AUIRFR2905Z Features l l l l l l l D Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS 55V RDS(on) typ. max. G S 11.1mΩ 14.5mΩ ID (Silicon Limited) 59A k ID (Package Limited) 42A D Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. G D S D-Pak AUIRFR2905Z Absolute Maximum Ratings G D S Gate Drain Source Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (Tested ) IAR EAR TJ TSTG Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy(Thermally limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw 59 42 42 240 110 0.72 ± 20 55 82 See Fig.12a, 12b, 15, 16 c c h g d A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) 10 lbf in (1.1N m) y Thermal Resistance RθJC RθJA RθJA Units k k y Parameter Typ. Max. Units Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient ––– ––– ––– 1.38 50 110 °C/W www.kersemi.com j i 1 07/20/10 AUIRFR2905Z Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs RG IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Gate Input Resistance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 55 ––– ––– 2.0 20 ––– ––– ––– ––– ––– ––– 0.053 11.1 ––– ––– 1.3 ––– ––– ––– ––– ––– ––– 14.5 4.0 ––– ––– 20 250 200 -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 36A V VDS = VGS, ID = 250µA S VDS = 25V, ID = 36A Ω f = 1MHz, open drain VDS = 55V, VGS = 0V µA VDS = 55V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V e Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qgs Qgd td(on) tr td(off) tf LD Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance LS Internal Source Inductance Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– 29 7.7 12 14 66 31 35 44 ––– ––– ––– ––– ––– ––– ––– 4.5 ––– ––– 7.5 ––– ––– ––– ––– ––– ––– ––– 1380 240 120 820 190 300 ––– ––– ––– ––– ––– ––– nC ns nH pF Conditions ID = 36A VDS = 44V VGS = 10V VDD = 28V ID = 36A RG = 15 Ω VGS = 10V Between lead, e e D 6mm (0.25in.) from package G S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V f Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time 2 c Min. Typ. Max. Units k ––– ––– 42 ––– ––– 240 ––– ––– ––– ––– 23 16 1.3 35 24 Conditions MOSFET symbol A V ns nC showing the integral reverse p-n junction diode. TJ = 25°C, IS = 36A, VGS = 0V TJ = 25°C, IF = 36A, VDD = 28V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com AUIRFR2905Z Qualification Information † Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D PAK MSL1 Class M3(400V) (per AEC-Q101-002) ESD Human Body Model Class H1A(500V) (per AEC-Q101-001) Charged Device Model RoHS Compliant www.kersemi.com Class C5 (1125V) (per AEC-Q101-005) Yes 3 AUIRFR2905Z 1000 1000 100 BOTTOM TOP 10 1 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V ≤ 60µs PULSE WIDTH Tj = 175°C 1 0.1 0.1 1 10 0.1 0 100 Fig 1. Typical Output Characteristics 10 10 100 100 Fig 2. Typical Output Characteristics 50 Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current (Α) 11 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100.0 T J = 175°C T J = 25°C 10.0 VDS = 25V ≤ 60µs PULSE WIDTH 1.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10.0 T J = 175°C 40 30 T J = 25°C 20 10 VDS = 15V 380µs PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current www.kersemi.com AUIRFR2905Z 2400 20 2000 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance (pF) C oss = C ds + C gd 1600 Ciss 1200 800 Coss 400 Crss VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 ID= 36A 10 0 100 20 30 40 50 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 1000.0 ISD, Reverse Drain Current (A) 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.0 T J = 175°C 10.0 T J = 25°C 1.0 10 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.kersemi.com 2.2 1msec 1 VGS = 0V 0.1 100µsec 10msec Tc = 25°C Tj = 175°C Single Pulse 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area 5 AUIRFR2905Z 70 2.0 ID , Drain Current (A) 60 50 40 30 20 10 0 25 50 75 100 125 150 ID = 36A VGS = 10V RDS(on) , Drain-to-Source On Resistance (Normalized) LIMITED BY PACKAGE 1.5 1.0 0.5 175 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.3962 0.00012 0.5693 0.00045 0.4129 0.0015 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.kersemi.com AUIRFR2905Z DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 240 15V ID 36A 8.6A BOTTOM 4.8A TOP 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.5 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V 4.0 3.5 ID = 250µA 3.0 2.5 2.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.kersemi.com Fig 14. Threshold Voltage Vs. Temperature 7 AUIRFR2905Z 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 60 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature 8 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.kersemi.com AUIRFR2905Z D.U.T Driver Gate Drive + D.U.T. ISD Waveform Reverse Recovery Current + • dv/dt controlled by R G • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.kersemi.com 9 AUIRFR2905Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information Part Number AUFR2905Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, Lead Free XX Lot Code 10 www.kersemi.com AUIRFR2905Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.08mH RG = 25Ω, IAS = 36A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . www.kersemi.com Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . application note #AN-994 Rθ is measured at TJ approximately 90°C Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 42A 11