DATASHEET SEARCH SITE | WWW.ALLDATASHEET.COM

IRFR2407
IRFU2407
l
l
l
l
l
l
Surface Mount (IRFR2407)
Straight Lead (IRFU2407)
Advanced Process Technology
Dynamic dv/dt Rating
Fast Switching
Fully Avalanche Rated
D-Pak
IRFR2407
I-Pak
IRFU2407
Description
D
The D-Pak is designed for surface mounting using
vapor phase, infrared, or wave soldering techniques.
The straight lead version (IRFU series) is for throughhole mounting applications. Power dissipation levels
up to 1.5 watts are possible in typical surface mount
applications.
VDSS = 75V
RDS(on) = 0.026Ω
G
ID = 42A†
S
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Units
42†
29†
170
110
0.71
± 20
130
25
11
5.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
2014-8-23
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
1
Typ.
Max.
Units
–––
–––
–––
1.4
50
110
°C/W
www.kersemi.com
IRFR/U2407
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
75
–––
–––
2.0
27
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
–––
–––
–––
–––
–––
–––
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Typ. Max. Units
Conditions
––– –––
V
V GS = 0V, ID = 250µA
0.078 ––– V/°C Reference to 25°C, ID = 1mA
0.0218 0.026
Ω
VGS = 10V, ID = 25A „
––– 4.0
V
VDS = 10V, ID = 250µA
––– –––
S
VDS = 25V, ID = 25A
––– 20
VDS = 75V, VGS = 0V
µA
––– 250
VDS = 60V, VGS = 0V, TJ = 150°C
––– 200
VGS = 20V
nA
––– -200
VGS = -20V
74 110
ID = 25A
13
19
nC
VDS = 60V
22
34
VGS = 10V„
16 –––
VDD = 38V
90 –––
ID = 25A
ns
65 –––
RG = 6.8Ω
66 –––
V GS = 10V „
D
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
S
2400 –––
VGS = 0V
340 –––
pF
VDS = 25V
77 –––
ƒ = 1.0MHz, See Fig. 5
15700 –––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
220 –––
VGS = 0V, VDS = 60V, ƒ = 1.0MHz
220 –––
VGS = 0V, VDS = 0V to 60V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 42†
showing the
A
G
integral reverse
––– ––– 170
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 25A, VGS = 0V „
––– 100 150
ns
TJ = 25°C, IF = 25A
––– 400 600
nC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.42mH
RG = 25Ω, IAS = 25A.
ƒ ISD ≤ 25A, di/dt ≤ 290A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
2014-8-23
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
†
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 30A
2
www.kersemi.com
IRFR/U2407
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
100
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
4.5V
10
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
100
TJ = 175 ° C
TJ = 25 ° C
10
V DS = 25V
20µs PULSE WIDTH
6.0
7.0
8.0
9.0
100
ID = 42A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
2014-8-23
10
Fig 2. Typical Output Characteristics
1000
5.0
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
4.0
20µs PULSE WIDTH
TJ = 175 °C
1
0.1
Fig 4. Normalized On-Resistance
Vs. Temperature
3
www.kersemi.com
IRFR/U2407
20
4000
Coss = Cds + Cgd
3000
C, Capacitance(pF)
VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Ciss
2000
1000
Coss
Crss
ID = 25A
VDS = 60V
VDS = 37V
VDS = 15V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
1
10
100
0
0
VDS , Drain-to-Source Voltage (V)
20
40
60
80
100
120
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
100
TJ = 175 ° C
10
TJ = 25 ° C
1
0.4
1.2
1.6
2.0
2.4
VSD ,Source-to-Drain Voltage (V)
10
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10ms
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
2014-8-23
100us
1ms
V GS = 0 V
0.8
10us
4
www.kersemi.com
IRFR/U2407
50
VDS
LIMITED BY PACKAGE
VGS
I D , Drain Current (A)
40
RD
D.U.T.
RG
+
-VDD
30
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
10
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
P DM
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
2014-8-23
5
www.kersemi.com
IRFR/U2407
240
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
20V
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
A
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
TOP
200
BOTTOM
ID
10A
18A
25A
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
.2µF
.3µF
QGS
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
IG
Charge
Fig 13a. Basic Gate Charge Waveform
2014-8-23
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
www.kersemi.com
IRFR/U2407
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
2014-8-23
7
www.kersemi.com
IRFR/U2407
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2 .3 8 (.0 9 4 )
2 .1 9 (.0 8 6 )
6 .7 3 (.2 6 5 )
6 .3 5 (.2 5 0 )
-A 1 .2 7 (.0 5 0 )
0 .8 8 (.0 3 5 )
5 .4 6 (.2 1 5 )
5 .2 1 (.2 0 5 )
1 .1 4 (.0 4 5 )
0 .8 9 (.0 3 5 )
0 .5 8 (.0 2 3 )
0 .4 6 (.0 1 8 )
4
6 .4 5 (.2 4 5 )
5 .6 8 (.2 2 4 )
6 .2 2 (.2 4 5 )
5 .9 7 (.2 3 5 )
1.0 2 (.0 4 0 )
1.6 4 (.0 2 5 )
1 0 .4 2 (.4 1 0 )
9 .4 0 (.3 7 0 )
1
2
1 - GATE
0 .5 1 (.0 2 0 )
M IN .
-B 1 .5 2 (.0 6 0 )
1 .1 5 (.0 4 5 )
3X
2X
1 .1 4 (.0 4 5 )
0 .7 6 (.0 3 0 )
L E A D A S S IG N M E N T S
3
0 .8 9 (.0 3 5 )
0 .6 4 (.0 2 5 )
0 .2 5 ( .0 1 0 )
2 - D R A IN
3 - S OU R CE
4 - D R A IN
0 .5 8 (.0 2 3 )
0 .4 6 (.0 1 8 )
M A M B
N O TE S :
2 .2 8 ( .0 9 0 )
1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 C O N F O R M S T O J E D E C O U T L IN E T O -2 5 2 A A .
4 .5 7 ( .1 8 0 )
4 D IM E N S IO N S S H O W N A R E B E F O R E S O L D E R D IP ,
S O L D E R D IP M A X. + 0 .1 6 (.0 0 6 ) .
D-Pak (TO-252AA) Part Marking Information
2014-8-23
8
www.kersemi.com
IRFR/U2407
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6 .7 3 (.26 5 )
6 .3 5 (.25 0 )
2 .3 8 (.0 9 4 )
2 .1 9 (.0 8 6 )
-A -
0 .5 8 (.0 2 3 )
0 .4 6 (.0 1 8 )
1 .2 7 ( .0 5 0 )
0 .8 8 ( .0 3 5 )
5 .4 6 (.2 1 5 )
5 .2 1 (.2 0 5 )
4
6 .4 5 (.2 4 5 )
5 .6 8 (.2 2 4 )
6 .2 2 ( .2 4 5 )
5 .9 7 ( .2 3 5 )
1 .5 2 (.0 6 0 )
1 .1 5 (.0 4 5 )
1
2
L E A D A S S IG N M E N T S
1 - GATE
2 - D R A IN
3 - SOURCE
4 - D R A IN
3
-B -
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 1 4 .5M , 19 8 2 .
2.2 8 (.0 9 0)
1.9 1 (.0 7 5)
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 C O N F O R MS TO J E D E C O U T L IN E TO -2 5 2 A A .
9 .6 5 ( .3 8 0 )
8 .8 9 ( .3 5 0 )
4 D IM E N S IO N S S H O W N A R E B E F O R E S O L D E R D IP ,
S O L D E R D IP M A X. + 0.1 6 (.0 0 6 ).
3X
1 .1 4 (.0 45 )
0 .7 6 (.0 30 )
2 .28 (.0 9 0 )
3X
1 .1 4 ( .0 4 5 )
0 .8 9 ( .0 3 5 )
0 .8 9 (.0 35 )
0 .6 4 (.0 25 )
0 .2 5 (.0 1 0 )
M A M B
0 .5 8 (.0 2 3 )
0 .4 6 (.0 1 8 )
2X
I-Pak (TO-251AA) Part Marking Information
2014-8-23
9
www.kersemi.com
IRFR/U2407
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
1 6 .3 ( .6 41 )
1 5 .7 ( .6 19 )
1 2 .1 ( .4 7 6 )
1 1 .9 ( .4 6 9 )
F E E D D IR E C T IO N
TR L
16 .3 ( .6 4 1 )
15 .7 ( .6 1 9 )
8 .1 ( .3 1 8 )
7 .9 ( .3 1 2 )
F E E D D IR E C T IO N
NO TES :
1 . C O N T R O L L IN G D IM E N S IO N : M ILL IM E T E R .
2 . A L L D IM E N S IO N S A R E S H O W N IN M ILL IM E T E R S ( IN C H E S ).
3 . O U T L IN E C O N F O R M S T O E IA -4 8 1 & E IA -5 4 1 .
1 3 IN C H
16 m m
NO TES :
1 . O U T L IN E C O N F O R M S T O E IA -4 8 1 .
2014-8-23
10
www.kersemi.com