AUIRFR4105Z AUIRFU4105Z AUTOMOTIVE GRADE Features ● ● ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS D 55V RDS(on) max. G 24.5mΩ ID S Description 30A D Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S D G G D-Pak AUIRFR4105Z S I-Pak AUIRFU4105Z G D S Gate Drain Source Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A) is 25°C, unless otherwise specified. Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS EAS (tested ) IAR EAR TJ TSTG c h g Junction-to-Case j Parameter Junction-to-Ambient (PCB mount) Junction-to-Ambient www.kersemi.com i d Units 30 21 120 48 c Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting Torque, 6-32 or M3 screw Thermal Resistance RθJC RθJA RθJA Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V A W 0.32 ± 20 29 46 See Fig.12a, 12b, 15, 16 W/°C V mJ A mJ -55 to + 175 °C 300 10 lbf in (1.1N m) y y Typ. Max. Units ––– ––– ––– 3.12 50 110 °C/W 1 07/23/2010 AUIRFR/U4105Z Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 55 ––– ––– 2.0 16 ––– ––– ––– ––– ––– 0.053 19 ––– ––– ––– ––– ––– ––– ––– ––– 24.5 4.0 ––– 20 250 200 -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 18A V VDS = VGS, ID = 250µA S VDS = 15V, ID = 18A µA VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V e Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance ––– ––– ––– ––– ––– ––– ––– ––– 18 5.3 7.0 10 40 26 24 4.5 27 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 740 140 74 450 110 180 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V nC ns nH pF ID = 18A VDS = 44V VGS = 10V VDD = 28V ID = 18A RG = 24.5 Ω VGS = 10V Between lead, e e D G f Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 30 ISM (Body Diode) Pulsed Source Current ––– ––– 120 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 19 14 1.3 29 21 2 c Conditions MOSFET symbol A V ns nC showing the integral reverse p-n junction diode. TJ = 25°C, IS = 18A, VGS = 0V TJ = 25°C, IF = 18A, VDD = 28V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com AUIRFR/U4105Z Automotive (per AEC-Q101) Qualification Level †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D-PAK MSL1 I-PAK Machine Model MSL1 Class M2 (200V) Human Body Model Class H1A (500V) Charged Device Model Class C5 (1125V) Moisture Sensitivity Level AEC-Q101-002 ESD AEC-Q101-001 RoHS Compliant www.kersemi.com AEC-Q101-005 Yes 3 AUIRFR/U4105Z 1000 1000 VGS ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 10 1 VGS TOP TOP 4.5V 60µs PULSE WIDTH Tj = 25°C 0.1 100 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 4.5V 60µs PULSE WIDTH Tj = 175°C 1 0.1 0 1 10 100 100 0.1 0 VDS, Drain-to-Source Voltage (V) 100 100 Fig 2. Typical Output Characteristics 30 Gfs, Forward Transconductance (S) 1000 ID, Drain-to-Source Current (Α) 10 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V 60µs PULSE WIDTH 0 4 5 6 7 8 9 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 1 10 T J = 175°C 25 20 15 T J = 25°C 10 5 VDS = 8.0V 380µs PULSE WIDTH 0 0 10 20 30 40 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current www.kersemi.com ance AUIRFR/U4105Z 1200 20 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 1000 C, Capacitance (pF) C oss = C ds + C gd 800 Ciss 600 400 Coss 200 ID= 18A VDS= 44V VDS= 28V VDS= 11V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 0 1 10 0 100 10 15 20 25 30 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 5 100.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 10.0 T J = 25°C 1.0 10 100µsec 1 VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.kersemi.com 2.0 1msec Tc = 25°C Tj = 175°C Single Pulse 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area 5 AUIRFR/U4105Z 2.5 30 RDS(on) , Drain-to-Source On Resistance (Normalized) 25 ID , Drain Current (A) ID = 18A VGS = 10V 20 15 10 5 2.0 1.5 1.0 0.5 0 25 50 75 100 125 150 -60 -40 -20 175 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci i/Ri R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 1.100 0.000174 1.601 0.000552 0.418 0.007193 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.kersemi.com AUIRFR/U4105Z 120 DRIVER L VDS D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 15V ID 2.0A 3.5A BOTTOM 18A TOP 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 4.5 4.0 3.5 ID = 250µA 3.0 2.5 2.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.kersemi.com Fig 14. Threshold Voltage Vs. Temperature 7 AUIRFR/U4105Z 100 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 30 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 18A 25 20 15 10 5 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) 8 Fig 16. Maximum Avalanche Energy Vs. Temperature Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.kersemi.com AUIRFR/U4105Z D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * ISD VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.kersemi.com 9 AUIRFR/U4105Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak Part Marking Information Part Number AUFR4105Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code 10 www.kersemi.com AUIRFR/U4105Z I-Pak (TO-251AA) Package Outline I-Pak Part Marking Information Part Number AUFU4105Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code www.kersemi.com 11 AUIRFR/U4105Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. Limited by TJmax, starting TJ = 25°C, L = 0.18mH This value determined from sample failure population, RG = 25Ω, IAS = 18A, VGS =10V. Part not starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 18A, VGS =10V. recommended for use above this value. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to Pulse width ≤ 1.0ms; duty cycle ≤ 2%. application note #AN-994. Coss eff. is a fixed capacitance that gives the Rθ is measured at TJ approximately 90°C. same charging time as Coss while VDS is rising from 0 to 80% VDSS . Repetitive rating; pulse width limited by 12 www.kersemi.com