KERSEMI AUIRFR2905Z

AUIRFR2905Z
Features
l
l
l
l
l
l
l
D
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
V(BR)DSS
55V
RDS(on) typ.
max.
G
S
11.1mΩ
14.5mΩ
ID (Silicon Limited)
59A k
ID (Package Limited)
42A
D
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating
temperature, fast switching speed and improved repetitive
avalanche rating . These features combine to make this design
an extremely efficient and reliable device for use in Automotive
applications and a wide variety of other applications.
G
D
S
D-Pak
AUIRFR2905Z
Absolute Maximum Ratings
G
D
S
Gate
Drain
Source
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are
stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the
specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Ambient temperature (TA) is 25°C, unless otherwise specified.
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
EAS
EAS (Tested )
IAR
EAR
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy(Thermally limited)
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
59
42
42
240
110
0.72
± 20
55
82
See Fig.12a, 12b, 15, 16
c
c
h
g
d
A
W
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
10 lbf in (1.1N m)
y
Thermal Resistance
RθJC
RθJA
RθJA
Units
k
k
y
Parameter
Typ.
Max.
Units
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
–––
–––
–––
1.38
50
110
°C/W
www.kersemi.com
j
i
1
07/20/10
AUIRFR2905Z
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
gfs
RG
IDSS
IGSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Gate Input Resistance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
55
–––
–––
2.0
20
–––
–––
–––
–––
–––
–––
0.053
11.1
–––
–––
1.3
–––
–––
–––
–––
–––
–––
14.5
4.0
–––
–––
20
250
200
-200
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 36A
V VDS = VGS, ID = 250µA
S VDS = 25V, ID = 36A
Ω f = 1MHz, open drain
VDS = 55V, VGS = 0V
µA
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 20V
nA
VGS = -20V
e
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
LS
Internal Source Inductance
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
29
7.7
12
14
66
31
35
44
–––
–––
–––
–––
–––
–––
–––
4.5
–––
–––
7.5
–––
–––
–––
–––
–––
–––
–––
1380
240
120
820
190
300
–––
–––
–––
–––
–––
–––
nC
ns
nH
pF
Conditions
ID = 36A
VDS = 44V
VGS = 10V
VDD = 28V
ID = 36A
RG = 15 Ω
VGS = 10V
Between lead,
e
e
D
6mm (0.25in.)
from package
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
f
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
2
c
Min. Typ. Max. Units
k
–––
–––
42
–––
–––
240
–––
–––
–––
–––
23
16
1.3
35
24
Conditions
MOSFET symbol
A
V
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 36A, VGS = 0V
TJ = 25°C, IF = 36A, VDD = 28V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.kersemi.com
AUIRFR2905Z
Qualification Information
†
Automotive
(per AEC-Q101)
Qualification Level
Moisture Sensitivity Level
Machine Model
††
Comments:
This part number(s) passed
Automotive qualification. IR’s Industrial and
Consumer qualification level is granted by
extension of the higher Automotive level.
D PAK
MSL1
Class M3(400V)
(per AEC-Q101-002)
ESD
Human Body Model
Class H1A(500V)
(per AEC-Q101-001)
Charged Device
Model
RoHS Compliant
www.kersemi.com
Class C5 (1125V)
(per AEC-Q101-005)
Yes
3
AUIRFR2905Z
1000
1000
100
BOTTOM
TOP
10
1
4.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
1
0.1
0.1
1
10
0.1
0
100
Fig 1. Typical Output Characteristics
10
10
100
100
Fig 2. Typical Output Characteristics
50
Gfs, Forward Transconductance (S)
1000.0
ID, Drain-to-Source Current (Α)
11
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
100.0
T J = 175°C
T J = 25°C
10.0
VDS = 25V
≤ 60µs PULSE WIDTH
1.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10.0
T J = 175°C
40
30
T J = 25°C
20
10
VDS = 15V
380µs PULSE WIDTH
0
0
10
20
30
40
50
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.kersemi.com
AUIRFR2905Z
2400
20
2000
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C, Capacitance (pF)
C oss = C ds + C gd
1600
Ciss
1200
800
Coss
400
Crss
VDS= 44V
VDS= 28V
VDS= 11V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
1
ID= 36A
10
0
100
20
30
40
50
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000.0
ISD, Reverse Drain Current (A)
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.0
T J = 175°C
10.0
T J = 25°C
1.0
10
0.1
0.2
0.6
1.0
1.4
1.8
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.kersemi.com
2.2
1msec
1
VGS = 0V
0.1
100µsec
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
5
AUIRFR2905Z
70
2.0
ID , Drain Current (A)
60
50
40
30
20
10
0
25
50
75
100
125
150
ID = 36A
VGS = 10V
RDS(on) , Drain-to-Source On Resistance
(Normalized)
LIMITED BY PACKAGE
1.5
1.0
0.5
175
-60 -40 -20
T C , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.3962 0.00012
0.5693 0.00045
0.4129
0.0015
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.kersemi.com
AUIRFR2905Z
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
240
15V
ID
36A
8.6A
BOTTOM 4.8A
TOP
200
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.5
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
10 V
4.0
3.5
ID = 250µA
3.0
2.5
2.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.kersemi.com
Fig 14. Threshold Voltage Vs. Temperature
7
AUIRFR2905Z
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
60
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 36A
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
8
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.kersemi.com
AUIRFR2905Z
D.U.T
Driver Gate Drive
ƒ
+
‚
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
• dv/dt controlled by R G
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
www.kersemi.com
9
AUIRFR2905Z
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
Part Number
AUFR2905Z
YWWA
IR Logo
XX
or
Date Code
Y= Year
WW= Work Week
A= Automotive, Lead Free
XX
Lot Code
10
www.kersemi.com
AUIRFR2905Z
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.08mH
RG = 25Ω, IAS = 36A, VGS =10V. Part not
recommended for use above this value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives the
same charging time as Coss while VDS is rising
from 0 to 80% VDSS .
www.kersemi.com
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
† This value determined from sample failure population. 100%
tested to this value in production.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
application note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
‰ Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 42A
11