IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Max.) (Ω) VGS = 10 V 3.0 Qg (Max.) (nC) 17 Qgs (nC) 4.3 Qgd (nC) • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Single COMPLIANT • Effective Coss specified D • Lead (Pb)-free Available APPLICATIONS D2PAK (TO-263) I2PAK (TO-262) RoHS* • Fully Characterized Capacitance and Avalanche Voltage and Current 8.5 Configuration Available • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply G • High Speed Power Switching G TYPICAL SMPS TOPOLOGIES D • Two Transistor Forward S S • Half Bridge and Full Bridge N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) I2PAK (TO-262) IRF820ASPbF IRF820ALPbF SiHF820AS-E3 SiHF820AL-E3 IRF820AS IRF820AL SiHF820AS SiHF820AL ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT VDS VGS 500 ± 30 2.5 1.6 10 0.4 10 140 2.5 5.0 50 3.4 - 55 to + 150 300d 10 1.1 Drain-Source Voltage Gate-Source Voltage VGS at 10 V Continuous Drain Current Pulsed Drain Currenta, e Linear Derating Factor Avalanche Currenta Single Pulse Avalanche Energyb, e Avalanche Currenta Repetiitive Avalanche Energya Maximum Power Dissipation Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque TC = 25 °C TC = 100 °C ID IDM TC = 25 °C IAR EAS IAR EAR PD dV/dt TJ, Tstg for 10 s 6-32 or M3 screw UNIT V A W/°C A mJ A mJ W V/ns °C lbf · in N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 45 mH, RG = 25 Ω, IAS = 2.5 A (see fig. 12). c. ISD ≤ 2.5 A, dI/dt ≤ 270 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRF820A/SiHF820A data and test conditions. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient (PCB Mounted, steady-state)a PARAMETER RthJA - 62 Maximum Junction-to-Case (Drain) RthJC - 2.5 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mAd - 0.60 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 1.5 Ab VGS = 10 V VDS = 50 V, ID = 1.5 Ad µA - - 3.0 Ω 1.4 - - S - 340 - - 53 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5d VGS = 0 V Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VGS = 10 V - 2.7 - VDS = 1.0 V, f = 1.0 MHz - 490 - VDS = 400 V, f = 1.0 MHz - 15 - VDS = 0 V to 400 Vc, d - 28 - - - 17 ID = 2.5 A, VDS = 400 V, see fig. 6 and 13b, d - - 4.3 pF nC Gate-Drain Charge Qgd - - 8.5 Turn-On Delay Time td(on) - 8.1 - - 12 - - 16 - - 13 - - - 2.5 - - 10 - - 1.6 - 330 500 ns - 760 1140 µC Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 2.5 A, RG = 21 Ω, RD = 97 Ω, see fig. 10b, d tf ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 2.5 A, VGS = 0 Vb TJ = 25 °C, IF = 2.5 A, dI/dt = 100 A/µsb, d V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRF820A/SiHF820A data and test conditions. www.vishay.com 2 Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 10 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 20μs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 100 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.01 4.0 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 1 4.5V 20μs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 10 V DS = 50V 20μs PULSE WIDTH ID = 2.5A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance(pF) 1000 Ciss 100 Coss 10 10 ISD , Reverse Drain Current (A) 10000 TJ = 150 ° C 1 TJ = 25 ° C Crss 1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 0.8 1.0 1.2 Fig. 7 - Typical Source-Drain Diode Forward Voltage VDS = 400V VDS = 250V VDS = 100V OPERATION IN THIS AREA LIMITED BY RDS(on) 15 10 5 10 0 4 8 12 16 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 10us 100us 1 FOR TEST CIRCUIT SEE FIGURE 13 www.vishay.com 4 0.6 100 ID = 2.5A 0 V GS = 0 V VSD ,Source-to-Drain Voltage (V) ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 0.1 0.4 0.1 1ms TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix RD VDS 3.0 VGS ID , Drain Current (A) D.U.T. RG 2.5 + - VDD 10 V 2.0 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 1.5 Fig. 10a - Switching Time Test Circuit 1.0 VDS 90 % 0.5 0.0 25 50 75 100 125 10 % VGS 150 TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 PDM 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL 300 TOP 250 BOTTOM ID 1.1A 1.6A 2.5A 200 150 100 50 700 V DSav , Avalanche Voltage ( V ) EAS , Single Pulse Avalanche Energy (mJ) Vishay Siliconix 650 600 550 0 25 50 75 100 125 150 0.0 0.5 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 1.0 1.5 2.0 2.5 IAV , Avalanche Current ( A) Fig. 12d - Basic Gate Charge Waveform Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Maximum Avalanche Energy vs. Drain Current www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 IRF820AS, SiHF820AS, IRF820AL, SiHF820AL Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91058. Document Number: 91058 S-Pending-Rev. A, 02-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1