KERSEMI AUIRFU4104

AUIRFR4104
AUIRFU4104
Features
l
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
D
G
S
Description
V(BR)DSS
40V
RDS(on) max.
5.5mΩ
ID (Silicon Limited)
119A
ID (Package Limited)
42A
D
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per
silicon area. Additional features of this design are a
175°C junction operating temperature, fast switching
speed and improved repetitive avalanche rating . These
features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and a wide variety of other applications.
S
D
G
G
D-Pak
AUIRFR4104
S
I-Pak
AUIRFU4104
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These
are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in
the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Ambient temperature (TA) is 25°C, unless otherwise specified.
Max.
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
EAS
EAS (tested )
IAR
EAR
TJ
TSTG
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V (Package Limited)
c
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case )
Mounting Torque, 6-32 or M3 screw
c
h
g
d
j
Parameter
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
www.kersemi.com
i
A
W
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300
10 lbf in (1.1N m)
y
Thermal Resistance
RθJC
RθJA
RθJA
Units
119
84
42
480
140
0.95
± 20
145
310
See Fig.12a, 12b, 15, 16
y
Typ.
Max.
Units
–––
–––
–––
1.05
40
110
°C/W
1
02/10/2010
AUIRFR/U4104
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
gfs
IDSS
IGSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
40
–––
–––
2.0
58
–––
–––
–––
–––
–––
0.032
4.3
–––
–––
–––
–––
–––
–––
–––
–––
5.5
4.0
–––
20
250
200
-200
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 42A
V VDS = VGS, ID = 100µA
S VDS = 10V, ID = 42A
µA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
e
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
–––
–––
–––
–––
–––
–––
–––
–––
59
19
24
17
69
37
36
4.5
89
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
2950
660
370
2130
590
850
–––
–––
–––
–––
–––
–––
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 32V
nC
ns
nH
pF
ID = 42A
VDS = 32V
VGS = 10V
VDD = 20V
ID = 42A
RG = 6.8 Ω
VGS = 10V
Between lead,
e
e
f
Diode Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
42
ISM
(Body Diode)
Pulsed Source Current
–––
–––
480
VSD
trr
Qrr
ton
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
–––
–––
–––
–––
28
24
1.3
42
36
2
c
Conditions
MOSFET symbol
A
V
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 42A, VGS = 0V
TJ = 25°C, IF = 42A, VDD = 20V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.kersemi.com
AUIRFR/U4104
Qualification Information†
Automotive
(per AEC-Q101)
Qualification Level
Moisture Sensitivity Level
Machine Model
††
Comments: This part number(s) passed Automotive qualification. IR’s
Industrial and Consumer qualification level is granted by extension of the
higher Automotive level.
D-PAK
MSL1
I-PAK
MSL1
Class M4
AEC-Q101-002
ESD
Human Body Model
Class H1C
AEC-Q101-001
Charged Device
Model
RoHS Compliant
www.kersemi.com
Class C3
AEC-Q101-005
Yes
3
AUIRFR/U4104
1000
1000
VGS
100
10
4.5V
60µs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
1
100
4.5V
10
60µs PULSE WIDTH
Tj = 175°C
1
0.1
0
1
10
100
100
0.1
0
VDS, Drain-to-Source Voltage (V)
10
100
100
Fig 2. Typical Output Characteristics
120
1000
Gfs, Forward Transconductance (S)
TJ = 25°C
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 175°C
100
10
VDS = 20V
60µs PULSE WIDTH
1
4
6
8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
V GS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
10
T J = 175°C
100
80
60
TJ = 25°C
40
20
VDS = 10V
380µs PULSE WIDTH
0
0
20
40
60
80
100
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
www.kersemi.com
AUIRFR/U4104
5000
ID= 42A
VGS, Gate-to-Source Voltage (V)
4000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
3000
2000
Coss
1000
16
VDS= 32V
VDS= 20V
12
8
4
Crss
0
0
1
10
0
100
10000
ID, Drain-to-Source Current (A)
1000.0
T J = 175°C
10.0
T J = 25°C
1.0
1.0
1.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.kersemi.com
100
1000
100
100µsec
10
1msec
1
2.0
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.5
80
OPERATION IN THIS AREA
LIMITED BY R DS(on)
VGS = 0V
0.1
0.0
60
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100.0
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
ISD, Reverse Drain Current (A)
20
0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
5
AUIRFR/U4104
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
120
LIMITED BY PACKAGE
ID , Drain Current (A)
100
80
60
40
20
0
ID = 42A
VGS = 10V
1.5
1.0
0.5
25
50
75
100
125
150
175
-60 -40 -20
T C , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ
Ri (°C/W)
0.5067
τi (sec)
0.000414
0.5428
0.004081
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.kersemi.com
AUIRFR/U4104
15V
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
DRIVER
L
VDS
600
ID
9.2A
13A
BOTTOM 42A
TOP
500
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.0
ID = 250µA
3.0
2.0
1.0
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.kersemi.com
Fig 14. Threshold Voltage Vs. Temperature
7
AUIRFR/U4104
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
0.05
10
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
160
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 42A
120
80
40
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
8
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.kersemi.com
AUIRFR/U4104
D.U.T
Driver Gate Drive
ƒ
+
‚
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
„
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
*
ISD
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
www.kersemi.com
9
AUIRFR/U4104
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak Part Marking Information
Part Number
AUFR4104
YWWA
IR Logo
XX
or
Date Code
Y= Year
WW= Work Week
A= Automotive, LeadFree
XX
Lot Code
10
www.kersemi.com
AUIRFR/U4104
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak Part Marking Information
Part Number
AUFU4104
YWWA
IR Logo
XX
or
Date Code
Y= Year
WW= Work Week
A= Automotive, LeadFree
XX
Lot Code
www.kersemi.com
11
AUIRFR/U4104
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical
max. junction temperature. (See fig. 11).
repetitive avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.16mH
† This value determined from sample failure population, starting
RG = 25Ω, IAS = 42A, VGS =10V. Part not
TJ = 25°C, L = 0.16mH, RG = 25Ω, IAS = 42A, VGS =10V.
recommended for use above this value.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
application note #AN-994.
„ Coss eff. is a fixed capacitance that gives the same
ˆ Rθ is measured at TJ approximately 90°C.
charging time as Coss while VDS is rising from 0 to
80% VDSS .
 Repetitive rating; pulse width limited by
12
www.kersemi.com