Application Note USAGE AND APPLICATIONS OF 6-PIN MINI-MOLD, 6-PIN SUPER MINI-MOLD SILICON HIGH-FREQUENCY WIDEBAND AMPLIFIER MMIC µPC2711-15 µPC2745-49 µPC2791/92 µPC3210 Document No. P11976EJ2V0AN00 (2nd edition) Date Published May 1999 N CP(K) © 1997 Printed in Japan [MEMO] 2 Application Note P11976EJ2V0AN00 The information in this document is subject to change without notice. The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. This application note introduces general types of applications for these products. The application circuits and circuit constants described herein are only examples and are not intended for mass-production design. You should also understand that the application circuit limitations and application circuit characteristics herein are not intended to be used as product ratings nor specifications. The characteristics of high-frequency ICs differ depending on your external components. Accordingly, you should determine external factors to suit your planned system requirements while referring this note, then confirm the characteristics before using these products. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others. M4A 96. 10 Application Note P11976EJ2V0AN00 3 [MEMO] 4 Application Note P11976EJ2V0AN00 CONTENTS 1. INTRODUCTION ............................................................................................................................................ 7 2. PRODUCT LINEUP ....................................................................................................................................... 7 2.1 Characteristics ..................................................................................................................................... 7 2.2 Manufacturing Process........................................................................................................................ 9 2.3 Application Examples .......................................................................................................................... 9 THEORETICAL DESCRIPTION .................................................................................................................... 10 3.1 Description of Internal Circuits ........................................................................................................... 10 3. 3.2 Description of External Circuits.......................................................................................................... 12 3.3 Description of Test Circuit .................................................................................................................. 13 4. EXTERNAL CIRCUIT COMPONENTS AND APPLICATION CHARACTERISTICS................................. 16 5. EXAMPLE OF ADJUSTING CHARACTERISTICS VIA PERIPHERAL CIRCUITS ................................. 18 5.1 Example of Adjusting Mismatched Voltage in the Systems............................................................. 18 5.2 Example of Adjustment between Stages ........................................................................................... 19 SUMMARY ..................................................................................................................................................... 20 REFERENCES........................................................................................................................................................ 20 APPENDIX TYPICAL S-PARAMETER VALUES ................................................................................................ 21 6. CAUTIONS (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to VCC line. (4) The DC cut capacitor must be each attached to input and output pin. (Determine the capacitance value based on the used frequency). (5) Voltage should only be applied at the VCC pin. Voltage must not be applied via an input/output pin, nor should the pin voltage be externally regulated such as via direct pull-down. (6) The IC's internal circuit feedback cannot be modified externally. Application Note P11976EJ2V0AN00 5 [MEMO] 6 Application Note P11976EJ2V0AN00 1. INTRODUCTION The application for high-frequency devices has grown to include not only TV/VCR tuners and cable TV converters but also, more recently, DBS, cellular phones, pagers, and GPS. In response to these increasingly diverse needs, NEC has developed an abundant lineup of high-frequency amplifier ICs. This application note is intended to describe the selection for design purposes or the application as an external circuit reference for certain characteristics in the 6-pin mini mold and super mini mold products, among NEC’s lineup of silicon high-frequency wideband amplifier ICs. Refer to the product data sheet for details of the product’s ratings, specifications, and test conditions. 2. PRODUCT LINEUP 2.1 Characteristics While a wide assortment of silicon high-frequency wideband amplifier ICs are listed in product references such as NEC’s Selection Guide, this application note focuses on µPC2711 to 2715, µPC2745 to 2749, µPC2791/92, and µPC3210, packaged in a 6-pin mini mold or super mini mold. Table 2-1 lists these products and their characteristics. These products cover three power supply voltage ranges, the 5-V range, 3.4-V range, and 3-V range, and include various frequencies, output levels, and power gains. These products are available in two package sizes: size 2915 (6-pin mini mold) and size 2012 (6-pin super mini mold). The dimensions of these packages are shown in Figure 2-1. Three characters are marked instead of the part number shown on the molds, due to limited printing space on these small molds. Each marking corresponds to a different product name. Due to space limitations, the pin 1 mark is printed on the bottom side. Figure 2-2 illustrates an example of markings. The “T” or “TB” that appears after the part number is a package code: “TB” indicates super mini mold and “T” indicates mini mold. When two package codes appear on the same product, such as on a µPC2711, they indicate that the same specifications apply to two package types in the product lineup. The marking is the same on both package types, but the products can be distinguished by their package sizes. All the products are available in taping form and the order code is “part name plus taping code (E3)”. Application Note P11976EJ2V0AN00 7 Table 2-1. List of Characteristics in 6-pin Mini Mold and Super Mini Mold High-Frequency Wideband Amplifier ICs (TA = +25°°C, ZL = ZS = 50 Ω ). VCC (V) fU (GHz) PO(sat) (dBm) GP (dB) NF (dB) ICC (mA) 4.5 to 5.5 DC to 2.9 +1.0 13 5.0 12 Part number (Bulk part name) µPC2711T Package 6-pin mini mold µPC2711TB µPC2712T Marking C1G 6-pin super mini mold 4.5 to 5.5 DC to 2.6 +3.0 20 4.5 12 6-pin mini mold µPC2712TB C1H 6-pin super mini mold µPC2713T 4.5 to 5.5 DC to 1.2 +7.0 29 3.2 12 6-pin mini mold C1J µPC2714T 3.06 to 3.74 DC to 1.8 −7.0 11.5 5.0 4.5 6-pin mini mold C1K µPC2715T 3.06 to 3.74 DC to 1.2 −6.0 19 4.5 4.5 6-pin mini mold C1L µPC2745T 2.7 to 3.3 DC to 2.7 −1.0 12 6.0 7.5 6-pin mini mold C1Q µPC2745TB µPC2746T 6-pin super mini mold 2.7 to 3.3 DC to 1.5 0 19 4.0 7.5 6-pin mini mold µPC2746TB µPC2747T 6-pin super mini mold 2.7 to 3.3 DC to 1.8 –7.0 12 3.3 5.0 6-pin mini mold µPC2747TB µPC2748T C1S 6-pin super mini mold 2.7 to 3.3 0.2 to 1.5 −3.5 19 2.8 5.0 6-pin mini mold µPC2748TB µPC2749T C1R C1T 6-pin super mini mold 2.7 to 3.3 0.1 to 2.9 −6.0 16 4.0 6.0 6-pin mini mold µPC2749TB C1U 6-pin super mini mold µPC2791TB 4.5 to 5.5 DC to 1.9 +4.0 12 5.5 17 6-pin super mini mold C2S µPC2792TB 4.5 to 5.5 DC to 1.2 +5.0 22 3.5 19 6-pin super mini mold C2T µPC3210TB 4.5 to 5.5 DC to 2.3 +3.5 20 3.4 15 6-pin super mini mold C2X The above values are typical values for major characteristics. See each product’s data sheet for detailed ratings, characteristic curves, etc. Figure 2-1. Package Drawings of 6-pin Mini Mold and Super Mini Mold 0 to 0.1 0.95 0.95 1.9 0.2 2.1±0.1 +0.2 1.5 −0.1 +0.2 2.8 −0.3 0.13±0.1 0.8 +0.2 1.1 −0.1 2.9±0.2 8 +0.1 −0 0.15 1.25±0.1 +0.1 0.3 −0.05 6-pin super mini mold 0.1 MIN. 6-pin mini mold Application Note P11976EJ2V0AN00 +0.1 −0 0 to 0.1 0.65 0.65 1.3 2.0±0.2 0.7 0.9±0.1 Figure 2-2. Exterior of the Marking Example 3 2 1 C1G (Top view) (Bottom view) 4 4 3 5 5 2 6 6 1 Remark The marking example shown in the figure corresponds to µPC2711T/TB. 2.2 Manufacturing Process The following NEC proprietary NESAT™ silicon bipolar processes are employed as the manufacturing process. NESAT III is used for the µPC2711 to 2749 and µPC3210, NESAT II AL is used for the µPC2791/92. For details of the processes, refer to NESAT Process Pamphlet (P12647E). 2.3 Application Examples Table 2-2 lists several application examples. Among the lineup of products, the most suitable product can be selected based on characteristics such as maximum frequency and power supply voltage. Table 2-2. Application Examples of High-frequency Wideband Amplifier ICs Application Product 1st IF stage devices such as for BS converters and BS tuners µPC2712T/TB 2nd local buffers for BS tuner, etc. µPC2711T/TB 2nd IF stage buffer for BS tuner, etc. µPC2713T, µPC2791TB, µPC2792TB Local buffer for cellular phone, etc. µPC2745T/TB, µPC2746T/TB Wireless LAN (2.5 GHz), etc. µPC2745T/TB, µPC2749T/TB GPS receiver, etc. µPC2749T/TB (3 V), µPC3210TB (5 V) Application Note P11976EJ2V0AN00 9 3. THEORETICAL DESCRIPTION 3.1 Description of Internal Circuits Products in this series incorporate 50-Ω matching circuits based on the resistance at the IC’s input and output stages. A two-stage configuration is employed to obtain the desired RF characteristics. This enables the IC with 50Ω connections in a wide operating frequency range. The details of the internal circuit configurations differ according to each circuit’s characteristics. An internal equivalent circuit is shown in Figure 3-1. The respective internal circuits are described below in the order of their development. Internal circuits of products in the µPC2711 to 2713 Series feature a wide band with peaking capacitance inserted at the emitter side of each stage, and multiple negative feedback circuits to suppress performance deviation in the high frequency region. A Darlington-type output stage greatly increases the feedback loop gain. See the Application Note General-Purpose High-Frequency Wideband Amplifiers µPC1675G, µPC1676G, µPC1688G (P10964E). By contrast, the µPC2714’s output stage transistor is not a Darlington type but is instead a single-unit type for low power consumption. The µPC2715 has peaking capacitance at the input stage only and carries gain in the VHF band. The µPC2745/46 have simple two-stage configurations without negative feedback, which makes for lower voltage and can accommodate a wide band by inserting peaking capacitance at the emitter side of each stage. The µPC2747/48 have peaking capacitance at the output stage only and carry gain in the UHF band. The µPC2749 uses a Darlington-type output stage and carries gain in the L band due to its negative feedback circuit toward the base for input. The µPC2791/92 use multiple negative feedback and a Darlington-type output stage. The µPC2791 has peaking capacitance inserted at the output stage emitter side to increase the bandwidth and the µPC2792 carries gain in the VHF-band without inserting peaking capacitance. The µPC3210 uses a Darlington-type output stage and carries gain due to its negative feedback circuit toward the base for input, and obtains a wide band characteristic by inserting peaking capacitance at the emitter side. The circuit GND characteristics of these devices can be improved by using several GND pins. Note that for these products it is not possible to externally change the feedback or internal bias of the IC’s internal circuitry. Figure 3-1. Internal Equivalent Circuits of High-Frequency Wideband Amplifier ICs (1/2) µPC2711 to 2713 µPC2714/15 6 VCC 6 VCC 4 OUT 4 OUT IN 1 IN 1 * 3 GND 10 2 5 GND 3 GND 2 5 GND The above diagram is for the µPC2714. The capacitor marked with an asterisk does not exist in the µPC2715. Application Note P11976EJ2V0AN00 Figure 3-1. Internal Equivalent Circuits of High-Frequency Wideband Amplifier ICs (2/2) µPC2745/46 µPC2747/48 6 VCC 6 VCC 4 OUT 4 OUT IN 1 IN 1 * 3 GND 2 5 GND 3 GND 2 5 GND The above diagram is for the µPC2747. The resistor marked with an asterisk does not exist in the µPC2748. µPC2749 µPC2791/92 6 VCC 4 VCC 4 OUT 3 OUT IN 1 IN 6 * 3 GND 2 5 GND 2 5 GND 1 GND The above diagram is for the µPC2791. The capacitor marked with an asterisk does not exist in the µPC2792. µPC3210 6 VCC 4 OUT 1 IN 2 5 GND 3 GND Application Note P11976EJ2V0AN00 11 3.2 Description of External Circuits Since all of the devices in this product line-up have on-chip 50-Ω matching circuits and bias circuits, you should only externally attach a DC cut capacitor to input/output pins and a bypass capacitor to the VCC pin to configure amplifier circuit. The bias should be applied only to the VCC pin. As is indicated by the “S21” S parameter, the IC itself can operate across a wide band from DC to 3 dB down bandwidth. However, the lower frequency may be limited depending on the DC cut capacitance to the input/output pins, so the capacitance should be calculated using the following formula. The power gain shown in the data sheet’s list of electrical characteristics is value without the effect of the DC cut capacitor or indicates the S21 value which its capacitance value (C) hardly affects the measured frequency. C = 1 2π • Z • fC You should check the frequency-related gain values for larger C values when using a low frequency and for smaller C values when using a high frequency. Also, externally adjusting the pin voltage such as by applying voltage to the input/output pins or by using direct pull-down is prohibited, since it causes the bias point to stray from the designed value. Any RF components should be attached to the external side of DC cut capacitor. The power supply impedance is determined by factors such as the bypass capacitor value and insertion point. In view of the bandwidth of this IC’s, the bypass capacitor value should be 1000pF in the test circuit. In addition to the bypass capacitor value, the factors that affect the power supply impedance (to the VCC pin) and the (GND pins’) ground impedance include the VCC line length (which in turn is affected by the mount position) and mounting patterns such as the ground pattern. This RF grounding capacitor can decrease the frequency-band-impedance corresponding to the capacitance value, which prevents the intrusion or occurrence of power supply noise at the VCC pin. As mentioned above, 1000 pF is considered a suitable bypass capacitance value for the VCC line. However, you should note that Vcc line inductance grows and its impedance rises unless the bypassed ground pattern is widened or a through hole is used to link the pattern. Although there are three GND pins, a ground pattern should be connected together and grounding unified so as to avoid any impedance differences among the pins that might generate oscillation. 12 Application Note P11976EJ2V0AN00 3.3 Description of Test Circuit Our measurement method for the electrical specifications listed in the data sheets confirms across a wide band the characteristics of ICs with minimal signal line effects (such as jigs, etc.). Our measurement method and the PCB are described below. Measurement method Common conditions A feed-through capacitor is used for the bypass capacitor A network analyzer is used for the following items Power gain S21 of IC with compensation for effect of jigs on input/output lines Isolation S12 of IC with compensation for effect of jigs on input/output lines Input return loss S11 of IC with compensation for effect of jigs on input/output lines Output return loss S22 of IC with compensation for effect of jigs on input/output lines ∗ For other items, the characteristics are rated based frequency conditions set to minimize jig effects. An NF (Noise Figure) meter is used for the following item Noise figure Although this NF contains jigs, frequency conditions are set to minimize such jigs effects (with compensation for cable loss). A signal generator and spectrum analyzer are used for the following item Input/output level characteristics Although these characteristics contain jigs of the DC cut capacitor, frequency conditions are set to minimize such jigs effects (with compensation for cable loss). PCB • Loss can be reduced depending on the type of PCB. NEC employs a polyimide double-sided PCB on the test circuit to maximize the performance of the IC itself. • Use through holes to ensure proper grounding. • Make the input/output lines straight to facilitate jig calibration. • Specification PCB dimensions: 30 × 30 × 0.4 (mm), with 35-µm thick copper patterning on both sides 42 × 35 × 0.4 (mm), with 18-µm thick copper patterning on both sides (µPC3210 only) • Cut the pattern when inserting a DC cut capacitor. Figure 3-2 shows a test circuit and Figures 3-3 to 3-6 show the PCB layout. Before designing actual product applications, the user should first gain an understanding of the NEC data sheet ratings and measurement data for the above conditions as well as how characteristics may vary due to the external circuit constants and PCB patterns in the user set. Figure 3-2. Test Circuit Power supply DC cable 1000 pF (Jig feed-through capacitor) VCC line Measurement equipment High-frequency cable Input Measurement equipment Output DUT DC cut ZS = 50 Ω High-frequency cable VCC DC cut GND Application Note P11976EJ2V0AN00 ZL = 50 Ω 13 Figure 3-3. 6-pin Mini Mold Board AMP-1 Used for Jig Supported products: µ PC2711T to 2715T, µ PC2745T to 2749T Top view (printed side) OUT OUT 6 5 4 C 1Q 1 2 3 IN IN Product mounting direction Example of the µPC2745T. VCC Figure 3-4. 6-pin Super Mini Mold Board AMP-2 Used for Jig AMP-2 Supported products: µ PC2711TB and 2712TB, µ PC2745TB to 2749TB Top view (printed side) OUT 6 5 4 C 1G 1 2 3 IN Product mounting direction Example of the µ PC2711TB. VCC Figure 3-5. 6-pin Super Mini Mold Board AMP-3 Used for Jig AMP-3 Supported products: µ PC2791TB and µ PC2792TB Top view (printed side) 1 2 6 2S C 3 OUT OUT IN 5 4 Product mounting direction Example of the µ PC2791TB. VCC Notes regarding board examples (*1) 35 µm double sided copper clad 30 × 30 × 0.4 mm polyimide PCB (*2) Solder on patterning surfaces (*3) Circles indicate through holes (*4) Back side ground pattern 14 Application Note P11976EJ2V0AN00 Figure 3-6. Board Used for µPC3210TB Jig Top view (printed side) OUT C2X Supported products: µ PC3210TB 654 123 IN Product mounting direction Example of the µPC3210TB. Notes regarding board examples (*1) 18 µm double sided copper clad 42 × 35 × 0.4 mm polyimide PCB (*2) Solder on patterning surfaces (*3) Circles indicate through holes (*4) Back side ground pattern Application Note P11976EJ2V0AN00 15 4. EXTERNAL CIRCUIT COMPONENTS AND APPLICATION CHARACTERISTICS For a reference, Figure 4-1 illustrates how power gain is viewed based on the output side’s DC cut capacitance value. As shown in the data sheet, the IC’s operation is a wideband operation and the DC cut capacitor does not limit the IC’s operation but instead limits the pass band. Accordingly, as a typical example, the following shows how the high-pass characteristics of the µPC2749T’s DC cut capacitor affects the view of the IC’s bandwidth. The power gain can be confirmed as being at least 200 MHz when DC cut capacitance value is 10 pF, or at least 100 MHz when the DC cut capacitance value is 200 pF (above 100 MHz, there was no power gain difference between 1000 pF and 200 pF capacitance). For example, as shown by “2 pF” in the figure, power gain is reduced completely when the capacitance is small. Consequently, the DC cut capacitor with a value of at least 10 pF should be selected according to the bandwidth to be used. Figure 4-1. Power Gain based on Output Side DC Cut Capacitance Value (Example Using µPC2749T) 1 1 Insertion Power Gain GP (dB) 20 13.813 dB 12.193 dB 18 MARKER 1 1.9 GHz 200 pF 16 14 12 8 3.0 V 1000 pF 10 pF 2 pF 10 pF 10 10 pF µ PC2749T 200 pF 2 pF 6 1000 pF 4 200 pF, 10 pF, 2 pF 2 0 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Frequency f (GHz) Figure 4-2 illustrates the change in power gain that occurs when a bypass capacitor insertion position for the VCC line is changed. Figure 4-2 examines VCC pin load characteristics dependent on internal circuit. For typical circuit models, µPC2712T, µPC2745T, and µPC2749T, were selected. In each graph, curve <1> is a result of only the evaluation PCB’s feed-through capacitor (1000 pF), curve <2> is a result of an additional 1000-pF chip capacitor mounted on the PCB near feed-through capacitor insertion point, and curve <3> is a result of the 1000-pF chip capacitor moved close to the IC’s mount position. These measurements are compared to the internal circuit. In other words, for curve <1>, the load from the feed through capacitor’s leads + the VCC pattern (about 7 nH) is connected to the IC’s VCC pin. For curve <2>, the load from only the VCC pattern (about 5 nH) is connected to the IC’s VCC pin. In the µPC2712T, µPC2745T, and µPC2747T, the power gain changes less than 1 dB while in the µPC2749T changes close to 2 dB. This is because, in the µPC2712T and PC2745T circuit which have a resistance or capacitance inserted to the internal input stage transistor’s emitter side or a multiple negative feedback circuit, the power gain is determined by the ratio of the emitter-side resistance to the collector-side resistance, so power gain hardly changes affected by the higher VCC pin load impedance. However, in the µPC2749T, because the internal input stage transistor’s emitter is directly grounded, the transistor’s emitter resistance is itself small, which makes it easily affected by the VCC pin load impedance which is added to the collector-side resistance. In comparison with the µPC2747T, which is considered to have a similar tendency, the µPC2749T has a Darlington output stage, so the output-stage gain might further amplify the effect of the VCC pin’s load impedance. Therefore, to increase the power gain when actually using the µPC2749T, insert a choke coil (or similar component) into the VCC pin pad and check the characteristics to determine the choke coil’s inductance value. 16 Application Note P11976EJ2V0AN00 Figure 4-2. Power Gain and Bypass Capacitor Insertion Position for VCC Line (a) µ PC2712T VCC = 5.0 V (b) µ PC2745T VCC = 3.0 V 1 1 Insertion Power Gain GP (dB) 1 MARKER 1 1.0 GHz 21 20 <2> 18.765 dB <1> 1 19 <1> 1 18 <3> 12.211 dB 15 Insertion Power Gain GP (dB) 19.228 dB 22 <2> 17 16 15 14 14 1 MARKER 1 500.0 MHz 13 1 12 <1> 1 11 <2> 10 <3> 9 8 7 13 6 12 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 5 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Frequency f (GHz) Frequency f (GHz) (c) µ PC2747T VCC = 3.0 V (d) µ PC2749T VCC = 3.0 V 1 15 1 11.205 dB 1 10.933 dB 17 13 MARKER 1 900.0 MHz 12 1 Insertion Power Gain GP (dB) 14 <1> 11 10 1 <2> 9 <3> 8 7 13.814 dB 1 12.291 dB 16 15 MARKER 1 1.9 GHz <1> 1 14 13 12 <3> 11 1 <2> 10 9 6 8 5 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 7 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5 2.8 3.1 Frequency f (GHz) Frequency f (GHz) 1000 pF Point A VCC line Top view (printed side) 2 C OUT OUT C 5 4 D 1 200 pF 1Q 1000 pF U T IN IN 3 Point B C Point B 6 Insertion Power Gain GP (dB) 12.313 dB Product mounting direction (Example of the Relation between graph and bypass µ PC2745T) capacitor point for VCC line <1> Only feed through capacitor for jigs <2> Additional chip capacitor (1000-pF) at point A <3> Chip capacitor (1000-pF) is moved to point B from point A Point A VCC Center hole is feed through capacitor insertion point. Application Note P11976EJ2V0AN00 17 5. EXAMPLE OF ADJUSTING CHARACTERISTICS VIA PERIPHERAL CIRCUITS This section describes an example of a general high-frequency circuit technology that involves peripheral circuits and is not an application specific to this product line-up. For further information on this technology, you should refer to the literature on high-frequency circuits available in book stores and so on. 5.1 Example of Adjusting Mismatched Voltage in the Systems The power supply voltage rating includes a guaranteed operation range margin of TYP +10%. This lineup includes products with power supply voltage ranges of 2.7 to 3.3 V, 3.06 to 3.74 V, and 4.5 to 5.5 V. Therefore, when using one of these products in a system whose power supply voltage range is 3.8 to 4.4 V, you can use a resistance type potential divider or a similar circuit to adjust the voltage applied to the IC within the rated range. Figure 5-1. Example of Adjusting Applied Voltage to IC in Mismatched Voltage Systems System supply voltage (Vsystem) R 1000 pF VCC IN OUT 1000 pF 18 1000 pF Application Note P11976EJ2V0AN00 Vsystem = R × ICC + VCC Vsystem − VCC R= ICC 5.2 Example of Adjustment between Stages When using multi-stage connections, you can insert terminating resistors between stages or insert a π-type 3-dB pad to suppress load variation and to suppress gain as preventing oscillation. The use of passive components such as resistors is an effective design method for suppressing load variation caused by the IC’s ON/OFF switching and gain variation that tends to occur in multi-stage connections. Some very general examples are shown in Figure 5-2 below. You should consider the signal-level diagrams in order not to make the second-stage IC’s input level a supersaturated region. Figure 5-2. Example of Adjustment between Stages Example of using terminating resistor to prevent load variation VCC 1000 pF 1000 pF C6 C3 C1 C4 C5 C2 IN OUT 1000 pF 1000 pF R1 50 to 200 Ω 1000 pF 1000 pF Connect R1 and C5 to prevent load variation Example of inserting π-type 3-dB pad to prevent gain load variation VCC 1000 pF 1000 pF IN OUT 1000 pF 1000 pF 1000 pF 1000 pF π-type 3-dB pad (input/output impedance is 50 Ω) Application Note P11976EJ2V0AN00 19 6. SUMMARY As has been explained above, these products can be selected based on their internal circuit configurations and their high-frequency characteristics, and can be applied in designs that achieve stable characteristics with a minimum of external components. REFERENCES • Application Note General-Purpose High-Frequency Wideband Amplifiers µPC1675G, µPC1676G, µPC1688G (P10964E) • µPC2711T Data Sheet (P12428E) • µPC2712T Data Sheet (P12429E) • µPC2711TB, µPC2712TB Data Sheet (P11510E) • µPC2713T Data Sheet (P12430E) • µPC2714T Data Sheet (P12431E) • µPC2715T Data Sheet (P12432E) • µPC2745T, µPC2749T Data Sheet (IC-3590) • µPC2745TB, µPC2746TB Data Sheet (P11511E) • µPC2746T, µPC2747T, µPC2748T Data Sheet (P10893E) • µPC2747TB, µPC2748TB Data Sheet (P13444E) • µPC2749TB Data Sheet (P13489E) • µPC2791TB, µPC2792TB Data Sheet (P11863E) • µPC3210TB Data Sheet (P13593E) • Other reference sources: literature on Design and Fabrication of High-frequency Circuits (For example, Published by CQ Publishing in Japan). The data sheets listed above may include preliminary versions. However, preliminary versions are not marked as such. 20 Application Note P11976EJ2V0AN00 APPENDIX TYPICAL S-PARAMETER VALUES (TA = +25°C) µPC2711T VCC = 5.0 V, ICC = 12 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −13.9 −22.1 −31.2 −41.7 −52.0 −58.8 −74.8 −88.7 −103.9 −125.2 149.4 96.8 72.8 53.6 38.3 26.8 17.2 8.4 1.8 −3.9 −8.4 −11.9 4.1 4.1 4.1 4.2 4.2 4.2 4.2 4.3 4.3 4.4 4.5 4.6 4.6 4.5 4.5 4.3 4.1 3.8 3.5 3.3 3.1 2.8 −5.3 −12.1 −18.3 −24.0 −29.9 −35.6 −41.3 −47.6 −54.2 −61.0 −74.4 −89.4 −104.8 −121.3 −136.9 −152.6 −167.4 178.2 165.2 152.4 140.5 129.0 0.036 0.035 0.034 0.033 0.032 0.031 0.030 0.029 0.028 0.027 0.024 0.022 0.020 0.019 0.020 0.021 0.026 0.031 0.034 0.039 0.043 0.048 −1.3 −2.0 −4.8 −5.1 −7.5 −8.9 −10.6 −10.7 −11.4 −13.2 −11.0 −9.9 −5.6 7.0 20.8 28.7 29.9 33.7 31.7 29.9 27.3 24.7 0.098 0.103 0.106 0.116 0.126 0.142 0.150 0.160 0.173 0.187 0.211 0.233 0.250 0.259 0.264 0.261 0.244 0.222 0.198 0.175 0.163 0.162 −2.1 2.7 4.8 5.6 6.6 4.1 2.2 0.5 −2.6 −5.3 −13.4 −21.3 −30.2 −38.4 −46.0 −53.5 −59.5 −62.9 −62.8 −58.8 −49.0 −37.3 VCC = 5.0 V, ICC = 12 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −9.3 −12.3 −17.0 −21.9 −27.1 −32.0 −38.1 −41.9 −46.5 −51.0 −57.5 −62.5 −67.8 −72.4 −77.7 −82.1 −86.2 −89.3 −93.5 −96.9 −98.4 −101.3 −100.3 −100.0 −99.4 −100.0 −98.4 −101.7 −100.1 −101.1 9.3 9.4 9.5 9.6 9.8 9.9 10.0 10.2 10.3 10.4 10.6 10.6 10.7 10.8 10.8 10.9 10.9 10.7 10.5 10.3 10.0 9.7 8.8 8.4 7.7 7.3 6.8 6.5 5.8 5.5 −6.4 −17.4 −27.7 −37.5 −46.9 −56.4 −65.7 −75.9 −86.0 −96.4 −106.4 −117.7 −128.9 −140.6 −152.7 −164.9 −177.6 169.5 156.4 143.7 129.8 119.3 107.2 95.8 84.9 75.4 64.5 56.1 47.0 36.2 0.021 0.022 0.022 0.023 0.024 0.024 0.025 0.026 0.026 0.027 0.028 0.028 0.029 0.030 0.031 0.031 0.032 0.033 0.033 0.034 0.035 0.035 0.036 0.037 0.037 0.038 0.038 0.039 0.039 0.040 −1.6 −3.3 −5.1 −6.8 −8.5 −10.2 −12.0 −13.7 −15.4 −17.2 −18.9 −20.6 −22.3 −24.1 −25.8 −27.5 −29.3 −31.0 −32.7 −34.4 −36.2 −37.9 −39.6 −41.3 −43.1 −44.8 −46.5 −48.3 −50.0 −51.7 0.071 0.078 0.091 0.110 0.128 0.146 0.166 0.181 0.194 0.204 0.212 0.221 0.235 0.244 0.247 0.246 0.240 0.234 0.221 0.210 0.187 0.169 0.156 0.134 0.125 0.118 0.108 0.110 0.122 0.136 7.8 7.2 6.4 4.3 −1.1 −6.8 −14.9 −22.9 −32.7 −40.5 −50.9 −59.7 −70.9 −81.3 −94.4 −106.3 −119.4 −131.5 −143.3 −159.0 −173.4 167.5 151.8 132.8 114.0 89.8 65.4 50.2 32.2 15.6 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1200.0000 1400.0000 1600.0000 1800.0000 2000.0000 2200.0000 2400.0000 2600.0000 2800.0000 3000.0000 3200.0000 3400.0000 0.115 0.110 0.104 0.096 0.085 0.080 0.071 0.056 0.044 0.030 0.028 0.060 0.103 0.150 0.201 0.244 0.284 0.318 0.347 0.369 0.386 0.397 S21 S12 S22 K S21 dB 3.34 3.44 3.54 3.63 3.70 3.82 3.87 3.94 4.03 4.13 4.47 4.75 5.11 5.38 5.08 4.94 4.16 3.70 3.58 3.35 3.25 3.14 12.3 12.3 12.3 12.4 12.4 12.4 12.6 12.7 12.8 12.8 13.1 13.2 13.2 13.1 13.0 12.6 12.2 11.6 11.0 10.4 9.7 9.1 K S21 dB 2.46 2.33 2.29 2.16 2.05 2.01 1.90 1.80 1.77 1.69 1.62 1.60 1.54 1.48 1.44 1.44 1.42 1.42 1.46 1.46 1.48 1.54 1.63 1.69 1.80 1.85 2.00 2.02 2.21 2.28 19.3 19.5 19.6 19.7 19.8 19.9 20.0 20.1 20.3 20.4 20.5 20.5 20.6 20.6 20.7 20.7 20.7 20.6 20.4 20.3 20.0 19.7 18.9 18.4 17.8 17.3 16.6 16.2 15.3 14.8 µPC2712T 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 0.262 0.261 0.260 0.258 0.257 0.255 0.254 0.252 0.250 0.248 0.246 0.240 0.236 0.232 0.224 0.218 0.210 0.201 0.190 0.180 0.173 0.169 0.161 0.157 0.156 0.156 0.159 0.164 0.168 0.172 S21 S12 S22 Application Note P11976EJ2V0AN00 21 µPC2713T VCC = 5.0 V, ICC = 12 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −21.8 −33.1 −41.7 −47.3 −50.5 −54.0 −57.5 −60.2 −63.9 −62.9 −56.5 −48.2 −40.1 −35.7 −34.6 −36.2 −40.0 −44.7 −50.3 −56.1 21.9 22.0 22.1 22.3 22.4 22.6 22.8 22.9 22.8 22.3 21.6 20.6 18.9 17.6 15.6 14.2 12.6 11.4 10.2 9.3 −8.1 −25.3 −37.3 −48.6 −60.0 −72.7 −85.7 −100.7 −114.8 −132.0 −147.6 −163.1 −177.8 168.3 154.8 142.7 130.5 120.9 110.1 100.8 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.009 0.009 0.009 0.010 0.010 0.010 0.010 0.011 0.012 0.013 0.014 0.015 0.016 25.6 24.9 23.7 22.4 21.6 20.1 19.0 18.3 17.2 16.4 15.7 14.4 13.1 12.0 11.8 11.2 10.8 9.8 7.5 5.5 0.286 0.298 0.313 0.327 0.336 0.348 0.359 0.366 0.366 0.359 0.343 0.320 0.291 0.263 0.234 0.208 0.185 0.164 0.148 0.137 −10.3 −16.1 −25.6 −35.2 −45.4 −56.9 −69.0 −82.9 −96.8 −111.8 −126.8 −142.3 −156.6 −171.7 174.3 160.8 147.1 132.6 119.5 107.4 VCC = 3.4 V, ICC = 4.5 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −169.9 167.3 150.5 135.1 120.6 105.6 91.5 77.8 64.6 51.9 39.2 28.3 17.3 6.6 −2.8 −12.7 −21.3 −29.4 −38.0 −44.8 −51.3 −57.8 −63.4 −68.2 −72.9 3.6 3.7 3.7 3.8 3.8 3.7 3.7 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.7 2.6 2.5 2.4 2.2 2.1 2.0 1.9 1.8 −6.4 −19.2 −30.6 −41.8 −53.2 −64.7 −76.3 −87.9 −99.5 −111.1 −122.5 −133.8 −145.0 −156.1 −166.8 −177.4 172.2 162.0 151.9 142.3 132.3 122.8 113.7 104.6 95.6 0.069 0.061 0.056 0.048 0.040 0.035 0.031 0.025 0.024 0.022 0.023 0.024 0.025 0.026 0.028 0.029 0.030 0.032 0.033 0.035 0.036 0.037 0.039 0.040 0.041 −12.0 −24.5 −32.7 −42.9 −48.8 −53.4 −52.7 −51.7 −47.1 −43.5 −38.2 −32.0 −31.8 −31.7 −31.4 −34.1 −36.7 −37.1 −40.2 −41.0 −47.1 −49.4 −52.7 −58.2 −58.7 0.190 0.266 0.326 0.366 0.394 0.414 0.429 0.436 0.439 0.439 0.432 0.422 0.412 0.400 0.387 0.374 0.359 0.348 0.335 0.322 0.311 0.298 0.287 0.276 0.270 13.3 8.7 2.9 −4.0 −11.1 −19.4 −27.3 −35.3 −43.2 −50.6 −58.0 −64.8 −71.4 −77.8 −83.4 −88.9 −94.1 −98.5 −103.2 −107.4 −111.5 −115.3 −118.9 −122.2 −125.7 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 0.350 0.290 0.243 0.207 0.185 0.176 0.161 0.148 0.127 0.111 0.097 0.095 0.098 0.110 0.129 0.145 0.161 0.179 0.191 0.197 S21 S12 S22 K S21 dB 3.07 3.17 2.77 2.78 2.78 2.41 2.39 2.13 2.15 2.23 2.12 2.24 2.47 2.68 2.77 2.81 2.92 3.02 3.15 3.23 26.8 26.9 26.9 27.0 27.0 27.1 27.1 27.2 27.2 27.0 26.7 26.3 25.5 24.9 23.9 23.0 22.0 21.1 20.1 19.4 K S21 dB 2.04 2.17 2.25 2.49 2.86 3.19 3.55 4.36 4.60 5.08 5.00 4.96 4.97 5.01 4.90 4.97 5.11 5.08 5.20 5.21 5.39 5.57 5.61 5.81 5.97 11.2 11.3 11.4 11.5 11.5 11.4 11.4 11.3 11.1 11.0 10.8 10.5 10.2 9.8 9.5 9.1 8.7 8.3 7.9 7.5 7.0 6.6 6.2 5.7 5.3 µPC2714T 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 22 0.123 0.133 0.139 0.151 0.165 0.176 0.187 0.197 0.205 0.215 0.219 0.225 0.228 0.231 0.231 0.232 0.231 0.229 0.226 0.223 0.216 0.212 0.208 0.204 0.201 S21 S12 S22 Application Note P11976EJ2V0AN00 µPC2715T VCC = 3.4 V, ICC = 4.5 mA FREQUENCY S11 MHz MAG ANG S21 S12 S22 MAG ANG MAG ANG MAG ANG 33.7 21.3 9.5 −2.1 −12.4 −27.8 −40.7 −52.3 −66.1 −78.4 −89.3 −101.5 −113.8 −125.4 −137.1 −148.4 −160.0 −171.6 176.8 164.7 7.7 7.8 7.9 7.9 7.9 7.7 7.4 7.2 6.9 6.6 6.3 6.1 5.7 5.3 4.9 4.6 4.2 3.9 3.7 3.4 −8.4 −25.7 −40.9 −55.9 −69.5 −84.9 −98.4 −112.0 −125.6 −138.9 −150.8 −162.7 −174.5 174.3 163.7 153.2 143.1 133.2 123.5 114.5 0.031 0.028 0.025 0.022 0.020 0.019 0.019 0.019 0.020 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.030 0.031 −7.8 −12.6 −17.8 −20.3 −21.2 −19.7 −15.7 −13.3 −12.3 −11.2 −11.6 −12.1 −14.5 −16.3 −18.3 −20.6 −22.2 −23.9 −25.6 −27.1 0.254 0.279 0.311 0.351 0.383 0.409 0.426 0.432 0.432 0.426 0.412 0.394 0.377 0.359 0.343 0.328 0.315 0.306 0.296 0.286 8.1 3.6 −1.0 −6.4 −13.0 −21.3 −30.2 −39.1 −48.1 −56.3 −64.2 −71.2 −77.5 −83.4 −88.3 −93.1 −97.2 −100.8 −104.7 −108.9 VCC = 3.0 V, ICC = 7.5 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −2.0 −5.5 −9.3 −13.8 −17.5 −20.8 −24.4 −26.9 −29.9 −31.4 −34.3 −37.3 −40.2 −43.1 −46.0 −48.7 −50.4 −51.4 −52.3 −51.3 4.22 4.23 4.23 4.24 4.24 4.26 4.30 4.31 4.32 4.34 4.38 4.37 4.25 4.08 3.82 3.50 3.24 2.97 2.69 2.41 −5.2 −11.9 −18.7 −25.6 −32.0 −38.8 −45.8 −52.9 −60.1 −67.5 −82.0 −97.6 −113.8 −129.6 −145.2 −161.3 −174.5 172.6 160.3 150.5 0.003 0.006 0.009 0.012 0.014 0.016 0.017 0.018 0.020 0.021 0.023 0.024 0.024 0.025 0.026 0.027 0.027 0.027 0.026 0.026 92.2 82.3 74.0 66.5 60.1 56.2 54.6 53.5 51.0 49.8 46.4 42.6 42.0 41.4 40.9 40.3 39.8 39.2 38.7 38.2 0.611 0.597 0.584 0.569 0.557 0.542 0.530 0.520 0.511 0.504 0.493 0.481 0.465 0.438 0.401 0.352 0.309 0.259 0.215 0.165 −4.1 −9.2 −13.5 −17.1 −20.4 −23.4 −26.1 −29.1 −31.8 −34.3 −40.3 −46.5 −53.1 −58.6 −63.6 −68.6 −71.9 −74.4 −74.1 −70.8 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 0.052 0.087 0.121 0.141 0.159 0.175 0.181 0.184 0.187 0.187 0.186 0.182 0.178 0.173 0.167 0.163 0.157 0.152 0.148 0.142 K S21 dB 2.07 2.20 2.35 2.54 2.68 2.79 2.82 2.87 2.83 2.85 2.87 2.93 3.06 2.22 3.35 2.53 3.72 3.90 4.07 4.28 17.7 17.8 17.9 18.0 18.0 17.7 17.4 17.2 16.8 16.4 16.0 15.6 15.0 14.4 13.9 13.2 12.5 11.9 11.3 10.6 K S21 dB 23.00 11.71 7.97 6.12 5.33 4.75 4.51 4.31 3.92 3.74 3.43 3.35 3.53 3.66 3.93 4.35 4.91 5.59 6.61 7.60 12.5 12.5 12.5 12.5 12.5 12.6 12.7 12.7 12.7 12.8 12.8 12.8 12.6 12.2 11.6 10.9 10.2 9.5 8.6 7.6 µPC2745T 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1200.0000 1400.0000 1600.0000 1800.0000 2000.0000 2200.0000 2400.0000 2600.0000 2800.0000 3000.0000 0.267 0.277 0.278 0.276 0.276 0.275 0.274 0.273 0.272 0.272 0.270 0.266 0.258 0.250 0.242 0.231 0.215 0.195 0.175 0.153 S21 S12 S22 Application Note P11976EJ2V0AN00 23 µPC2746T VCC = 3.0 V, ICC = 7.5 mA FREQUENCY S11 MHz MAG ANG S21 S12 S22 MAG ANG MAG ANG MAG ANG 164.0 146.5 130.0 117.8 106.1 93.9 87.3 76.6 66.3 56.2 45.6 35.5 26.5 18.6 11.5 4.7 −0.5 −4.4 −10.1 −16.2 9.11 9.30 9.30 9.23 9.17 9.08 8.91 8.75 8.61 8.46 8.15 7.79 7.44 6.98 6.55 6.08 5.63 5.21 4.77 4.25 −6.4 −15.3 −25.0 −34.3 −43.6 −53.0 −62.0 −71.9 −81.5 −91.9 −101.4 −110.5 −119.6 −129.1 −137.8 −146.4 −153.8 −161.5 −168.8 −175.0 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.009 0.011 0.012 0.013 0.014 0.115 0.016 0.016 0.016 0.016 0.017 0.017 0.017 122.7 118.8 114.7 110.5 106.6 102.4 98.8 94.6 90.8 87.2 83.0 79.7 76.0 74.2 72.6 71.0 68.9 67.4 65.8 61.3 0.362 0.359 0.365 0.370 0.378 0.382 0.389 0.389 0.393 0.385 0.381 0.368 0.335 0.335 0.314 0.290 0.264 0.235 0.206 0.180 −2.5 −6.0 −9.2 −12.0 −15.6 −19.7 −23.9 −29.0 −34.8 −40.5 −47.5 −52.4 −58.9 −64.3 −70.1 −75.1 −78.7 −81.4 −83.1 −84.8 VCC = 3.0 V, ICC = 5.0 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG −175.8 −168.9 −167.4 −174.1 175.3 163.9 153.7 142.9 131.7 120.7 110.5 101.1 88.5 80.9 71.1 61.5 55.6 48.0 42.9 34.7 3.84 4.10 4.18 4.17 4.15 4.12 4.07 4.02 3.97 3.92 3.83 3.70 3.55 3.38 3.23 3.07 2.89 2.72 2.53 2.32 −4.0 −12.5 −23.0 −33.0 −42.5 −52.0 −61.1 −70.7 −80.0 −90.2 −99.3 −108.1 −117.0 −126.2 −134.8 −143.3 −150.9 −158.8 −166.6 −173.1 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.008 0.009 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.020 0.022 0.024 120.5 118.8 117.0 115.2 113.7 112.2 110.8 109.3 107.8 106.3 104.8 103.4 101.9 100.4 98.0 95.6 93.2 92.6 91.6 89.2 0.249 0.255 0.261 0.266 0.272 0.277 0.281 0.283 0.288 0.287 0.287 0.284 0.279 0.272 0.264 0.256 0.243 0.234 0.219 0.209 −1.9 −4.2 −5.7 −7.0 −8.7 −10.6 −13.1 −15.8 −19.3 −22.6 −27.6 −30.2 −34.7 −37.3 −41.3 −43.7 −45.8 −46.2 −47.0 −46.4 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 0.213 0.204 0.197 0.201 0.209 0.219 0.231 0.242 0.255 0.265 0.275 0.286 0.296 0.300 0.296 0.292 0.288 0.285 0.281 0.266 K S21 dB 45.48 22.39 14.88 11.17 8.89 7.41 5.59 5.03 4.13 3.86 3.68 3.59 3.53 3.57 3.88 4.27 4.71 4.88 5.42 6.21 19.2 19.4 19.4 19.3 19.2 19.2 19.0 18.8 18.7 18.5 18.2 17.8 17.4 16.9 16.3 15.7 15.0 14.3 13.6 12.6 K S21 dB µPC2747T 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 24 0.061 0.075 0.093 0.117 0.134 0.142 0.152 0.159 0.154 0.148 0.143 0.139 0.135 0.131 0.126 0.121 0.120 0.118 0.113 0.105 S21 S12 S22 Application Note P11976EJ2V0AN00 121.68 113.38 55.26 36.64 27.40 27.46 22.12 18.60 14.11 12.73 9.79 9.39 9.12 8.99 8.87 8.84 8.93 8.58 8.46 8.51 11.7 12.3 12.4 12.4 12.4 12.3 12.2 12.1 12.0 11.9 11.7 11.4 11.0 10.6 10.2 9.7 9.2 8.7 8.1 7.3 µPC2748T VCC = 3.0 V, ICC = 6.0 mA FREQUENCY S11 MHz MAG ANG S21 S12 S22 MAG ANG MAG ANG MAG ANG 177.8 −176.8 −177.8 174.7 164.2 150.2 141.1 128.8 111.9 93.4 81.7 71.9 57.4 47.7 37.1 26.8 21.9 16.0 12.7 7.0 5.33 6.45 7.11 7.75 8.10 8.44 8.50 8.57 8.64 8.63 8.38 7.71 7.30 6.67 6.21 5.70 5.19 4.74 4.21 3.99 5.9 1.0 −10.1 −21.3 −32.3 −44.1 −54.4 −67.4 −79.6 −94.0 −104.5 −115.6 −126.6 −137.3 −146.9 −156.0 −163.7 −171.1 −179.0 175.3 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.008 0.009 0.011 0.011 0.011 0.012 0.011 0.011 0.012 0.013 0.014 0.014 82.0 98.6 103.8 110.7 117.3 117.2 115.5 114.4 108.2 101.8 95.2 90.2 88.2 83.9 78.5 79.4 83.7 87.9 90.1 89.4 0.294 0.310 0.318 0.325 0.338 0.352 0.364 0.376 0.387 0.392 0.382 0.364 0.344 0.316 0.289 0.262 0.232 0.207 0.176 0.159 −0.1 −4.3 −5.8 −7.6 −10.1 −13.4 −17.0 −22.7 −28.1 −36.3 −44.3 −49.9 −57.0 −62.4 −67.9 −72.0 −74.6 −74.4 −71.4 −65.0 VCC = 3.0 V, ICC = 6 mA FREQUENCY S11 MHz MAG ANG MAG ANG MAG ANG MAG ANG 4.67 4.85 4.95 4.97 4.99 5.01 5.06 5.19 5.29 5.51 5.72 5.94 6.14 6.33 6.46 6.48 6.38 6.25 6.10 5.86 5.47 5.18 4.81 4.49 4.17 3.92 3.64 3.44 3.19 3.03 1.3 −8.2 −16.8 −23.0 −29.4 −35.3 −41.0 −47.4 −54.0 −59.9 −67.2 −75.2 −84.2 −93.4 −103.3 −113.7 −124.3 −133.9 −144.3 −153.7 −163.9 −172.1 −179.8 173.0 166.1 160.0 153.7 148.7 142.9 138.1 0.001 0.001 0.001 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.011 0.013 0.016 0.019 0.021 0.024 0.025 0.027 0.028 0.031 0.032 0.032 0.033 0.033 0.033 0.033 0.033 0.034 0.035 0.036 150.9 152.4 153.8 155.1 156.4 155.8 155.9 154.4 152.4 149.0 145.4 140.8 135.5 128.9 123.0 116.1 107.8 105.5 101.6 96.7 91.3 87.1 83.2 80.6 78.6 77.3 76.2 74.8 74.5 73.2 0.009 0.024 0.041 0.058 0.074 0.089 0.105 0.120 0.138 0.149 0.160 0.170 0.178 0.181 0.179 0.171 0.158 0.141 0.123 0.110 0.094 0.094 0.094 0.104 0.118 0.136 0.155 0.174 0.193 0.210 −169.1 107.5 91.0 80.0 72.2 64.3 56.5 48.4 39.7 29.3 20.2 10.1 −1.3 −13.8 −27.5 −41.4 −53.7 −76.2 −95.1 −112.2 −138.4 −165.2 168.2 145.0 126.5 112.6 99.5 91.5 81.5 75.3 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 0.102 0.115 0.138 0.166 0.185 0.199 0.211 0.207 0.201 0.181 0.166 0.161 0.147 0.131 0.121 0.104 0.096 0.092 0.085 0.060 K S21 dB 84.81 69.14 31.01 28.05 17.59 12.45 9.74 7.98 5.89 5.26 4.51 4.99 5.37 5.53 6.62 7.36 7.54 7.71 8.18 8.71 14.5 16.2 17.0 17.8 18.2 18.5 18.6 18.7 18.7 18.7 18.5 17.7 17.3 16.5 15.9 15.1 14.3 13.5 12.5 12.0 K S21 dB 106.8 102.8 100.6 100.1 49.7 32.9 24.3 18.8 15.3 10.9 7.6 6.1 4.7 3.8 3.3 2.8 2.7 2.5 2.5 2.4 2.5 2.7 2.8 3.0 3.2 3.5 3.7 3.8 4.0 4.1 13.4 13.7 13.9 13.9 14.0 14.0 14.1 14.3 14.5 14.8 15.1 15.5 15.8 16.0 16.2 16.2 16.1 15.9 15.7 15.4 14.8 14.3 13.6 13.0 12.4 11.9 11.2 10.7 10.1 9.6 µPC2749T 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 0.049 0.046 0.044 0.043 0.046 0.055 0.071 0.094 0.115 0.138 0.165 0.199 0.233 0.265 0.298 0.323 0.352 0.367 0.377 0.379 0.371 0.363 0.357 0.350 0.340 0.331 0.321 0.311 0.301 0.290 1.9 −23.9 −55.1 −89.7 −132.7 −164.0 171.8 153.8 137.5 127.5 118.1 107.8 98.2 89.0 80.0 70.7 61.7 53.0 45.2 37.2 30.8 26.0 22.1 19.0 16.1 14.4 12.3 11.8 10.8 10.2 S21 S12 S22 Application Note P11976EJ2V0AN00 25 µPC2711TB VCC = 5.0 V, ICC = 13.8 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 S11 S21 ANG −22.4 −25.0 −29.2 −29.4 −33.9 −54.5 −104.3 −119.7 −121.9 −112.5 −108.5 −95.6 −79.2 54.8 80.7 80.4 78.7 72.0 63.5 59.0 54.2 55.2 53.8 53.6 49.2 43.7 36.2 31.7 28.8 29.7 0.085 0.086 0.098 0.081 0.066 0.041 0.053 0.070 0.098 0.101 0.090 0.060 0.019 0.023 0.062 0.087 0.113 0.126 0.154 0.178 0.212 0.232 0.246 0.248 0.240 0.238 0.240 0.262 0.285 0.316 MAG S12 ANG −14.9 −30.1 −44.9 −60.3 −74.9 −90.2 −105.3 −120.7 −136.1 −152.0 −167.9 175.8 159.5 143.0 126.4 109.5 92.7 75.4 58.0 41.3 24.0 6.9 −10.4 −27.7 −45.0 −62.3 −79.6 −96.6 −113.1 −129.6 4.447 4.468 4.491 4.510 4.540 4.572 4.624 4.664 4.729 4.781 4.843 4.945 4.999 5.062 5.114 5.142 5.160 5.146 5.123 5.113 5.063 5.006 4.954 4.865 4.783 4.664 4.529 4.384 4.255 4.117 MAG S22 ANG −12.7 −23.0 −32.1 −42.5 −50.1 −59.6 −69.3 −78.4 −86.6 −94.9 −103.9 −111.0 −120.2 −128.9 −133.1 −140.9 −146.2 −151.4 −159.7 −168.3 −175.7 175.2 165.2 155.3 143.6 131.2 119.8 108.7 95.5 83.6 0.035 0.035 0.034 0.033 0.033 0.033 0.032 0.031 0.032 0.031 0.031 0.029 0.029 0.028 0.029 0.029 0.029 0.030 0.032 0.035 0.036 0.038 0.041 0.045 0.048 0.049 0.052 0.054 0.056 0.057 K MAG ANG 0.113 0.119 0.136 0.142 0.156 0.161 0.161 0.176 0.192 0.228 0.256 0.290 0.308 0.322 0.327 0.333 0.344 0.356 0.371 0.378 0.383 0.378 0.367 0.359 0.356 0.359 0.366 0.374 0.372 0.361 −3.1 1.2 1.6 6.5 10.1 12.7 8.8 6.2 1.9 0.1 −0.6 −1.1 −0.3 −1.4 −2.2 −4.8 −7.0 −9.7 −11.1 −12.0 −12.8 −13.6 −16.1 −18.0 −21.1 −23.6 −26.2 −28.6 −31.1 −35.0 3.18 3.21 3.23 3.34 3.32 3.34 3.33 3.36 3.27 3.29 3.15 3.24 3.16 3.18 3.08 3.07 3.02 2.88 2.70 2.51 2.39 2.27 2.13 1.99 1.88 1.85 1.76 1.72 1.68 1.69 µPC2712TB VCC = 5.0 V, ICC = 13.9 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 26 0.303 0.291 0.295 0.276 0.265 0.243 0.222 0.219 0.230 0.267 0.290 0.316 0.317 0.314 0.296 0.290 0.278 0.282 0.284 0.280 0.273 0.244 0.222 0.189 0.177 0.164 0.158 0.143 0.128 0.111 S11 S21 ANG −8.1 −10.1 −11.8 −11.3 −11.0 −12.3 −20.3 −25.4 −33.9 −35.5 −35.5 −33.2 −30.6 −29.4 −28.1 −29.4 −31.1 −34.9 −35.5 −36.6 −36.0 −38.2 −40.0 −45.7 −52.9 −57.4 −59.6 −53.9 −44.3 −22.2 MAG 8.864 8.827 8.936 9.044 9.051 9.096 9.089 9.080 9.096 9.044 9.197 9.421 9.524 9.512 9.574 9.598 9.480 9.372 9.193 9.198 9.011 8.784 8.717 8.388 8.217 7.890 7.597 7.313 7.078 6.806 S12 ANG −16.7 −33.5 −49.5 −67.6 −82.2 −98.8 −115.2 −131.5 −147.6 −164.2 179.5 162.4 144.9 126.6 109.1 91.1 72.9 54.3 35.6 18.4 0.1 −17.9 −35.1 −52.9 −70.1 −87.4 −104.6 −121.4 −138.4 −154.9 MAG 0.023 0.023 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.024 0.024 0.024 0.024 0.026 0.026 0.027 0.028 0.029 0.030 0.031 0.033 0.033 0.034 0.036 0.037 0.039 0.041 0.041 0.043 0.046 Application Note P11976EJ2V0AN00 S22 ANG −11.4 −19.2 −25.5 −34.6 −42.8 −50.0 −59.8 −66.2 −73.0 −82.9 −89.5 −98.4 −107.0 −115.7 −122.3 −133.2 −139.4 −148.1 −157.6 −167.4 −175.1 176.5 164.8 154.8 143.5 133.3 123.8 114.0 101.4 90.2 MAG 0.043 0.055 0.078 0.095 0.112 0.120 0.120 0.136 0.155 0.189 0.212 0.240 0.245 0.248 0.236 0.231 0.221 0.215 0.199 0.170 0.134 0.090 0.050 0.025 0.039 0.071 0.099 0.131 0.149 0.157 K ANG 2.3 11.5 8.5 13.4 13.6 11.1 1.7 −6.0 −14.4 −17.5 −19.9 −21.4 −23.2 −27.1 −31.8 −38.0 −43.8 −49.8 −53.0 −55.3 −56.2 −55.2 −53.7 1.8 33.4 39.3 34.3 26.0 22.8 19.4 2.32 2.35 2.38 2.33 2.37 2.35 2.37 2.38 2.39 2.26 2.12 2.02 1.94 1.82 1.78 1.74 1.72 1.69 1.70 1.69 1.68 1.74 1.74 1.75 1.74 1.72 1.70 1.72 1.70 1.70 µPC2745TB VCC = 3.0 V, ICC = 8.4 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 S11 S21 ANG −3.9 −5.9 −7.2 −8.9 −10.8 −13.9 −20.8 −25.8 −31.9 −32.8 −32.7 −31.2 −30.9 −30.8 −30.3 −31.3 −30.5 −31.6 −29.6 −30.0 −28.6 −29.5 −31.6 −35.1 −39.9 −40.3 −40.9 −35.5 −30.2 −20.6 0.318 0.325 0.346 0.341 0.339 0.326 0.311 0.312 0.325 0.356 0.382 0.416 0.416 0.415 0.393 0.386 0.373 0.369 0.366 0.353 0.344 0.313 0.293 0.267 0.262 0.253 0.253 0.248 0.237 0.230 MAG S12 ANG −17.2 −35.5 −52.5 −70.7 −87.3 −104.7 −121.5 −138.1 −154.2 −170.3 173.7 156.7 139.1 121.4 103.7 86.8 69.7 52.7 35.8 18.8 1.5 −15.4 −32.5 −49.4 −66.0 −82.3 −98.6 −114.6 −130.2 −146.4 4.055 4.030 3.985 3.916 3.842 3.775 3.668 3.594 3.525 3.497 3.503 3.542 3.569 3.520 3.501 3.429 3.355 3.303 3.229 3.179 3.081 2.999 2.911 2.802 2.695 2.598 2.496 2.400 2.306 2.209 MAG S22 ANG 0.003 0.006 0.009 0.012 0.013 0.015 0.017 0.018 0.020 0.019 0.020 0.022 0.023 0.025 0.025 0.025 0.026 0.028 0.028 0.030 0.031 0.031 0.033 0.034 0.036 0.036 0.034 0.036 0.032 0.031 62.9 54.2 42.0 29.4 11.8 1.6 −11.9 −24.2 −38.4 −45.9 −54.3 −70.5 −78.4 −88.4 −102.9 −114.1 −125.7 −130.3 −142.5 −152.4 −164.9 −177.1 171.1 160.8 148.3 134.8 121.4 106.5 92.8 83.6 MAG K ANG −6.6 −12.1 −16.5 −20.6 −23.0 −26.2 −29.9 −32.4 −34.8 −35.8 −36.3 −36.8 −37.5 −38.8 −40.5 −42.5 −43.8 −44.8 −44.8 −45.0 −45.0 −45.4 −46.4 −47.4 −48.2 −48.3 −47.6 −46.7 −46.3 −46.2 0.593 0.584 0.579 0.562 0.546 0.527 0.515 0.511 0.512 0.523 0.525 0.530 0.518 0.509 0.492 0.481 0.474 0.468 0.457 0.440 0.416 0.389 0.365 0.346 0.331 0.321 0.311 0.299 0.279 0.254 20.94 11.68 8.29 6.26 6.29 5.50 5.46 5.36 4.91 4.93 4.56 4.14 3.92 3.53 3.68 3.78 3.68 3.50 3.63 3.62 3.85 4.23 4.23 4.40 4.45 4.54 5.08 5.01 5.88 6.49 µPC2746TB VCC = 3.0 V, ICC = 7.7 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 0.146 0.130 0.117 0.128 0.139 0.145 0.135 0.131 0.119 0.142 0.170 0.219 0.245 0.268 0.270 0.268 0.258 0.251 0.249 0.240 S11 S21 ANG 165.0 141.7 117.9 100.8 90.8 83.1 77.0 67.4 49.3 30.4 18.0 10.6 7.4 3.1 1.5 −3.9 −7.8 −14.3 −16.7 −20.5 MAG 6.443 6.594 6.623 6.522 6.613 6.481 6.424 6.353 6.234 6.137 5.992 5.972 5.867 5.679 5.582 5.380 5.122 4.880 4.634 4.475 S12 ANG −19.4 −38.7 −58.1 −77.5 −96.9 −116.1 −135.1 −153.6 −172.1 169.6 151.1 133.3 115.1 97.0 79.1 61.8 44.5 27.9 11.7 −4.4 MAG 0.001 0.003 0.004 0.005 0.008 0.009 0.010 0.011 0.014 0.015 0.016 0.019 0.019 0.022 0.021 0.022 0.024 0.024 0.025 0.026 Application Note P11976EJ2V0AN00 S22 ANG 77.0 51.8 47.7 51.1 33.1 21.7 14.7 −0.4 −10.5 −24.2 −28.7 −48.0 −63.4 −72.2 −86.9 −99.6 −110.7 −122.9 −135.3 −146.0 MAG 0.403 0.406 0.418 0.417 0.424 0.422 0.426 0.433 0.442 0.455 0.455 0.453 0.433 0.409 0.375 0.349 0.318 0.294 0.268 0.248 K ANG −5.3 −8.6 −11.0 −14.0 −16.2 −19.4 −23.8 −27.7 −32.1 −34.7 −37.5 −39.7 −42.7 −45.5 −48.3 −49.9 −50.0 −49.2 −45.4 −40.5 108.63 20.56 16.33 12.34 8.14 7.22 6.52 5.63 4.80 4.44 4.02 3.49 3.40 3.16 3.38 3.36 3.42 3.67 3.73 3.91 27 µPC2747TB VCC = 3.0 V, ICC = 4.9 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 S11 S21 ANG −178.3 −161.2 −166.8 −172.9 0.951 0.105 0.136 0.165 0.179 0.185 0.189 0.189 0.182 0.180 0.174 0.160 0.148 0.134 0.124 0.110 0.099 0.089 0.084 0.085 0.087 0.092 0.102 0.114 0.126 0.136 0.154 0.168 0.180 0.196 0.208 177.8 170.1 162.5 155.1 148.8 142.6 137.1 131.5 127.4 124.4 121.0 121.0 122.9 126.8 134.8 141.7 148.1 152.1 156.6 158.7 161.4 160.6 161.3 160.4 157.9 155.2 152.5 MAG S12 ANG −3.9 −13.3 −23.4 −32.9 −41.2 −49.5 −57.9 −66.3 −74.5 −83.0 −91.8 −99.5 −108.4 −115.9 −124.0 −131.7 −138.8 −145.7 −152.8 −159.0 −164.8 −170.8 −176.3 3.732 3.997 4.075 4.105 4.141 4.098 4.124 4.104 4.061 4.016 3.977 3.948 3.799 3.736 3.582 3.506 3.317 3.190 3.040 2.901 2.736 2.645 2.507 2.395 2.312 2.218 2.136 2.036 1.952 1.847 1.757 177.8 172.9 168.1 162.1 157.8 151.6 147.6 141.6 MAG S22 ANG 28.0 103.2 76.0 90.4 89.4 90.7 96.6 101.3 99.2 99.9 100.3 105.5 96.6 93.8 93.8 88.1 88.6 88.3 80.2 78.7 77.6 73.0 72.5 68.5 66.2 64.0 60.4 54.8 53.0 47.2 44.0 0.001 0.002 0.002 0.004 0.004 0.005 0.006 0.008 0.009 0.012 0.013 0.015 0.016 0.019 0.022 0.023 0.025 0.028 0.030 0.032 0.034 0.035 0.037 0.038 0.041 0.042 0.042 0.044 0.044 0.043 0.045 MAG K ANG −3.7 −4.3 −3.9 −5.6 −6.9 −8.4 −10.2 −12.2 −14.4 −16.9 −19.7 −22.6 −24.9 −27.4 −30.1 −31.8 −33.3 −35.1 −37.2 −38.8 −40.9 −41.5 −42.2 −44.7 −45.8 −47.8 −50.8 −54.1 −57.5 −60.9 −65.5 0.290 0.294 0.292 0.286 0.298 0.302 0.307 0.309 0.313 0.316 0.318 0.318 0.318 0.313 0.311 0.312 0.308 0.305 0.305 0.303 0.299 0.304 0.304 0.305 0.317 0.319 0.323 0.331 0.330 0.332 0.331 98.96 64.71 46.80 29.99 25.94 20.69 17.38 12.59 12.26 9.45 8.22 7.49 7.42 6.36 5.83 5.55 5.37 5.05 4.98 4.97 4.99 4.97 4.93 5.01 4.76 4.78 4.88 4.88 5.07 5.45 5.49 µPC2748TB VCC = 3.0 V, ICC = 6.3 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 28 0.120 0.136 0.166 0.194 0.210 0.213 0.213 0.211 0.203 0.193 0.180 0.159 0.136 0.115 0.096 0.072 0.049 0.024 0.007 0.014 0.034 0.047 0.063 0.079 0.094 0.108 0.123 0.139 0.151 0.164 0.178 S11 S21 ANG −177.2 −167.3 −174.2 179.6 169.6 160.0 150.2 140.8 131.1 121.1 110.8 100.6 90.6 79.2 70.4 60.9 47.5 36.5 −6.0 −126.0 −141.3 −147.7 −156.9 −161.1 −165.5 −169.0 −174.7 −178.9 175.9 170.5 166.0 MAG 4.730 5.430 5.930 6.314 6.701 6.876 7.203 7.310 7.354 7.371 7.346 7.334 7.001 6.834 6.437 6.181 5.710 5.372 5.014 4.724 4.405 4.175 3.933 3.738 3.579 3.411 3.283 3.107 2.989 2.814 2.680 S12 ANG 5.3 −0.2 −9.2 −18.8 −28.2 −38.8 −49.3 −60.6 −71.5 −81.9 −92.8 −102.4 −112.6 −121.3 −130.1 −138.2 −145.4 −152.5 −158.6 −164.1 −169.7 −174.7 −179.5 175.3 171.2 166.5 161.4 157.3 151.4 147.3 141.5 MAG 0.000 0.001 0.001 0.003 0.004 0.005 0.006 0.009 0.010 0.012 0.014 0.015 0.016 0.018 0.019 0.020 0.020 0.021 0.021 0.024 0.024 0.026 0.026 0.028 0.030 0.030 0.032 0.031 0.032 0.033 0.034 Application Note P11976EJ2V0AN00 S22 ANG −30.4 19.3 97.8 125.4 108.7 107.4 98.7 114.1 107.6 98.3 99.1 97.5 91.4 84.1 84.8 82.4 78.9 73.5 74.1 74.9 71.5 73.6 71.2 69.1 63.8 64.7 64.6 58.9 53.2 51.6 47.3 MAG 0.280 0.285 0.286 0.291 0.306 0.319 0.337 0.349 0.360 0.371 0.366 0.359 0.342 0.320 0.296 0.271 0.247 0.228 0.208 0.198 0.188 0.190 0.185 0.192 0.202 0.214 0.222 0.238 0.240 0.251 0.254 K ANG −2.2 −2.4 −0.9 −2.7 −3.7 −5.4 −8.4 −12.3 −17.4 −22.7 −28.9 −35.3 −40.7 −46.0 −50.5 −53.0 −55.1 −55.7 −55.7 −52.8 −52.1 −47.8 −45.3 −44.7 −43.2 −43.6 −45.7 −47.6 −52.4 −55.8 −61.4 352.73 72.83 52.47 24.77 16.82 12.40 10.09 6.68 5.68 4.71 3.98 4.01 3.95 3.71 3.77 3.81 4.13 4.22 4.57 4.37 4.70 4.44 4.81 4.58 4.48 4.59 4.54 4.83 4.84 4.99 5.07 µPC2749TB VCC = 3.0 V, ICC = 6.8 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 S11 S21 ANG 13.0 0.021 0.038 0.034 0.052 0.062 0.079 0.097 0.116 0.134 0.156 0.178 0.195 0.214 0.229 0.249 0.259 0.264 0.259 0.248 0.238 0.218 0.204 0.183 0.156 0.140 0.119 0.095 0.078 0.066 0.070 0.082 −30.5 −71.8 −120.5 −149.9 −169.7 173.6 160.5 149.3 138.8 128.5 118.7 108.7 99.5 89.4 79.9 69.8 60.3 50.9 43.6 35.9 30.1 25.3 21.2 18.8 18.7 21.2 30.0 44.5 66.0 78.1 MAG S12 ANG −1.9 −7.8 −15.5 −21.0 −26.6 −31.6 −36.7 −41.3 −46.8 −52.6 −60.3 −67.1 −76.2 −84.5 −93.8 −103.6 −113.5 −123.4 −132.9 −140.8 −148.8 −156.5 −163.2 −170.5 −176.3 4.096 4.216 4.282 4.403 4.390 4.399 4.566 4.667 4.843 5.016 5.305 5.660 5.835 6.148 6.364 6.611 6.577 6.549 6.407 6.321 6.046 5.862 5.696 5.430 5.282 5.013 4.849 4.596 4.446 4.163 3.966 177.2 170.9 164.9 158.1 152.3 145.3 MAG S22 ANG −1.1 0.002 0.001 0.001 0.002 0.002 0.003 0.005 0.007 0.008 0.009 0.014 0.016 0.020 0.022 0.025 0.028 0.032 0.034 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.040 0.042 0.042 0.042 0.044 0.042 75.4 141.5 129.9 134.1 128.3 132.9 131.5 129.3 124.6 131.4 122.5 118.6 114.4 107.7 104.3 96.8 91.8 83.3 78.5 75.1 70.4 68.3 60.7 61.6 58.1 55.1 51.9 44.7 41.9 37.1 MAG K ANG 165.8 113.6 96.1 87.9 76.9 68.6 60.6 53.7 44.9 36.1 28.0 17.3 8.6 −2.0 −13.5 −23.6 −33.8 −44.1 −53.8 −61.4 −69.5 −73.8 −79.5 −84.1 −82.1 −84.5 −85.5 −83.9 −91.8 −92.8 −99.6 0.024 0.033 0.064 0.080 0.103 0.127 0.151 0.174 0.197 0.220 0.240 0.262 0.279 0.287 0.294 0.294 0.283 0.272 0.256 0.234 0.213 0.193 0.174 0.164 0.152 0.142 0.146 0.149 0.154 0.171 0.181 66.82 129.26 90.16 45.30 57.58 34.08 22.08 14.70 12.29 10.00 6.15 5.13 3.80 3.23 2.72 2.35 2.09 1.99 1.97 1.99 2.04 2.08 2.15 2.25 2.25 2.53 2.46 2.62 2.70 2.73 2.97 µPC3210TB VCC = 5.0 V, ICC = 16.0 mA FREQUENCY MHz MAG 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.358 0.335 0.321 0.306 0.294 0.283 0.273 0.267 0.260 0.252 0.246 0.239 0.229 0.224 0.215 0.203 0.191 0.179 0.163 0.155 0.140 0.133 0.130 0.133 0.137 0.149 0.157 0.170 0.181 0.203 0.209 S11 S21 ANG 171.9 166.6 160.7 158.3 154.4 151.8 148.6 146.0 144.2 141.5 138.4 135.9 133.3 131.1 127.4 125.8 123.1 122.1 121.0 123.4 126.1 129.1 135.3 139.0 144.0 148.5 150.2 152.2 150.3 149.0 147.9 S12 MAG ANG 8.688 8.807 8.821 8.841 8.908 8.990 9.160 9.342 9.541 9.741 10.071 10.393 10.513 10.763 10.708 10.720 10.388 9.993 9.507 8.983 8.384 7.905 7.412 6.976 6.582 6.202 5.942 5.567 5.360 5.013 4.810 −4.4 −10.6 −17.1 −23.3 −29.2 −35.1 −41.0 −47.3 −53.9 −60.8 −68.6 −76.3 −85.4 −94.5 −104.0 −114.2 −124.1 −133.7 −142.8 −151.2 −158.9 −166.0 −172.3 −178.6 176.1 170.4 164.9 159.7 153.9 149.0 142.9 MAG 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.018 0.019 0.019 0.021 0.021 0.023 0.023 0.025 0.024 0.027 0.029 0.032 0.034 0.038 0.039 0.043 0.045 0.047 0.048 0.051 Application Note P11976EJ2V0AN00 S22 ANG −1.4 3.3 6.3 9.9 13.6 15.8 19.5 24.3 29.8 28.9 29.4 36.7 38.1 45.6 48.2 48.9 55.7 59.5 61.9 65.9 69.0 70.7 71.8 74.3 73.2 71.4 73.7 72.2 72.5 69.6 71.0 MAG 0.233 0.237 0.233 0.233 0.241 0.246 0.250 0.256 0.263 0.274 0.283 0.291 0.299 0.303 0.311 0.316 0.308 0.303 0.291 0.275 0.255 0.230 0.207 0.182 0.157 0.136 0.116 0.102 0.099 0.104 0.117 K ANG −6.8 −12.0 −15.1 −20.6 −25.6 −30.8 −35.8 −41.2 −47.9 −53.1 −59.0 −65.7 −71.9 −79.7 −87.6 −94.9 −103.4 −111.5 −119.5 −128.4 −135.0 −140.5 −145.9 −150.3 −151.8 −152.1 −147.1 −137.8 −132.3 −122.3 −114.4 2.63 2.71 2.68 2.68 2.67 2.74 2.67 2.65 2.69 2.46 2.37 2.38 2.25 2.20 2.05 2.07 1.98 2.02 2.01 2.17 2.14 2.12 2.10 2.12 2.06 2.13 2.03 2.04 2.03 2.10 2.08 29 [MEMO] 30 Application Note P11976EJ2V0AN00 Facsimile Message From: Name Company Tel. Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us. FAX Address Thank you for your kind support. North America Hong Kong, Philippines, Oceania NEC Electronics Inc. NEC Electronics Hong Kong Ltd. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: 1-800-729-9288 1-408-588-6130 Korea Europe NEC Electronics Hong Kong Ltd. NEC Electronics (Europe) GmbH Seoul Branch Technical Documentation Dept. Fax: 02-528-4411 Fax: +49-211-6503-274 South America NEC do Brasil S.A. Fax: +55-11-6465-6829 Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 Japan NEC Semiconductor Technical Hotline Fax: 044-548-7900 Taiwan NEC Electronics Taiwan Ltd. Fax: 02-2719-5951 I would like to report the following error/make the following suggestion: Document title: Document number: Page number: If possible, please fax the referenced page or drawing. Document Rating Excellent Good Acceptable Poor Clarity Technical Accuracy Organization CS 99.1