
6-pin super mini mold
µPC2713T
4.5 to 5.5
DC to 1.2
+7.0
29
3.2
12
6-pin mini mold
C1J
µPC2714T
3.06 to 3.74
DC to 1.8
−7.0
11.5
5.0
4.5
6-pin mini mold
C1K
µPC2715T
3.06 to 3.74
DC to 1.2
−6.0
19
4.5
4.5
6-pin mini mold
C1L
µPC2745T
2.7 to 3.3
DC to 2.7
−1.0
12
6.0
7.5
6-pin mini mold
C1Q
µPC2745TB
µPC2746T
6-pin super mini mold
2.7 to 3.3
DC to 1.5
0
19
4.0
7.5
6-pin mini mold
µPC2746TB
µPC2747T
6-pin super mini mold
2.7 to 3.3
DC to 1.8
–7.0
12
3.3
5.0
6-pin mini mold
µPC2747TB
µPC2748T
C1S
6-pin super mini mold
2.7 to 3.3
0.2 to 1.5
−3.5
19
2.8
5.0
6-pin mini mold
µPC2748TB
µPC2749T
C1R
C1T
6-pin super mini mold
2.7 to 3.3
0.1 to 2.9
−6.0
16
4.0
6.0
6-pin mini mold
µPC2749TB
C1U
6-pin super mini mold
µPC2791TB
4.5 to 5.5
DC to 1.9
+4.0
12
5.5
17
6-pin super mini mold
C2S
µPC2792TB
4.5 to 5.5
DC to 1.2
+5.0
22
3.5
19
6-pin super mini mold
C2T
µPC3210TB
4.5 to 5.5
DC to 2.3
+3.5
20
3.4
15
6-pin super mini mold
C2X
The above values are typical values for major characteristics. See each product’s data sheet for detailed ratings,
characteristic curves, etc.
Figure 2-1. Package Drawings of 6-pin Mini Mold and Super Mini Mold
0 to 0.1
0.95
0.95
1.9
0.2
2.1±0.1
+0.2
1.5 −0.1
+0.2
2.8 −0.3
0.13±0.1
0.8
+0.2
1.1 −0.1
2.9±0.2
8
+0.1
−0
0.15
1.25±0.1
+0.1
0.3 −0.05
6-pin super mini mold
0.1 MIN.
6-pin mini mold
Application Note P11976EJ2V0AN00
+0.1
−0
0 to 0.1
0.65 0.65
1.3
2.0±0.2
0.7
0.9±0.1
Figure 2-2. Exterior of the Marking Example
3
2
1
C1G
(Top view)
(Bottom view)
4
4
3
5
5
2
6
6
1
Remark The marking example shown in the figure corresponds to µPC2711T/TB.
2.2 Manufacturing Process
The following NEC proprietary NESAT™ silicon bipolar processes are employed as the manufacturing process.
NESAT III is used for the µPC2711 to 2749 and µPC3210, NESAT II AL is used for the µPC2791/92. For details of
the processes, refer to NESAT Process Pamphlet (P12647E).
2.3 Application Examples
Table 2-2 lists several application examples. Among the lineup of products, the most suitable product can be
selected based on characteristics such as maximum frequency and power supply voltage.
Table 2-2. Application Examples of High-frequency Wideband Amplifier ICs
Application
Product
1st IF stage devices such as for BS converters and BS tuners
µPC2712T/TB
2nd local buffers for BS tuner, etc.
µPC2711T/TB
2nd IF stage buffer for BS tuner, etc.
µPC2713T, µPC2791TB, µPC2792TB
Local buffer for cellular phone, etc.
µPC2745T/TB, µPC2746T/TB
Wireless LAN (2.5 GHz), etc.
µPC2745T/TB, µPC2749T/TB
GPS receiver, etc.
µPC2749T/TB (3 V), µPC3210TB (5 V)
Application Note P11976EJ2V0AN00
9
3.
THEORETICAL DESCRIPTION
3.1 Description of Internal Circuits
Products in this series incorporate 50-Ω matching circuits based on the resistance at the IC’s input and output
stages. A two-stage configuration is employed to obtain the desired RF characteristics. This enables the IC with 50Ω connections in a wide operating frequency range. The details of the internal circuit configurations differ according
to each circuit’s characteristics. An internal equivalent circuit is shown in Figure 3-1.
The respective internal circuits are described below in the order of their development.
Internal circuits of products in the µPC2711 to 2713 Series feature a wide band with peaking capacitance inserted
at the emitter side of each stage, and multiple negative feedback circuits to suppress performance deviation in the
high frequency region.
A Darlington-type output stage greatly increases the feedback loop gain.
See the
Application Note General-Purpose High-Frequency Wideband Amplifiers µPC1675G, µPC1676G, µPC1688G
(P10964E).
By contrast, the µPC2714’s output stage transistor is not a Darlington type but is instead a single-unit type for low
power consumption. The µPC2715 has peaking capacitance at the input stage only and carries gain in the VHF
band.
The µPC2745/46 have simple two-stage configurations without negative feedback, which makes for lower voltage
and can accommodate a wide band by inserting peaking capacitance at the emitter side of each stage.
The µPC2747/48 have peaking capacitance at the output stage only and carry gain in the UHF band.
The µPC2749 uses a Darlington-type output stage and carries gain in the L band due to its negative feedback
circuit toward the base for input.
The µPC2791/92 use multiple negative feedback and a Darlington-type output stage. The µPC2791 has peaking
capacitance inserted at the output stage emitter side to increase the bandwidth and the µPC2792 carries gain in the
VHF-band without inserting peaking capacitance.
The µPC3210 uses a Darlington-type output stage and carries gain due to its negative feedback circuit toward the
base for input, and obtains a wide band characteristic by inserting peaking capacitance at the emitter side.
The circuit GND characteristics of these devices can be improved by using several GND pins.
Note that for these products it is not possible to externally change the feedback or internal bias of the IC’s internal
circuitry.
Figure 3-1. Internal Equivalent Circuits of High-Frequency Wideband Amplifier ICs (1/2)
µPC2711 to 2713
µPC2714/15
6 VCC
6 VCC
4 OUT
4 OUT
IN 1
IN 1
*
3
GND
10
2
5
GND
3
GND
2
5
GND
The above diagram is for the µPC2714. The capacitor marked
with an asterisk does not exist in the µPC2715.
Application Note P11976EJ2V0AN00
Figure 3-1. Internal Equivalent Circuits of High-Frequency Wideband Amplifier ICs (2/2)
µPC2745/46
µPC2747/48
6 VCC
6 VCC
4 OUT
4 OUT
IN 1
IN 1
*
3
GND
2
5
GND
3
GND
2
5
GND
The above diagram is for the µPC2747. The resistor marked
with an asterisk does not exist in the µPC2748.
µPC2749
µPC2791/92
6 VCC
4 VCC
4 OUT
3 OUT
IN 1
IN 6
*
3
GND
2
5
GND
2
5
GND
1
GND
The above diagram is for the µPC2791. The capacitor marked
with an asterisk does not exist in the µPC2792.
µPC3210
6 VCC
4 OUT
1
IN
2
5
GND
3
GND
Application Note P11976EJ2V0AN00
11
3.2 Description of External Circuits
Since all of the devices in this product line-up have on-chip 50-Ω matching circuits and bias circuits, you should
only externally attach a DC cut capacitor to input/output pins and a bypass capacitor to the VCC pin to configure
amplifier circuit. The bias should be applied only to the VCC pin.
As is indicated by the “S21” S parameter, the IC itself can operate across a wide band from DC to 3 dB down
bandwidth. However, the lower frequency may be limited depending on the DC cut capacitance to the input/output
pins, so the capacitance should be calculated using the following formula. The power gain shown in the data sheet’s
list of electrical characteristics is value without the effect of the DC cut capacitor or indicates the S21 value which its
capacitance value (C) hardly affects the measured frequency.
C =
1
2π • Z • fC
You should check the frequency-related gain values for larger C values when using a low frequency and for
smaller C values when using a high frequency. Also, externally adjusting the pin voltage such as by applying voltage
to the input/output pins or by using direct pull-down is prohibited, since it causes the bias point to stray from the
designed value. Any RF components should be attached to the external side of DC cut capacitor.
The power supply impedance is determined by factors such as the bypass capacitor value and insertion point. In
view of the bandwidth of this IC’s, the bypass capacitor value should be 1000pF in the test circuit. In addition to the
bypass capacitor value, the factors that affect the power supply impedance (to the VCC pin) and the (GND pins’)
ground impedance include the VCC line length (which in turn is affected by the mount position) and mounting patterns
such as the ground pattern.
This RF grounding capacitor can decrease the frequency-band-impedance
corresponding to the capacitance value, which prevents the intrusion or occurrence of power supply noise at the VCC
pin. As mentioned above, 1000 pF is considered a suitable bypass capacitance value for the VCC line. However, you
should note that Vcc line inductance grows and its impedance rises unless the bypassed ground pattern is widened
or a through hole is used to link the pattern.
Although there are three GND pins, a ground pattern should be connected together and grounding unified so as to
avoid any impedance differences among the pins that might generate oscillation.
12
Application Note P11976EJ2V0AN00
3.3 Description of Test Circuit
Our measurement method for the electrical specifications listed in the data sheets confirms across a wide band the
characteristics of ICs with minimal signal line effects (such as jigs, etc.). Our measurement method and the PCB are
described below.
Measurement method
Common conditions
A feed-through capacitor is used for the bypass capacitor
A network analyzer is used for the following items
Power gain
S21 of IC with compensation for effect of jigs on input/output lines
Isolation
S12 of IC with compensation for effect of jigs on input/output lines
Input return loss
S11 of IC with compensation for effect of jigs on input/output lines
Output return loss
S22 of IC with compensation for effect of jigs on input/output lines
∗ For other items, the characteristics are rated based frequency conditions set to minimize jig effects.
An NF (Noise Figure) meter is used for the following item
Noise figure
Although this NF contains jigs, frequency conditions are set to minimize
such jigs effects (with compensation for cable loss).
A signal generator and spectrum analyzer are used for the following item
Input/output level characteristics
Although these characteristics contain jigs of the DC cut capacitor,
frequency conditions are set to minimize such jigs effects (with
compensation for cable loss).
PCB
• Loss can be reduced depending on the type of PCB. NEC employs a polyimide double-sided PCB on the
test circuit to maximize the performance of the IC itself.
• Use through holes to ensure proper grounding.
• Make the input/output lines straight to facilitate jig calibration.
• Specification
PCB dimensions: 30 × 30 × 0.4 (mm), with 35-µm thick copper patterning on both sides
42 × 35 × 0.4 (mm), with 18-µm thick copper patterning on both sides
(µPC3210 only)
• Cut the pattern when inserting a DC cut capacitor.
Figure 3-2 shows a test circuit and Figures 3-3 to 3-6 show the PCB layout. Before designing actual product
applications, the user should first gain an understanding of the NEC data sheet ratings and measurement data for the
above conditions as well as how characteristics may vary due to the external circuit constants and PCB patterns in
the user set.
Figure 3-2. Test Circuit
Power supply
DC cable
1000 pF (Jig feed-through capacitor)
VCC line
Measurement equipment High-frequency
cable
Input
Measurement equipment
Output
DUT
DC cut
ZS
= 50 Ω
High-frequency
cable
VCC
DC cut
GND
Application Note P11976EJ2V0AN00
ZL
= 50 Ω
13
Figure 3-3. 6-pin Mini Mold Board AMP-1 Used for Jig
Supported products:
µ PC2711T to 2715T,
µ PC2745T to 2749T
Top view (printed side)
OUT
OUT
6
5
4
C
1Q
1
2
3
IN
IN
Product mounting direction
Example of the µPC2745T.
VCC
Figure 3-4. 6-pin Super Mini Mold Board AMP-2 Used for Jig
AMP-2
Supported products:
µ PC2711TB and 2712TB,
µ PC2745TB to 2749TB
Top view (printed side)
OUT
6
5
4
C
1G
1
2
3
IN
Product mounting direction
Example of the µ PC2711TB.
VCC
Figure 3-5. 6-pin Super Mini Mold Board AMP-3 Used for Jig
AMP-3
Supported products:
µ PC2791TB and µ PC2792TB
Top view (printed side)
1
2
6
2S
C
3
OUT
OUT
IN
5
4
Product mounting direction
Example of the µ PC2791TB.
VCC
Notes regarding board examples
(*1) 35 µm double sided copper clad 30 × 30 × 0.4 mm polyimide PCB
(*2) Solder on patterning surfaces
(*3) Circles indicate through holes
(*4) Back side ground pattern
14
Application Note P11976EJ2V0AN00
Figure 3-6. Board Used for µPC3210TB Jig
Top view (printed side)
OUT
C2X
Supported products:
µ PC3210TB
654
123
IN
Product mounting direction
Example of the µPC3210TB.
Notes regarding board examples
(*1) 18 µm double sided copper clad 42 × 35 × 0.4 mm polyimide PCB
(*2) Solder on patterning surfaces
(*3) Circles indicate through holes
(*4) Back side ground pattern
Application Note P11976EJ2V0AN00
15
4.
EXTERNAL CIRCUIT COMPONENTS AND APPLICATION CHARACTERISTICS
For a reference, Figure 4-1 illustrates how power gain is viewed based on the output side’s DC cut capacitance
value. As shown in the data sheet, the IC’s operation is a wideband operation and the DC cut capacitor does not
limit the IC’s operation but instead limits the pass band. Accordingly, as a typical example, the following shows how
the high-pass characteristics of the µPC2749T’s DC cut capacitor affects the view of the IC’s bandwidth.
The power gain can be confirmed as being at least 200 MHz when DC cut capacitance value is 10 pF, or at least
100 MHz when the DC cut capacitance value is 200 pF (above 100 MHz, there was no power gain difference
between 1000 pF and 200 pF capacitance). For example, as shown by “2 pF” in the figure, power gain is reduced
completely when the capacitance is small. Consequently, the DC cut capacitor with a value of at least 10 pF should
be selected according to the bandwidth to be used.
Figure 4-1. Power Gain based on Output Side DC Cut Capacitance Value (Example Using µPC2749T)
1
1
Insertion Power Gain GP (dB)
20
13.813 dB
12.193 dB
18
MARKER 1
1.9 GHz
200 pF
16
14
12
8
3.0 V
1000 pF
10 pF
2 pF
10 pF
10
10 pF
µ PC2749T
200 pF
2 pF
6
1000 pF
4
200 pF, 10 pF, 2 pF
2
0
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
Frequency f (GHz)
Figure 4-2 illustrates the change in power gain that occurs when a bypass capacitor insertion position for the VCC
line is changed.
Figure 4-2 examines VCC pin load characteristics dependent on internal circuit.
For typical circuit models,
µPC2712T, µPC2745T, and µPC2749T, were selected. In each graph, curve <1> is a result of only the evaluation
PCB’s feed-through capacitor (1000 pF), curve <2> is a result of an additional 1000-pF chip capacitor mounted on
the PCB near feed-through capacitor insertion point, and curve <3> is a result of the 1000-pF chip capacitor moved
close to the IC’s mount position. These measurements are compared to the internal circuit. In other words, for curve
<1>, the load from the feed through capacitor’s leads + the VCC pattern (about 7 nH) is connected to the IC’s VCC pin.
For curve <2>, the load from only the VCC pattern (about 5 nH) is connected to the IC’s VCC pin.
In the µPC2712T, µPC2745T, and µPC2747T, the power gain changes less than 1 dB while in the µPC2749T
changes close to 2 dB.
This is because, in the µPC2712T and PC2745T circuit which have a resistance or
capacitance inserted to the internal input stage transistor’s emitter side or a multiple negative feedback circuit, the
power gain is determined by the ratio of the emitter-side resistance to the collector-side resistance, so power gain
hardly changes affected by the higher VCC pin load impedance. However, in the µPC2749T, because the internal
input stage transistor’s emitter is directly grounded, the transistor’s emitter resistance is itself small, which makes it
easily affected by the VCC pin load impedance which is added to the collector-side resistance. In comparison with the
µPC2747T, which is considered to have a similar tendency, the µPC2749T has a Darlington output stage, so the
output-stage gain might further amplify the effect of the VCC pin’s load impedance.
Therefore, to increase the power gain when actually using the µPC2749T, insert a choke coil (or similar
component) into the VCC pin pad and check the characteristics to determine the choke coil’s inductance value.
16
Application Note P11976EJ2V0AN00
Figure 4-2. Power Gain and Bypass Capacitor Insertion Position for VCC Line
(a) µ PC2712T VCC = 5.0 V
(b) µ PC2745T VCC = 3.0 V
1
1
Insertion Power Gain GP (dB)
1
MARKER 1
1.0 GHz
21
20
<2>
18.765 dB
<1>
1
19
<1>
1
18
<3>
12.211 dB
15
Insertion Power Gain GP (dB)
19.228 dB
22
<2>
17
16
15
14
14
1
MARKER 1
500.0 MHz
13
1
12
<1>
1
11
<2>
10
<3>
9
8
7
13
6
12
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
5
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
Frequency f (GHz)
Frequency f (GHz)
(c) µ PC2747T VCC = 3.0 V
(d) µ PC2749T VCC = 3.0 V
1
15
1
11.205 dB
1
10.933 dB
17
13
MARKER 1
900.0 MHz
12
1
Insertion Power Gain GP (dB)
14
<1>
11
10
1
<2>
9
<3>
8
7
13.814 dB
1
12.291 dB
16
15
MARKER 1
1.9 GHz
<1>
1
14
13
12
<3>
11
1
<2>
10
9
6
8
5
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
7
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1
Frequency f (GHz)
Frequency f (GHz)
1000 pF
Point A
VCC line
Top view (printed side)
2
C
OUT
OUT
C
5
4
D
1
200 pF
1Q
1000 pF
U
T
IN
IN
3
Point B
C
Point B
6
Insertion Power Gain GP (dB)
12.313 dB
Product mounting direction
(Example of the
Relation between graph and bypass
µ PC2745T)
capacitor point for VCC line
<1> Only feed through capacitor for jigs
<2> Additional chip capacitor (1000-pF) at point A
<3> Chip capacitor (1000-pF) is moved to point B from point A
Point A
VCC
Center hole is feed through capacitor insertion point.
Application Note P11976EJ2V0AN00
17
5.
EXAMPLE OF ADJUSTING CHARACTERISTICS VIA PERIPHERAL CIRCUITS
This section describes an example of a general high-frequency circuit technology that involves peripheral circuits
and is not an application specific to this product line-up. For further information on this technology, you should refer
to the literature on high-frequency circuits available in book stores and so on.
5.1 Example of Adjusting Mismatched Voltage in the Systems
The power supply voltage rating includes a guaranteed operation range margin of TYP +10%. This lineup includes
products with power supply voltage ranges of 2.7 to 3.3 V, 3.06 to 3.74 V, and 4.5 to 5.5 V. Therefore, when using
one of these products in a system whose power supply voltage range is 3.8 to 4.4 V, you can use a resistance type
potential divider or a similar circuit to adjust the voltage applied to the IC within the rated range.
Figure 5-1. Example of Adjusting Applied Voltage to IC in Mismatched Voltage Systems
System supply voltage (Vsystem)
R
1000 pF
VCC
IN
OUT
1000 pF
18
1000 pF
Application Note P11976EJ2V0AN00
Vsystem = R × ICC + VCC
Vsystem − VCC
R=
ICC
5.2 Example of Adjustment between Stages
When using multi-stage connections, you can insert terminating resistors between stages or insert a π-type 3-dB
pad to suppress load variation and to suppress gain as preventing oscillation.
The use of passive components such as resistors is an effective design method for suppressing load variation
caused by the IC’s ON/OFF switching and gain variation that tends to occur in multi-stage connections. Some very
general examples are shown in Figure 5-2 below.
You should consider the signal-level diagrams in order not to make the second-stage IC’s input level a supersaturated region.
Figure 5-2. Example of Adjustment between Stages
Example of using terminating resistor to prevent load variation
VCC
1000 pF
1000 pF
C6
C3
C1
C4
C5
C2
IN
OUT
1000 pF
1000 pF
R1
50 to 200 Ω
1000 pF
1000 pF
Connect R1 and
C5 to prevent
load variation
Example of inserting π-type 3-dB pad to prevent gain load variation
VCC
1000 pF
1000 pF
IN
OUT
1000 pF
1000 pF
1000 pF
1000 pF
π-type 3-dB pad
(input/output impedance is 50 Ω)
Application Note P11976EJ2V0AN00
19
6.
SUMMARY
As has been explained above, these products can be selected based on their internal circuit configurations and
their high-frequency characteristics, and can be applied in designs that achieve stable characteristics with a minimum
of external components.
REFERENCES
• Application Note General-Purpose High-Frequency Wideband Amplifiers µPC1675G, µPC1676G, µPC1688G
(P10964E)
• µPC2711T Data Sheet (P12428E)
• µPC2712T Data Sheet (P12429E)
• µPC2711TB, µPC2712TB Data Sheet (P11510E)
• µPC2713T Data Sheet (P12430E)
• µPC2714T Data Sheet (P12431E)
• µPC2715T Data Sheet (P12432E)
• µPC2745T, µPC2749T Data Sheet (IC-3590)
• µPC2745TB, µPC2746TB Data Sheet (P11511E)
• µPC2746T, µPC2747T, µPC2748T Data Sheet (P10893E)
• µPC2747TB, µPC2748TB Data Sheet (P13444E)
• µPC2749TB Data Sheet (P13489E)
• µPC2791TB, µPC2792TB Data Sheet (P11863E)
• µPC3210TB Data Sheet (P13593E)
• Other reference sources: literature on Design and Fabrication of High-frequency Circuits (For example,
Published by CQ Publishing in Japan).
The data sheets listed above may include preliminary versions. However, preliminary versions are not marked as
such.
20
Application Note P11976EJ2V0AN00
APPENDIX TYPICAL S-PARAMETER VALUES (TA = +25°C)
µPC2711T
VCC = 5.0 V, ICC = 12 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−13.9
−22.1
−31.2
−41.7
−52.0
−58.8
−74.8
−88.7
−103.9
−125.2
149.4
96.8
72.8
53.6
38.3
26.8
17.2
8.4
1.8
−3.9
−8.4
−11.9
4.1
4.1
4.1
4.2
4.2
4.2
4.2
4.3
4.3
4.4
4.5
4.6
4.6
4.5
4.5
4.3
4.1
3.8
3.5
3.3
3.1
2.8
−5.3
−12.1
−18.3
−24.0
−29.9
−35.6
−41.3
−47.6
−54.2
−61.0
−74.4
−89.4
−104.8
−121.3
−136.9
−152.6
−167.4
178.2
165.2
152.4
140.5
129.0
0.036
0.035
0.034
0.033
0.032
0.031
0.030
0.029
0.028
0.027
0.024
0.022
0.020
0.019
0.020
0.021
0.026
0.031
0.034
0.039
0.043
0.048
−1.3
−2.0
−4.8
−5.1
−7.5
−8.9
−10.6
−10.7
−11.4
−13.2
−11.0
−9.9
−5.6
7.0
20.8
28.7
29.9
33.7
31.7
29.9
27.3
24.7
0.098
0.103
0.106
0.116
0.126
0.142
0.150
0.160
0.173
0.187
0.211
0.233
0.250
0.259
0.264
0.261
0.244
0.222
0.198
0.175
0.163
0.162
−2.1
2.7
4.8
5.6
6.6
4.1
2.2
0.5
−2.6
−5.3
−13.4
−21.3
−30.2
−38.4
−46.0
−53.5
−59.5
−62.9
−62.8
−58.8
−49.0
−37.3
VCC = 5.0 V, ICC = 12 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−9.3
−12.3
−17.0
−21.9
−27.1
−32.0
−38.1
−41.9
−46.5
−51.0
−57.5
−62.5
−67.8
−72.4
−77.7
−82.1
−86.2
−89.3
−93.5
−96.9
−98.4
−101.3
−100.3
−100.0
−99.4
−100.0
−98.4
−101.7
−100.1
−101.1
9.3
9.4
9.5
9.6
9.8
9.9
10.0
10.2
10.3
10.4
10.6
10.6
10.7
10.8
10.8
10.9
10.9
10.7
10.5
10.3
10.0
9.7
8.8
8.4
7.7
7.3
6.8
6.5
5.8
5.5
−6.4
−17.4
−27.7
−37.5
−46.9
−56.4
−65.7
−75.9
−86.0
−96.4
−106.4
−117.7
−128.9
−140.6
−152.7
−164.9
−177.6
169.5
156.4
143.7
129.8
119.3
107.2
95.8
84.9
75.4
64.5
56.1
47.0
36.2
0.021
0.022
0.022
0.023
0.024
0.024
0.025
0.026
0.026
0.027
0.028
0.028
0.029
0.030
0.031
0.031
0.032
0.033
0.033
0.034
0.035
0.035
0.036
0.037
0.037
0.038
0.038
0.039
0.039
0.040
−1.6
−3.3
−5.1
−6.8
−8.5
−10.2
−12.0
−13.7
−15.4
−17.2
−18.9
−20.6
−22.3
−24.1
−25.8
−27.5
−29.3
−31.0
−32.7
−34.4
−36.2
−37.9
−39.6
−41.3
−43.1
−44.8
−46.5
−48.3
−50.0
−51.7
0.071
0.078
0.091
0.110
0.128
0.146
0.166
0.181
0.194
0.204
0.212
0.221
0.235
0.244
0.247
0.246
0.240
0.234
0.221
0.210
0.187
0.169
0.156
0.134
0.125
0.118
0.108
0.110
0.122
0.136
7.8
7.2
6.4
4.3
−1.1
−6.8
−14.9
−22.9
−32.7
−40.5
−50.9
−59.7
−70.9
−81.3
−94.4
−106.3
−119.4
−131.5
−143.3
−159.0
−173.4
167.5
151.8
132.8
114.0
89.8
65.4
50.2
32.2
15.6
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1200.0000
1400.0000
1600.0000
1800.0000
2000.0000
2200.0000
2400.0000
2600.0000
2800.0000
3000.0000
3200.0000
3400.0000
0.115
0.110
0.104
0.096
0.085
0.080
0.071
0.056
0.044
0.030
0.028
0.060
0.103
0.150
0.201
0.244
0.284
0.318
0.347
0.369
0.386
0.397
S21
S12
S22
K
S21
dB
3.34
3.44
3.54
3.63
3.70
3.82
3.87
3.94
4.03
4.13
4.47
4.75
5.11
5.38
5.08
4.94
4.16
3.70
3.58
3.35
3.25
3.14
12.3
12.3
12.3
12.4
12.4
12.4
12.6
12.7
12.8
12.8
13.1
13.2
13.2
13.1
13.0
12.6
12.2
11.6
11.0
10.4
9.7
9.1
K
S21
dB
2.46
2.33
2.29
2.16
2.05
2.01
1.90
1.80
1.77
1.69
1.62
1.60
1.54
1.48
1.44
1.44
1.42
1.42
1.46
1.46
1.48
1.54
1.63
1.69
1.80
1.85
2.00
2.02
2.21
2.28
19.3
19.5
19.6
19.7
19.8
19.9
20.0
20.1
20.3
20.4
20.5
20.5
20.6
20.6
20.7
20.7
20.7
20.6
20.4
20.3
20.0
19.7
18.9
18.4
17.8
17.3
16.6
16.2
15.3
14.8
µPC2712T
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
0.262
0.261
0.260
0.258
0.257
0.255
0.254
0.252
0.250
0.248
0.246
0.240
0.236
0.232
0.224
0.218
0.210
0.201
0.190
0.180
0.173
0.169
0.161
0.157
0.156
0.156
0.159
0.164
0.168
0.172
S21
S12
S22
Application Note P11976EJ2V0AN00
21
µPC2713T
VCC = 5.0 V, ICC = 12 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−21.8
−33.1
−41.7
−47.3
−50.5
−54.0
−57.5
−60.2
−63.9
−62.9
−56.5
−48.2
−40.1
−35.7
−34.6
−36.2
−40.0
−44.7
−50.3
−56.1
21.9
22.0
22.1
22.3
22.4
22.6
22.8
22.9
22.8
22.3
21.6
20.6
18.9
17.6
15.6
14.2
12.6
11.4
10.2
9.3
−8.1
−25.3
−37.3
−48.6
−60.0
−72.7
−85.7
−100.7
−114.8
−132.0
−147.6
−163.1
−177.8
168.3
154.8
142.7
130.5
120.9
110.1
100.8
0.006
0.006
0.007
0.007
0.007
0.008
0.008
0.009
0.009
0.009
0.010
0.010
0.010
0.010
0.011
0.012
0.013
0.014
0.015
0.016
25.6
24.9
23.7
22.4
21.6
20.1
19.0
18.3
17.2
16.4
15.7
14.4
13.1
12.0
11.8
11.2
10.8
9.8
7.5
5.5
0.286
0.298
0.313
0.327
0.336
0.348
0.359
0.366
0.366
0.359
0.343
0.320
0.291
0.263
0.234
0.208
0.185
0.164
0.148
0.137
−10.3
−16.1
−25.6
−35.2
−45.4
−56.9
−69.0
−82.9
−96.8
−111.8
−126.8
−142.3
−156.6
−171.7
174.3
160.8
147.1
132.6
119.5
107.4
VCC = 3.4 V, ICC = 4.5 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−169.9
167.3
150.5
135.1
120.6
105.6
91.5
77.8
64.6
51.9
39.2
28.3
17.3
6.6
−2.8
−12.7
−21.3
−29.4
−38.0
−44.8
−51.3
−57.8
−63.4
−68.2
−72.9
3.6
3.7
3.7
3.8
3.8
3.7
3.7
3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.7
2.6
2.5
2.4
2.2
2.1
2.0
1.9
1.8
−6.4
−19.2
−30.6
−41.8
−53.2
−64.7
−76.3
−87.9
−99.5
−111.1
−122.5
−133.8
−145.0
−156.1
−166.8
−177.4
172.2
162.0
151.9
142.3
132.3
122.8
113.7
104.6
95.6
0.069
0.061
0.056
0.048
0.040
0.035
0.031
0.025
0.024
0.022
0.023
0.024
0.025
0.026
0.028
0.029
0.030
0.032
0.033
0.035
0.036
0.037
0.039
0.040
0.041
−12.0
−24.5
−32.7
−42.9
−48.8
−53.4
−52.7
−51.7
−47.1
−43.5
−38.2
−32.0
−31.8
−31.7
−31.4
−34.1
−36.7
−37.1
−40.2
−41.0
−47.1
−49.4
−52.7
−58.2
−58.7
0.190
0.266
0.326
0.366
0.394
0.414
0.429
0.436
0.439
0.439
0.432
0.422
0.412
0.400
0.387
0.374
0.359
0.348
0.335
0.322
0.311
0.298
0.287
0.276
0.270
13.3
8.7
2.9
−4.0
−11.1
−19.4
−27.3
−35.3
−43.2
−50.6
−58.0
−64.8
−71.4
−77.8
−83.4
−88.9
−94.1
−98.5
−103.2
−107.4
−111.5
−115.3
−118.9
−122.2
−125.7
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
0.350
0.290
0.243
0.207
0.185
0.176
0.161
0.148
0.127
0.111
0.097
0.095
0.098
0.110
0.129
0.145
0.161
0.179
0.191
0.197
S21
S12
S22
K
S21
dB
3.07
3.17
2.77
2.78
2.78
2.41
2.39
2.13
2.15
2.23
2.12
2.24
2.47
2.68
2.77
2.81
2.92
3.02
3.15
3.23
26.8
26.9
26.9
27.0
27.0
27.1
27.1
27.2
27.2
27.0
26.7
26.3
25.5
24.9
23.9
23.0
22.0
21.1
20.1
19.4
K
S21
dB
2.04
2.17
2.25
2.49
2.86
3.19
3.55
4.36
4.60
5.08
5.00
4.96
4.97
5.01
4.90
4.97
5.11
5.08
5.20
5.21
5.39
5.57
5.61
5.81
5.97
11.2
11.3
11.4
11.5
11.5
11.4
11.4
11.3
11.1
11.0
10.8
10.5
10.2
9.8
9.5
9.1
8.7
8.3
7.9
7.5
7.0
6.6
6.2
5.7
5.3
µPC2714T
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
22
0.123
0.133
0.139
0.151
0.165
0.176
0.187
0.197
0.205
0.215
0.219
0.225
0.228
0.231
0.231
0.232
0.231
0.229
0.226
0.223
0.216
0.212
0.208
0.204
0.201
S21
S12
S22
Application Note P11976EJ2V0AN00
µPC2715T
VCC = 3.4 V, ICC = 4.5 mA
FREQUENCY
S11
MHz
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
33.7
21.3
9.5
−2.1
−12.4
−27.8
−40.7
−52.3
−66.1
−78.4
−89.3
−101.5
−113.8
−125.4
−137.1
−148.4
−160.0
−171.6
176.8
164.7
7.7
7.8
7.9
7.9
7.9
7.7
7.4
7.2
6.9
6.6
6.3
6.1
5.7
5.3
4.9
4.6
4.2
3.9
3.7
3.4
−8.4
−25.7
−40.9
−55.9
−69.5
−84.9
−98.4
−112.0
−125.6
−138.9
−150.8
−162.7
−174.5
174.3
163.7
153.2
143.1
133.2
123.5
114.5
0.031
0.028
0.025
0.022
0.020
0.019
0.019
0.019
0.020
0.021
0.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030
0.031
−7.8
−12.6
−17.8
−20.3
−21.2
−19.7
−15.7
−13.3
−12.3
−11.2
−11.6
−12.1
−14.5
−16.3
−18.3
−20.6
−22.2
−23.9
−25.6
−27.1
0.254
0.279
0.311
0.351
0.383
0.409
0.426
0.432
0.432
0.426
0.412
0.394
0.377
0.359
0.343
0.328
0.315
0.306
0.296
0.286
8.1
3.6
−1.0
−6.4
−13.0
−21.3
−30.2
−39.1
−48.1
−56.3
−64.2
−71.2
−77.5
−83.4
−88.3
−93.1
−97.2
−100.8
−104.7
−108.9
VCC = 3.0 V, ICC = 7.5 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−2.0
−5.5
−9.3
−13.8
−17.5
−20.8
−24.4
−26.9
−29.9
−31.4
−34.3
−37.3
−40.2
−43.1
−46.0
−48.7
−50.4
−51.4
−52.3
−51.3
4.22
4.23
4.23
4.24
4.24
4.26
4.30
4.31
4.32
4.34
4.38
4.37
4.25
4.08
3.82
3.50
3.24
2.97
2.69
2.41
−5.2
−11.9
−18.7
−25.6
−32.0
−38.8
−45.8
−52.9
−60.1
−67.5
−82.0
−97.6
−113.8
−129.6
−145.2
−161.3
−174.5
172.6
160.3
150.5
0.003
0.006
0.009
0.012
0.014
0.016
0.017
0.018
0.020
0.021
0.023
0.024
0.024
0.025
0.026
0.027
0.027
0.027
0.026
0.026
92.2
82.3
74.0
66.5
60.1
56.2
54.6
53.5
51.0
49.8
46.4
42.6
42.0
41.4
40.9
40.3
39.8
39.2
38.7
38.2
0.611
0.597
0.584
0.569
0.557
0.542
0.530
0.520
0.511
0.504
0.493
0.481
0.465
0.438
0.401
0.352
0.309
0.259
0.215
0.165
−4.1
−9.2
−13.5
−17.1
−20.4
−23.4
−26.1
−29.1
−31.8
−34.3
−40.3
−46.5
−53.1
−58.6
−63.6
−68.6
−71.9
−74.4
−74.1
−70.8
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
0.052
0.087
0.121
0.141
0.159
0.175
0.181
0.184
0.187
0.187
0.186
0.182
0.178
0.173
0.167
0.163
0.157
0.152
0.148
0.142
K
S21
dB
2.07
2.20
2.35
2.54
2.68
2.79
2.82
2.87
2.83
2.85
2.87
2.93
3.06
2.22
3.35
2.53
3.72
3.90
4.07
4.28
17.7
17.8
17.9
18.0
18.0
17.7
17.4
17.2
16.8
16.4
16.0
15.6
15.0
14.4
13.9
13.2
12.5
11.9
11.3
10.6
K
S21
dB
23.00
11.71
7.97
6.12
5.33
4.75
4.51
4.31
3.92
3.74
3.43
3.35
3.53
3.66
3.93
4.35
4.91
5.59
6.61
7.60
12.5
12.5
12.5
12.5
12.5
12.6
12.7
12.7
12.7
12.8
12.8
12.8
12.6
12.2
11.6
10.9
10.2
9.5
8.6
7.6
µPC2745T
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1200.0000
1400.0000
1600.0000
1800.0000
2000.0000
2200.0000
2400.0000
2600.0000
2800.0000
3000.0000
0.267
0.277
0.278
0.276
0.276
0.275
0.274
0.273
0.272
0.272
0.270
0.266
0.258
0.250
0.242
0.231
0.215
0.195
0.175
0.153
S21
S12
S22
Application Note P11976EJ2V0AN00
23
µPC2746T
VCC = 3.0 V, ICC = 7.5 mA
FREQUENCY
S11
MHz
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
164.0
146.5
130.0
117.8
106.1
93.9
87.3
76.6
66.3
56.2
45.6
35.5
26.5
18.6
11.5
4.7
−0.5
−4.4
−10.1
−16.2
9.11
9.30
9.30
9.23
9.17
9.08
8.91
8.75
8.61
8.46
8.15
7.79
7.44
6.98
6.55
6.08
5.63
5.21
4.77
4.25
−6.4
−15.3
−25.0
−34.3
−43.6
−53.0
−62.0
−71.9
−81.5
−91.9
−101.4
−110.5
−119.6
−129.1
−137.8
−146.4
−153.8
−161.5
−168.8
−175.0
0.001
0.002
0.003
0.004
0.005
0.006
0.008
0.009
0.011
0.012
0.013
0.014
0.115
0.016
0.016
0.016
0.016
0.017
0.017
0.017
122.7
118.8
114.7
110.5
106.6
102.4
98.8
94.6
90.8
87.2
83.0
79.7
76.0
74.2
72.6
71.0
68.9
67.4
65.8
61.3
0.362
0.359
0.365
0.370
0.378
0.382
0.389
0.389
0.393
0.385
0.381
0.368
0.335
0.335
0.314
0.290
0.264
0.235
0.206
0.180
−2.5
−6.0
−9.2
−12.0
−15.6
−19.7
−23.9
−29.0
−34.8
−40.5
−47.5
−52.4
−58.9
−64.3
−70.1
−75.1
−78.7
−81.4
−83.1
−84.8
VCC = 3.0 V, ICC = 5.0 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
−175.8
−168.9
−167.4
−174.1
175.3
163.9
153.7
142.9
131.7
120.7
110.5
101.1
88.5
80.9
71.1
61.5
55.6
48.0
42.9
34.7
3.84
4.10
4.18
4.17
4.15
4.12
4.07
4.02
3.97
3.92
3.83
3.70
3.55
3.38
3.23
3.07
2.89
2.72
2.53
2.32
−4.0
−12.5
−23.0
−33.0
−42.5
−52.0
−61.1
−70.7
−80.0
−90.2
−99.3
−108.1
−117.0
−126.2
−134.8
−143.3
−150.9
−158.8
−166.6
−173.1
0.001
0.001
0.002
0.003
0.004
0.004
0.005
0.006
0.008
0.009
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.020
0.022
0.024
120.5
118.8
117.0
115.2
113.7
112.2
110.8
109.3
107.8
106.3
104.8
103.4
101.9
100.4
98.0
95.6
93.2
92.6
91.6
89.2
0.249
0.255
0.261
0.266
0.272
0.277
0.281
0.283
0.288
0.287
0.287
0.284
0.279
0.272
0.264
0.256
0.243
0.234
0.219
0.209
−1.9
−4.2
−5.7
−7.0
−8.7
−10.6
−13.1
−15.8
−19.3
−22.6
−27.6
−30.2
−34.7
−37.3
−41.3
−43.7
−45.8
−46.2
−47.0
−46.4
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
0.213
0.204
0.197
0.201
0.209
0.219
0.231
0.242
0.255
0.265
0.275
0.286
0.296
0.300
0.296
0.292
0.288
0.285
0.281
0.266
K
S21
dB
45.48
22.39
14.88
11.17
8.89
7.41
5.59
5.03
4.13
3.86
3.68
3.59
3.53
3.57
3.88
4.27
4.71
4.88
5.42
6.21
19.2
19.4
19.4
19.3
19.2
19.2
19.0
18.8
18.7
18.5
18.2
17.8
17.4
16.9
16.3
15.7
15.0
14.3
13.6
12.6
K
S21
dB
µPC2747T
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
24
0.061
0.075
0.093
0.117
0.134
0.142
0.152
0.159
0.154
0.148
0.143
0.139
0.135
0.131
0.126
0.121
0.120
0.118
0.113
0.105
S21
S12
S22
Application Note P11976EJ2V0AN00
121.68
113.38
55.26
36.64
27.40
27.46
22.12
18.60
14.11
12.73
9.79
9.39
9.12
8.99
8.87
8.84
8.93
8.58
8.46
8.51
11.7
12.3
12.4
12.4
12.4
12.3
12.2
12.1
12.0
11.9
11.7
11.4
11.0
10.6
10.2
9.7
9.2
8.7
8.1
7.3
µPC2748T
VCC = 3.0 V, ICC = 6.0 mA
FREQUENCY
S11
MHz
MAG
ANG
S21
S12
S22
MAG
ANG
MAG
ANG
MAG
ANG
177.8
−176.8
−177.8
174.7
164.2
150.2
141.1
128.8
111.9
93.4
81.7
71.9
57.4
47.7
37.1
26.8
21.9
16.0
12.7
7.0
5.33
6.45
7.11
7.75
8.10
8.44
8.50
8.57
8.64
8.63
8.38
7.71
7.30
6.67
6.21
5.70
5.19
4.74
4.21
3.99
5.9
1.0
−10.1
−21.3
−32.3
−44.1
−54.4
−67.4
−79.6
−94.0
−104.5
−115.6
−126.6
−137.3
−146.9
−156.0
−163.7
−171.1
−179.0
175.3
0.001
0.001
0.002
0.002
0.003
0.004
0.005
0.006
0.008
0.009
0.011
0.011
0.011
0.012
0.011
0.011
0.012
0.013
0.014
0.014
82.0
98.6
103.8
110.7
117.3
117.2
115.5
114.4
108.2
101.8
95.2
90.2
88.2
83.9
78.5
79.4
83.7
87.9
90.1
89.4
0.294
0.310
0.318
0.325
0.338
0.352
0.364
0.376
0.387
0.392
0.382
0.364
0.344
0.316
0.289
0.262
0.232
0.207
0.176
0.159
−0.1
−4.3
−5.8
−7.6
−10.1
−13.4
−17.0
−22.7
−28.1
−36.3
−44.3
−49.9
−57.0
−62.4
−67.9
−72.0
−74.6
−74.4
−71.4
−65.0
VCC = 3.0 V, ICC = 6 mA
FREQUENCY
S11
MHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
4.67
4.85
4.95
4.97
4.99
5.01
5.06
5.19
5.29
5.51
5.72
5.94
6.14
6.33
6.46
6.48
6.38
6.25
6.10
5.86
5.47
5.18
4.81
4.49
4.17
3.92
3.64
3.44
3.19
3.03
1.3
−8.2
−16.8
−23.0
−29.4
−35.3
−41.0
−47.4
−54.0
−59.9
−67.2
−75.2
−84.2
−93.4
−103.3
−113.7
−124.3
−133.9
−144.3
−153.7
−163.9
−172.1
−179.8
173.0
166.1
160.0
153.7
148.7
142.9
138.1
0.001
0.001
0.001
0.001
0.002
0.003
0.004
0.005
0.006
0.008
0.011
0.013
0.016
0.019
0.021
0.024
0.025
0.027
0.028
0.031
0.032
0.032
0.033
0.033
0.033
0.033
0.033
0.034
0.035
0.036
150.9
152.4
153.8
155.1
156.4
155.8
155.9
154.4
152.4
149.0
145.4
140.8
135.5
128.9
123.0
116.1
107.8
105.5
101.6
96.7
91.3
87.1
83.2
80.6
78.6
77.3
76.2
74.8
74.5
73.2
0.009
0.024
0.041
0.058
0.074
0.089
0.105
0.120
0.138
0.149
0.160
0.170
0.178
0.181
0.179
0.171
0.158
0.141
0.123
0.110
0.094
0.094
0.094
0.104
0.118
0.136
0.155
0.174
0.193
0.210
−169.1
107.5
91.0
80.0
72.2
64.3
56.5
48.4
39.7
29.3
20.2
10.1
−1.3
−13.8
−27.5
−41.4
−53.7
−76.2
−95.1
−112.2
−138.4
−165.2
168.2
145.0
126.5
112.6
99.5
91.5
81.5
75.3
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
0.102
0.115
0.138
0.166
0.185
0.199
0.211
0.207
0.201
0.181
0.166
0.161
0.147
0.131
0.121
0.104
0.096
0.092
0.085
0.060
K
S21
dB
84.81
69.14
31.01
28.05
17.59
12.45
9.74
7.98
5.89
5.26
4.51
4.99
5.37
5.53
6.62
7.36
7.54
7.71
8.18
8.71
14.5
16.2
17.0
17.8
18.2
18.5
18.6
18.7
18.7
18.7
18.5
17.7
17.3
16.5
15.9
15.1
14.3
13.5
12.5
12.0
K
S21
dB
106.8
102.8
100.6
100.1
49.7
32.9
24.3
18.8
15.3
10.9
7.6
6.1
4.7
3.8
3.3
2.8
2.7
2.5
2.5
2.4
2.5
2.7
2.8
3.0
3.2
3.5
3.7
3.8
4.0
4.1
13.4
13.7
13.9
13.9
14.0
14.0
14.1
14.3
14.5
14.8
15.1
15.5
15.8
16.0
16.2
16.2
16.1
15.9
15.7
15.4
14.8
14.3
13.6
13.0
12.4
11.9
11.2
10.7
10.1
9.6
µPC2749T
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
0.049
0.046
0.044
0.043
0.046
0.055
0.071
0.094
0.115
0.138
0.165
0.199
0.233
0.265
0.298
0.323
0.352
0.367
0.377
0.379
0.371
0.363
0.357
0.350
0.340
0.331
0.321
0.311
0.301
0.290
1.9
−23.9
−55.1
−89.7
−132.7
−164.0
171.8
153.8
137.5
127.5
118.1
107.8
98.2
89.0
80.0
70.7
61.7
53.0
45.2
37.2
30.8
26.0
22.1
19.0
16.1
14.4
12.3
11.8
10.8
10.2
S21
S12
S22
Application Note P11976EJ2V0AN00
25
µPC2711TB
VCC = 5.0 V, ICC = 13.8 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
S11
S21
ANG
−22.4
−25.0
−29.2
−29.4
−33.9
−54.5
−104.3
−119.7
−121.9
−112.5
−108.5
−95.6
−79.2
54.8
80.7
80.4
78.7
72.0
63.5
59.0
54.2
55.2
53.8
53.6
49.2
43.7
36.2
31.7
28.8
29.7
0.085
0.086
0.098
0.081
0.066
0.041
0.053
0.070
0.098
0.101
0.090
0.060
0.019
0.023
0.062
0.087
0.113
0.126
0.154
0.178
0.212
0.232
0.246
0.248
0.240
0.238
0.240
0.262
0.285
0.316
MAG
S12
ANG
−14.9
−30.1
−44.9
−60.3
−74.9
−90.2
−105.3
−120.7
−136.1
−152.0
−167.9
175.8
159.5
143.0
126.4
109.5
92.7
75.4
58.0
41.3
24.0
6.9
−10.4
−27.7
−45.0
−62.3
−79.6
−96.6
−113.1
−129.6
4.447
4.468
4.491
4.510
4.540
4.572
4.624
4.664
4.729
4.781
4.843
4.945
4.999
5.062
5.114
5.142
5.160
5.146
5.123
5.113
5.063
5.006
4.954
4.865
4.783
4.664
4.529
4.384
4.255
4.117
MAG
S22
ANG
−12.7
−23.0
−32.1
−42.5
−50.1
−59.6
−69.3
−78.4
−86.6
−94.9
−103.9
−111.0
−120.2
−128.9
−133.1
−140.9
−146.2
−151.4
−159.7
−168.3
−175.7
175.2
165.2
155.3
143.6
131.2
119.8
108.7
95.5
83.6
0.035
0.035
0.034
0.033
0.033
0.033
0.032
0.031
0.032
0.031
0.031
0.029
0.029
0.028
0.029
0.029
0.029
0.030
0.032
0.035
0.036
0.038
0.041
0.045
0.048
0.049
0.052
0.054
0.056
0.057
K
MAG
ANG
0.113
0.119
0.136
0.142
0.156
0.161
0.161
0.176
0.192
0.228
0.256
0.290
0.308
0.322
0.327
0.333
0.344
0.356
0.371
0.378
0.383
0.378
0.367
0.359
0.356
0.359
0.366
0.374
0.372
0.361
−3.1
1.2
1.6
6.5
10.1
12.7
8.8
6.2
1.9
0.1
−0.6
−1.1
−0.3
−1.4
−2.2
−4.8
−7.0
−9.7
−11.1
−12.0
−12.8
−13.6
−16.1
−18.0
−21.1
−23.6
−26.2
−28.6
−31.1
−35.0
3.18
3.21
3.23
3.34
3.32
3.34
3.33
3.36
3.27
3.29
3.15
3.24
3.16
3.18
3.08
3.07
3.02
2.88
2.70
2.51
2.39
2.27
2.13
1.99
1.88
1.85
1.76
1.72
1.68
1.69
µPC2712TB
VCC = 5.0 V, ICC = 13.9 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
26
0.303
0.291
0.295
0.276
0.265
0.243
0.222
0.219
0.230
0.267
0.290
0.316
0.317
0.314
0.296
0.290
0.278
0.282
0.284
0.280
0.273
0.244
0.222
0.189
0.177
0.164
0.158
0.143
0.128
0.111
S11
S21
ANG
−8.1
−10.1
−11.8
−11.3
−11.0
−12.3
−20.3
−25.4
−33.9
−35.5
−35.5
−33.2
−30.6
−29.4
−28.1
−29.4
−31.1
−34.9
−35.5
−36.6
−36.0
−38.2
−40.0
−45.7
−52.9
−57.4
−59.6
−53.9
−44.3
−22.2
MAG
8.864
8.827
8.936
9.044
9.051
9.096
9.089
9.080
9.096
9.044
9.197
9.421
9.524
9.512
9.574
9.598
9.480
9.372
9.193
9.198
9.011
8.784
8.717
8.388
8.217
7.890
7.597
7.313
7.078
6.806
S12
ANG
−16.7
−33.5
−49.5
−67.6
−82.2
−98.8
−115.2
−131.5
−147.6
−164.2
179.5
162.4
144.9
126.6
109.1
91.1
72.9
54.3
35.6
18.4
0.1
−17.9
−35.1
−52.9
−70.1
−87.4
−104.6
−121.4
−138.4
−154.9
MAG
0.023
0.023
0.022
0.023
0.023
0.023
0.023
0.023
0.023
0.024
0.024
0.024
0.024
0.026
0.026
0.027
0.028
0.029
0.030
0.031
0.033
0.033
0.034
0.036
0.037
0.039
0.041
0.041
0.043
0.046
Application Note P11976EJ2V0AN00
S22
ANG
−11.4
−19.2
−25.5
−34.6
−42.8
−50.0
−59.8
−66.2
−73.0
−82.9
−89.5
−98.4
−107.0
−115.7
−122.3
−133.2
−139.4
−148.1
−157.6
−167.4
−175.1
176.5
164.8
154.8
143.5
133.3
123.8
114.0
101.4
90.2
MAG
0.043
0.055
0.078
0.095
0.112
0.120
0.120
0.136
0.155
0.189
0.212
0.240
0.245
0.248
0.236
0.231
0.221
0.215
0.199
0.170
0.134
0.090
0.050
0.025
0.039
0.071
0.099
0.131
0.149
0.157
K
ANG
2.3
11.5
8.5
13.4
13.6
11.1
1.7
−6.0
−14.4
−17.5
−19.9
−21.4
−23.2
−27.1
−31.8
−38.0
−43.8
−49.8
−53.0
−55.3
−56.2
−55.2
−53.7
1.8
33.4
39.3
34.3
26.0
22.8
19.4
2.32
2.35
2.38
2.33
2.37
2.35
2.37
2.38
2.39
2.26
2.12
2.02
1.94
1.82
1.78
1.74
1.72
1.69
1.70
1.69
1.68
1.74
1.74
1.75
1.74
1.72
1.70
1.72
1.70
1.70
µPC2745TB
VCC = 3.0 V, ICC = 8.4 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
S11
S21
ANG
−3.9
−5.9
−7.2
−8.9
−10.8
−13.9
−20.8
−25.8
−31.9
−32.8
−32.7
−31.2
−30.9
−30.8
−30.3
−31.3
−30.5
−31.6
−29.6
−30.0
−28.6
−29.5
−31.6
−35.1
−39.9
−40.3
−40.9
−35.5
−30.2
−20.6
0.318
0.325
0.346
0.341
0.339
0.326
0.311
0.312
0.325
0.356
0.382
0.416
0.416
0.415
0.393
0.386
0.373
0.369
0.366
0.353
0.344
0.313
0.293
0.267
0.262
0.253
0.253
0.248
0.237
0.230
MAG
S12
ANG
−17.2
−35.5
−52.5
−70.7
−87.3
−104.7
−121.5
−138.1
−154.2
−170.3
173.7
156.7
139.1
121.4
103.7
86.8
69.7
52.7
35.8
18.8
1.5
−15.4
−32.5
−49.4
−66.0
−82.3
−98.6
−114.6
−130.2
−146.4
4.055
4.030
3.985
3.916
3.842
3.775
3.668
3.594
3.525
3.497
3.503
3.542
3.569
3.520
3.501
3.429
3.355
3.303
3.229
3.179
3.081
2.999
2.911
2.802
2.695
2.598
2.496
2.400
2.306
2.209
MAG
S22
ANG
0.003
0.006
0.009
0.012
0.013
0.015
0.017
0.018
0.020
0.019
0.020
0.022
0.023
0.025
0.025
0.025
0.026
0.028
0.028
0.030
0.031
0.031
0.033
0.034
0.036
0.036
0.034
0.036
0.032
0.031
62.9
54.2
42.0
29.4
11.8
1.6
−11.9
−24.2
−38.4
−45.9
−54.3
−70.5
−78.4
−88.4
−102.9
−114.1
−125.7
−130.3
−142.5
−152.4
−164.9
−177.1
171.1
160.8
148.3
134.8
121.4
106.5
92.8
83.6
MAG
K
ANG
−6.6
−12.1
−16.5
−20.6
−23.0
−26.2
−29.9
−32.4
−34.8
−35.8
−36.3
−36.8
−37.5
−38.8
−40.5
−42.5
−43.8
−44.8
−44.8
−45.0
−45.0
−45.4
−46.4
−47.4
−48.2
−48.3
−47.6
−46.7
−46.3
−46.2
0.593
0.584
0.579
0.562
0.546
0.527
0.515
0.511
0.512
0.523
0.525
0.530
0.518
0.509
0.492
0.481
0.474
0.468
0.457
0.440
0.416
0.389
0.365
0.346
0.331
0.321
0.311
0.299
0.279
0.254
20.94
11.68
8.29
6.26
6.29
5.50
5.46
5.36
4.91
4.93
4.56
4.14
3.92
3.53
3.68
3.78
3.68
3.50
3.63
3.62
3.85
4.23
4.23
4.40
4.45
4.54
5.08
5.01
5.88
6.49
µPC2746TB
VCC = 3.0 V, ICC = 7.7 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
0.146
0.130
0.117
0.128
0.139
0.145
0.135
0.131
0.119
0.142
0.170
0.219
0.245
0.268
0.270
0.268
0.258
0.251
0.249
0.240
S11
S21
ANG
165.0
141.7
117.9
100.8
90.8
83.1
77.0
67.4
49.3
30.4
18.0
10.6
7.4
3.1
1.5
−3.9
−7.8
−14.3
−16.7
−20.5
MAG
6.443
6.594
6.623
6.522
6.613
6.481
6.424
6.353
6.234
6.137
5.992
5.972
5.867
5.679
5.582
5.380
5.122
4.880
4.634
4.475
S12
ANG
−19.4
−38.7
−58.1
−77.5
−96.9
−116.1
−135.1
−153.6
−172.1
169.6
151.1
133.3
115.1
97.0
79.1
61.8
44.5
27.9
11.7
−4.4
MAG
0.001
0.003
0.004
0.005
0.008
0.009
0.010
0.011
0.014
0.015
0.016
0.019
0.019
0.022
0.021
0.022
0.024
0.024
0.025
0.026
Application Note P11976EJ2V0AN00
S22
ANG
77.0
51.8
47.7
51.1
33.1
21.7
14.7
−0.4
−10.5
−24.2
−28.7
−48.0
−63.4
−72.2
−86.9
−99.6
−110.7
−122.9
−135.3
−146.0
MAG
0.403
0.406
0.418
0.417
0.424
0.422
0.426
0.433
0.442
0.455
0.455
0.453
0.433
0.409
0.375
0.349
0.318
0.294
0.268
0.248
K
ANG
−5.3
−8.6
−11.0
−14.0
−16.2
−19.4
−23.8
−27.7
−32.1
−34.7
−37.5
−39.7
−42.7
−45.5
−48.3
−49.9
−50.0
−49.2
−45.4
−40.5
108.63
20.56
16.33
12.34
8.14
7.22
6.52
5.63
4.80
4.44
4.02
3.49
3.40
3.16
3.38
3.36
3.42
3.67
3.73
3.91
27
µPC2747TB
VCC = 3.0 V, ICC = 4.9 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
S11
S21
ANG
−178.3
−161.2
−166.8
−172.9
0.951
0.105
0.136
0.165
0.179
0.185
0.189
0.189
0.182
0.180
0.174
0.160
0.148
0.134
0.124
0.110
0.099
0.089
0.084
0.085
0.087
0.092
0.102
0.114
0.126
0.136
0.154
0.168
0.180
0.196
0.208
177.8
170.1
162.5
155.1
148.8
142.6
137.1
131.5
127.4
124.4
121.0
121.0
122.9
126.8
134.8
141.7
148.1
152.1
156.6
158.7
161.4
160.6
161.3
160.4
157.9
155.2
152.5
MAG
S12
ANG
−3.9
−13.3
−23.4
−32.9
−41.2
−49.5
−57.9
−66.3
−74.5
−83.0
−91.8
−99.5
−108.4
−115.9
−124.0
−131.7
−138.8
−145.7
−152.8
−159.0
−164.8
−170.8
−176.3
3.732
3.997
4.075
4.105
4.141
4.098
4.124
4.104
4.061
4.016
3.977
3.948
3.799
3.736
3.582
3.506
3.317
3.190
3.040
2.901
2.736
2.645
2.507
2.395
2.312
2.218
2.136
2.036
1.952
1.847
1.757
177.8
172.9
168.1
162.1
157.8
151.6
147.6
141.6
MAG
S22
ANG
28.0
103.2
76.0
90.4
89.4
90.7
96.6
101.3
99.2
99.9
100.3
105.5
96.6
93.8
93.8
88.1
88.6
88.3
80.2
78.7
77.6
73.0
72.5
68.5
66.2
64.0
60.4
54.8
53.0
47.2
44.0
0.001
0.002
0.002
0.004
0.004
0.005
0.006
0.008
0.009
0.012
0.013
0.015
0.016
0.019
0.022
0.023
0.025
0.028
0.030
0.032
0.034
0.035
0.037
0.038
0.041
0.042
0.042
0.044
0.044
0.043
0.045
MAG
K
ANG
−3.7
−4.3
−3.9
−5.6
−6.9
−8.4
−10.2
−12.2
−14.4
−16.9
−19.7
−22.6
−24.9
−27.4
−30.1
−31.8
−33.3
−35.1
−37.2
−38.8
−40.9
−41.5
−42.2
−44.7
−45.8
−47.8
−50.8
−54.1
−57.5
−60.9
−65.5
0.290
0.294
0.292
0.286
0.298
0.302
0.307
0.309
0.313
0.316
0.318
0.318
0.318
0.313
0.311
0.312
0.308
0.305
0.305
0.303
0.299
0.304
0.304
0.305
0.317
0.319
0.323
0.331
0.330
0.332
0.331
98.96
64.71
46.80
29.99
25.94
20.69
17.38
12.59
12.26
9.45
8.22
7.49
7.42
6.36
5.83
5.55
5.37
5.05
4.98
4.97
4.99
4.97
4.93
5.01
4.76
4.78
4.88
4.88
5.07
5.45
5.49
µPC2748TB
VCC = 3.0 V, ICC = 6.3 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
28
0.120
0.136
0.166
0.194
0.210
0.213
0.213
0.211
0.203
0.193
0.180
0.159
0.136
0.115
0.096
0.072
0.049
0.024
0.007
0.014
0.034
0.047
0.063
0.079
0.094
0.108
0.123
0.139
0.151
0.164
0.178
S11
S21
ANG
−177.2
−167.3
−174.2
179.6
169.6
160.0
150.2
140.8
131.1
121.1
110.8
100.6
90.6
79.2
70.4
60.9
47.5
36.5
−6.0
−126.0
−141.3
−147.7
−156.9
−161.1
−165.5
−169.0
−174.7
−178.9
175.9
170.5
166.0
MAG
4.730
5.430
5.930
6.314
6.701
6.876
7.203
7.310
7.354
7.371
7.346
7.334
7.001
6.834
6.437
6.181
5.710
5.372
5.014
4.724
4.405
4.175
3.933
3.738
3.579
3.411
3.283
3.107
2.989
2.814
2.680
S12
ANG
5.3
−0.2
−9.2
−18.8
−28.2
−38.8
−49.3
−60.6
−71.5
−81.9
−92.8
−102.4
−112.6
−121.3
−130.1
−138.2
−145.4
−152.5
−158.6
−164.1
−169.7
−174.7
−179.5
175.3
171.2
166.5
161.4
157.3
151.4
147.3
141.5
MAG
0.000
0.001
0.001
0.003
0.004
0.005
0.006
0.009
0.010
0.012
0.014
0.015
0.016
0.018
0.019
0.020
0.020
0.021
0.021
0.024
0.024
0.026
0.026
0.028
0.030
0.030
0.032
0.031
0.032
0.033
0.034
Application Note P11976EJ2V0AN00
S22
ANG
−30.4
19.3
97.8
125.4
108.7
107.4
98.7
114.1
107.6
98.3
99.1
97.5
91.4
84.1
84.8
82.4
78.9
73.5
74.1
74.9
71.5
73.6
71.2
69.1
63.8
64.7
64.6
58.9
53.2
51.6
47.3
MAG
0.280
0.285
0.286
0.291
0.306
0.319
0.337
0.349
0.360
0.371
0.366
0.359
0.342
0.320
0.296
0.271
0.247
0.228
0.208
0.198
0.188
0.190
0.185
0.192
0.202
0.214
0.222
0.238
0.240
0.251
0.254
K
ANG
−2.2
−2.4
−0.9
−2.7
−3.7
−5.4
−8.4
−12.3
−17.4
−22.7
−28.9
−35.3
−40.7
−46.0
−50.5
−53.0
−55.1
−55.7
−55.7
−52.8
−52.1
−47.8
−45.3
−44.7
−43.2
−43.6
−45.7
−47.6
−52.4
−55.8
−61.4
352.73
72.83
52.47
24.77
16.82
12.40
10.09
6.68
5.68
4.71
3.98
4.01
3.95
3.71
3.77
3.81
4.13
4.22
4.57
4.37
4.70
4.44
4.81
4.58
4.48
4.59
4.54
4.83
4.84
4.99
5.07
µPC2749TB
VCC = 3.0 V, ICC = 6.8 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
S11
S21
ANG
13.0
0.021
0.038
0.034
0.052
0.062
0.079
0.097
0.116
0.134
0.156
0.178
0.195
0.214
0.229
0.249
0.259
0.264
0.259
0.248
0.238
0.218
0.204
0.183
0.156
0.140
0.119
0.095
0.078
0.066
0.070
0.082
−30.5
−71.8
−120.5
−149.9
−169.7
173.6
160.5
149.3
138.8
128.5
118.7
108.7
99.5
89.4
79.9
69.8
60.3
50.9
43.6
35.9
30.1
25.3
21.2
18.8
18.7
21.2
30.0
44.5
66.0
78.1
MAG
S12
ANG
−1.9
−7.8
−15.5
−21.0
−26.6
−31.6
−36.7
−41.3
−46.8
−52.6
−60.3
−67.1
−76.2
−84.5
−93.8
−103.6
−113.5
−123.4
−132.9
−140.8
−148.8
−156.5
−163.2
−170.5
−176.3
4.096
4.216
4.282
4.403
4.390
4.399
4.566
4.667
4.843
5.016
5.305
5.660
5.835
6.148
6.364
6.611
6.577
6.549
6.407
6.321
6.046
5.862
5.696
5.430
5.282
5.013
4.849
4.596
4.446
4.163
3.966
177.2
170.9
164.9
158.1
152.3
145.3
MAG
S22
ANG
−1.1
0.002
0.001
0.001
0.002
0.002
0.003
0.005
0.007
0.008
0.009
0.014
0.016
0.020
0.022
0.025
0.028
0.032
0.034
0.036
0.037
0.038
0.039
0.040
0.041
0.042
0.040
0.042
0.042
0.042
0.044
0.042
75.4
141.5
129.9
134.1
128.3
132.9
131.5
129.3
124.6
131.4
122.5
118.6
114.4
107.7
104.3
96.8
91.8
83.3
78.5
75.1
70.4
68.3
60.7
61.6
58.1
55.1
51.9
44.7
41.9
37.1
MAG
K
ANG
165.8
113.6
96.1
87.9
76.9
68.6
60.6
53.7
44.9
36.1
28.0
17.3
8.6
−2.0
−13.5
−23.6
−33.8
−44.1
−53.8
−61.4
−69.5
−73.8
−79.5
−84.1
−82.1
−84.5
−85.5
−83.9
−91.8
−92.8
−99.6
0.024
0.033
0.064
0.080
0.103
0.127
0.151
0.174
0.197
0.220
0.240
0.262
0.279
0.287
0.294
0.294
0.283
0.272
0.256
0.234
0.213
0.193
0.174
0.164
0.152
0.142
0.146
0.149
0.154
0.171
0.181
66.82
129.26
90.16
45.30
57.58
34.08
22.08
14.70
12.29
10.00
6.15
5.13
3.80
3.23
2.72
2.35
2.09
1.99
1.97
1.99
2.04
2.08
2.15
2.25
2.25
2.53
2.46
2.62
2.70
2.73
2.97
µPC3210TB
VCC = 5.0 V, ICC = 16.0 mA
FREQUENCY
MHz
MAG
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.358
0.335
0.321
0.306
0.294
0.283
0.273
0.267
0.260
0.252
0.246
0.239
0.229
0.224
0.215
0.203
0.191
0.179
0.163
0.155
0.140
0.133
0.130
0.133
0.137
0.149
0.157
0.170
0.181
0.203
0.209
S11
S21
ANG
171.9
166.6
160.7
158.3
154.4
151.8
148.6
146.0
144.2
141.5
138.4
135.9
133.3
131.1
127.4
125.8
123.1
122.1
121.0
123.4
126.1
129.1
135.3
139.0
144.0
148.5
150.2
152.2
150.3
149.0
147.9
S12
MAG
ANG
8.688
8.807
8.821
8.841
8.908
8.990
9.160
9.342
9.541
9.741
10.071
10.393
10.513
10.763
10.708
10.720
10.388
9.993
9.507
8.983
8.384
7.905
7.412
6.976
6.582
6.202
5.942
5.567
5.360
5.013
4.810
−4.4
−10.6
−17.1
−23.3
−29.2
−35.1
−41.0
−47.3
−53.9
−60.8
−68.6
−76.3
−85.4
−94.5
−104.0
−114.2
−124.1
−133.7
−142.8
−151.2
−158.9
−166.0
−172.3
−178.6
176.1
170.4
164.9
159.7
153.9
149.0
142.9
MAG
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.018
0.018
0.019
0.019
0.018
0.019
0.019
0.021
0.021
0.023
0.023
0.025
0.024
0.027
0.029
0.032
0.034
0.038
0.039
0.043
0.045
0.047
0.048
0.051
Application Note P11976EJ2V0AN00
S22
ANG
−1.4
3.3
6.3
9.9
13.6
15.8
19.5
24.3
29.8
28.9
29.4
36.7
38.1
45.6
48.2
48.9
55.7
59.5
61.9
65.9
69.0
70.7
71.8
74.3
73.2
71.4
73.7
72.2
72.5
69.6
71.0
MAG
0.233
0.237
0.233
0.233
0.241
0.246
0.250
0.256
0.263
0.274
0.283
0.291
0.299
0.303
0.311
0.316
0.308
0.303
0.291
0.275
0.255
0.230
0.207
0.182
0.157
0.136
0.116
0.102
0.099
0.104
0.117
K
ANG
−6.8
−12.0
−15.1
−20.6
−25.6
−30.8
−35.8
−41.2
−47.9
−53.1
−59.0
−65.7
−71.9
−79.7
−87.6
−94.9
−103.4
−111.5
−119.5
−128.4
−135.0
−140.5
−145.9
−150.3
−151.8
−152.1
−147.1
−137.8
−132.3
−122.3
−114.4
2.63
2.71
2.68
2.68
2.67
2.74
2.67
2.65
2.69
2.46
2.37
2.38
2.25
2.20
2.05
2.07
1.98
2.02
2.01
2.17
2.14
2.12
2.10
2.12
2.06
2.13
2.03
2.04
2.03
2.10
2.08
29
[MEMO]
30
Application Note P11976EJ2V0AN00
Facsimile Message
From:
Name
Company
Tel.
Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.
FAX
Address
Thank you for your kind support.
North America
Hong Kong, Philippines, Oceania
NEC Electronics Inc.
NEC Electronics Hong Kong Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044
Fax: 1-800-729-9288
1-408-588-6130
Korea
Europe
NEC Electronics Hong Kong Ltd.
NEC Electronics (Europe) GmbH
Seoul Branch
Technical Documentation Dept.
Fax: 02-528-4411
Fax: +49-211-6503-274
South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829
Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583
Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900
Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951
I would like to report the following error/make the following suggestion:
Document title:
Document number:
Page number:
If possible, please fax the referenced page or drawing.
Document Rating
Excellent
Good
Acceptable
Poor
Clarity
Technical Accuracy
Organization
CS 99.1