PD -91752A IRG4IBC20UD UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • 2.5kV, 60s insulation voltage U • 4.8 mm creapage distance to heatsink • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes • Tighter parameter distribution • Industry standard Isolated TO-220 FullpakTM outline VCES = 600V VCE(on) typ. = 1.85V G @VGE = 15V, IC = 6.5A E n-ch an nel Benefits • Simplified assembly • Highest efficiency and power density • HEXFREDTM antiparallel Diode minimizes switching losses and EMI TO-220 FULLPAK Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM Visol VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector CurrentQ Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current RMS Isolation Voltage, Terminal to CaseU Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 11.4 6.0 52 52 6.5 52 2500 ± 20 34 14 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– ––– ––– 2.0 (0.07) 3.7 5.1 65 ––– Units °C/W g (oz) 1 4/24/2000 IRG4IBC20UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Collector-to-Emitter Breakdown VoltageS ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage V(BR)CES VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. 600 ––– ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward TransconductanceT 1.4 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.69 1.85 2.27 1.87 ––– -11 4.3 ––– ––– 1.4 1.3 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.1 IC = 6.5A VGE = 15V ––– V IC = 13A See Fig. 2, 5 ––– IC = 6.5A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 6.5A 250 µA VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M /dt Diode Peak Rate of Fall of Recovery During tb 2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 27 4.5 10 39 15 93 110 0.16 0.13 0.29 38 17 100 220 0.49 7.5 530 39 7.4 37 55 3.5 4.5 65 124 240 210 Max. Units Conditions 41 IC = 6.5A 6.8 nC VCC = 400V See Fig. 8 16 VGE = 15V ––– TJ = 25°C ––– ns IC = 6.5A, VCC = 480V 140 VGE = 15V, RG = 50Ω 170 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 0.3 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 6.5A, VCC = 480V ––– VGE = 15V, RG = 50Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– nH Measured 5mm from package ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 5.0 A TJ = 25°C See Fig. 8.0 TJ = 125°C 15 VR = 200V 138 nC TJ = 25°C See Fig. 360 TJ = 125°C 16 di/dt 200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 www.irf.com IRG4IBC20UD 10.0 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified P ow e r Dis sip ation = 9.5 W LOAD CURRENT (A) 8.0 6.0 S q u a re w a v e : 6 0% of rate d volta ge 4.0 I 2.0 Id e a l d io d e s 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 I C , C ollec tor-to-E m itte r C u rre nt (A ) I C , Collector-to-Emitter Current (A) 100 T J = 25°C T J = 150°C 10 1 V G E = 15V 20µs PULSE WIDTH 0.1 0.1 1 Fig. 2 - Typical Output Characteristics www.irf.com A TJ = 25 °C 1 V C C = 10 V 5 µs P U L S E W IDTH 0.1 10 VC E , Collector-to-Emitter Voltage (V) TJ = 1 5 0°C 10 4 6 8 10 A 12 VG E , Ga te -to-Em itter Volta ge (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC20UD 2.6 V C E , C ollector-to-E m itter V oltag e (V) Maximum DC Collector Current(A) 12 10 8 6 4 2 0 V G E = 1 5V 8 0 µs P U L S E W ID TH I C = 1 3A 2.2 1.8 I C = 6 .5A 1.4 I C = 3.3 A A 1.0 25 50 75 100 125 150 -60 TC , Case Temperature ( ° C) -40 -20 0 20 40 60 80 100 120 140 160 T J , J u n c tio n Te m p e ra tu re (°C ) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 P DM 0.02 0.1 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) 0.01 0.00001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC20UD V GE = C ie s = C re s = C oes = 800 20 0V , f = 1M H z C g e + C g c , C ce S H O R TE D C gc C ce + C g c V G E , G a te -to -E m itte r V o lta g e (V ) C, Ca pac itanc e (p F) 1000 C ie s 600 C oes 400 C re s 200 A 0 1 10 VCE = 400V I C = 6 .5 A 16 12 8 4 A 0 0 100 5 V C E , C o lle c to r-to -E m itte r V o lta g e (V ) 10 = 480V = 15V = 25 °C = 6 .5A 0.31 0.30 A 0.29 0 10 20 30 40 50 R G , G a te R e sista n c e ( Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total S witching Los se s (m J) Total Switching Losses (m J) V CC VGE TJ IC 15 Q g , T o ta l G a te C h a rg e (n C ) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.32 10 60 R G = 50 Ω V GE = 15V V CC = 4 8 0 V IC = 1 3 A 1 I C = 6 .5 A I C = 3 .3 A A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , J u n ctio n T e m p e ra tu re (°C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC20UD 100 = 50 Ω = 1 5 0 °C = 480V = 15V I C , Collector Current (A) RG TJ V CC V GE 0.9 0.6 0.3 VGE = 20V T J = 125 oC 10 1 SAFE OPERATING AREA A 0.0 0 2 4 6 8 10 12 0.1 1 14 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , C o lle cto r-to -E m itte r C u rre n t (A ) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 In s ta n ta n e o u s F o rw a rd C u rre n t - I F (A ) Total Switc hing Losses (mJ ) 1.2 10 TJ = 1 50 °C TJ = 1 25 °C TJ = 25 °C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 F o rw a rd V o lta g e D ro p - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4IBC20UD 100 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 80 I F = 8 .0A I IR R M - (A ) t rr - (ns) IF = 16 A 60 I F = 1 6A 10 IF = 8 .0 A 40 I F = 4.0 A I F = 4 .0 A 20 0 100 1 100 1000 d i f /d t - (A /µ s) 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 500 10000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C di(rec)M/dt - (A /µ s) Q R R - (nC ) 400 300 I F = 16 A 200 I F = 8 .0A I F = 4 .0A 1000 I F = 8.0 A I F = 16 A 100 IF = 4.0 A 0 100 di f /dt - (A /µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4IBC20UD Same ty pe device as D .U.T. 90% 10% Vge 430µF 80% of Vce VC D .U .T. 90% t d(off) 10% IC 5% tf tr t d(on) t=5µs Eon Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Eoff E ts = (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id d t tx ∫ +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 E o n = V ce ie d t t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 V d id d t t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4IBC20UD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4IBC20UD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. U t = 60s, f = 60Hz Case Outline TO-220 FULLPAK 1 0 .6 0 (.4 1 7 ) 1 0 .4 0 (.4 0 9 ) ø 3 .4 0 (.1 3 3 ) 3 .1 0 (.1 2 3 ) 4 .8 0 (.1 8 9 ) 4 .6 0 (.1 8 1 ) -A 3 .7 0 (.1 4 5 ) 3 .2 0 (.1 2 6 ) 1 6 .0 0 (.6 3 0 ) 1 5 .8 0 (.6 2 2 ) 2 .8 0 (.1 10 ) 2 .6 0 (.1 02 ) L E A D A S S IG N M E N T S LEAD ASSIGMENTS 1 - GATE 1- GATE 2 - D R A IN 2- COLLECTOR 3 - S OU R CE 3- EMITTER 7 .10 (.2 8 0 ) 6 .70 (.2 6 3 ) 1 .1 5 (.0 4 5 ) M IN . NOTES: 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 1 2 3 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 .3 0 (.1 3 0 ) 3 .1 0 (.1 2 2 ) -B - 1 3 .7 0 (.5 4 0 ) 1 3 .5 0 (.5 3 0 ) C A 1 .4 0 (.0 5 5 ) 3X 1 .0 5 (.0 4 2 ) 0 .9 0 (.0 3 5 ) 3 X 0 .7 0 (.0 2 8 ) 0 .2 5 (.0 1 0) 2 .5 4 (.1 0 0 ) 2X 3X M A M B 0 .4 8 (.0 1 9 ) 0 .4 4 (.0 1 7 ) 2 .8 5 (.1 1 2 ) 2 .6 5 (.1 0 4 ) D B M IN IM U M C R E E P A G E D IS T A N C E B E T W E E N A -B -C -D = 4 .8 0 (.1 89 ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00 10 www.irf.com