ISL9444EVAL3Z User Guide

Application Note 1799
Author: Manjing Xie
ISL9444EVAL3Z: Triple PWM Step-Down Synchronous
Converters
Introduction
Evaluation Board Specifications
ISL9444EVAL3Z consists of three PWM step-down synchronous
converters, which features the triple PWM controller, ISL9444.
The PWM1 delivers 5V output at 5A. PWM2 and PWM3 deliver
5V at 25A and 3.3V at 25A, respectively.
A power failure monitor and three independent enable pins
accommodate variable power sequencing requirement. The
Extbias option is provided to achieve low standby power.
TABLE 1. EVALUATION BOARD ELECTRICAL SPECIFICATIONS
SPEC
DESCRIPTION
MIN
TYP
MAX
UNIT
VIN
Input for PWM2 and PWM3
5.6
12
16
V
VOUT2 IOUT = 0A
4.75
5.0
5.25
V
VOUT3 IOUT = 0A
3.15
3.3
3.65
V
IOUT_2 Output Current of PWM2
IOUT_3 and PWM3
Strong gate driver and adaptive deadtime control achieve
excellent efficiency over 96%.
VIN2
ISL9444 Key Features
Input for PWM1
VOUT1 IOUT = 0A
IOUT_1 Output Current of PWM1
• Wide input voltage range: 4.5V to 28V
• Use lower MOSFET’s rDS(ON) for current sensing
25
5.6
12
16
V
4.75
5
5.25
V
6
FSW
• Extbias pin to save operating loss
• Power failure monitor
• Complete protection: overvoltage, overcurrent, thermal
shutdown
• Three independent power-good indicators
η
VIN = 12V, PWM1, 6A,
EN2 = EN3 = GND
η
VIN = 12V, PWM1 at 6A,
PWM 2 and PWM3 at 25A
respectively
A
A
330
kHz
96
%
95.9
%
+++
FIGURE 1. ISL9444EVAL3Z TOP AND BOTTOM VIEW
TABLE 2. RECOMMENDED COMPONENT SELECTION FOR QUICK EVALUATION FOR PWM CHANNEL
VOUT
(V)
IOUT
(A)
VIN
(V)
FSW(kHz)
/RT(kΩ)
MOSFET(s),
LOWER, UPPER
12
15
19 to 26.4
250/130
1XBSC059N04,
1XBSC059N04
RSEN
INDUCTOR
(L, ISAT)
2.0kΩ
4.7µH, 20A
COUTs
270µF, OSCON, 16V and
2x1.0µF, ceramic
FEEDBACK RES
(LOWER, UPPER, kΩ)
CFF
3.24, 52.3
1nF
NOTES:
1. Please select the output capacitor with a voltage rating higher than the output.
2. Please adjust ROCSET accordingly.
3. Please contact Intersil Sales for assistance.
December 5, 2012
AN1799.0
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2012. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
Application Note 1799
Recommended Equipment
The following equipment is recommended for evaluation:
• 0V to 20V power supply with 30A source current capability
• Electronic load capable of sinking 30A @ 20V
6. Use an oscilloscope to observe the output ripple voltage and
phase node ringing. For accurate measurement, please refer
to Figure 3 for proper probe set-up.
7. Optimization. Please refer to Table 2 on page 1 for
optimization recommendation.
NOTE: All Test points are for voltage measurement or small signal only.
Do not allow high current through these test points.
• Digital Multimeters (DMMs)
• 100MHz Quad-Trace Oscilloscope
TABLE 3. JUMPER DEFAULT POSITIONS
Quick Test Setup
1. Ensure that the evaluation board is correctly connected to the
power supply and the electronic load prior to applying any
power. Please refer to Figure 2 for proper set-up.
2. Refer to Table 3 for jumper default positions. For set-up
different than the default setting, please refer to the
datasheet for details (ISL9444, FN7665).
JUMPER
NAME
PFI
EN1
EN2
EN3
MODE
Positions
VIN
EN
PFO
EN2
CCM
Probe Set-up
3. Turn on the power supplies; VIN < 16V; VIN2 < 16V
4. Adjust input voltage VIN and VIN2 within the specified range
and observe output voltage. The output voltage variation
should be within 5%.
OUTPUT
CAP
OUTPUT
OUTPUT
CAP
CAP
OR
MOSFET
OR MOSFET
5. Adjust load current within specified range. The output voltage
variation should be within 5%.
FIGURE 3. OSCILLOSCOPE PROBE SET-UP
FIGURE 2. ISL9444EVAL3Z TEST SET-UP
2
AN1799.0
December 5, 2012
Application Note 1799
Output Setting
Transient Load Test
The output voltage is set by the feedback resistor divider, Rlow
and Rup.
The ISL9444EVAL3Z provides optional load transient test
footprints for high di/dt load transient response tests. Please
refer to Figure 4 for the load transient circuit of PWM1.
By sensing the positive rail from load, significant voltage drop
along the PCB trace can be compensated.
For applications with load far from the ISL9444, it is likely that
the remote sensing trace picks up noise from the environment.
To prevent noise being coupled into the feedback loop, it is
recommended to connect the phase boosting capacitors, Cff1,
Cff2 and Cff3 to the local output capacitors.
For applications that Cffx is not used for phase boosting, a pair of
Cff and Cp is recommended for remote sensing. Please set Cff
and Cp according to Equation 2.
R low ⋅ C P = R up ⋅ C ff
(EQ. 2)
In case the remote sensing trace become open-circuit, a default
resistor is recommended to connect the resistor Rup to the local
VOUT.
The ISL9444 does not provide dedicated differential amplifier for
remote sensing.
3. Apply pulse square waveform to the gate of the load transient
test MOSFET, Q10. The duty cycle of the pulse waveform
should be small (<5%) to limit thermal stress on current
sensing resistor and the MOSFETs. Set the amplitude of the
square waveform below 0.5V at the beginning.
4. The amplitude of the square waveform set the current step
amplitude. Slowly increase the amplitude of the square
waveform and monitor the current amplitude. Adjust the
square waveform rising and falling time to set the current
step slew rate.
5. Monitor overshoot and undershoot at the corresponding
output.
VO1
LOAD TRANSIENT CIRCUIT 1
DNP
R20
DNP,
10k
Q10
R21
DNP,
0.01
VO1
1
Remote Sensing
2. Install the load transient circuit as indicated in the
“Schematic (Optional Circuits and Optional Footprints)” on
page 8. R18, R20 and R22 are 10kΩ resistors for MOSFET
gate discharging.
J5
ISTEP2
J4
2
Where Rlow is the resistor from FBx to GND, Rup is the resistor
from VOx to FBx. Resistor R10, R12 and R13 are resistor jumpers
for loop gain measurement. They are not must-to-have
components. It is recommended to use 50Ω for loop gain
measurement.
1. Select a powerpak or SOIC8 MOSFET with VDSS breakdown
greater than VOUT. Select a current sensing resistor. For
accurate current sensing, please use tighter than 5%
tolerance resistors. To alleviate thermal stress, use 0.1Ω or
smaller resistance. For 25A application, a 10mΩ precision
resistor is recommended. Use an oscilloscope to monitor
voltage across R21 and the output voltage.
1
(EQ. 1)
2
R low + R up
V OUT = ----------------------------- × 0.7V
R low
FIGURE 4. LOAD TRANSIENT SET-UP
3
AN1799.0
December 5, 2012
Application Note 1799
Typical Performance Curves
98
97
96
96
94
95
EFFICIENCY (%)
EFFICIENCY (%)
Oscilloscope Plots were taken at VIN = 12V, VIN2 = 12V and jumpers in default positions, unless otherwise noted.
92
90
88
86
93
92
91
84
90
82
89
80
88
0
1.0
2.0
3.0
4.0
LOAD CURRENT (A)
5.0
6.0
0
FIGURE 5. EFFICIENCY vs LOAD CURRENT FOR PWM1
(EN2 = EN3 = GND)
5.0
97
5.2
96
5.15
VOUT REGULATION(V)
94
93
92
91
90
20
25
5.10
5.05
5.00
4.95
4.90
4.85
89
88
4.80
0
20
40
60
80
100
0
1.2
LOAD(%)
3.6
4.8
6.0
FIGURE 8. LOAD REGULATION OF PWM1 (V IN2 = 12V)
3.34
5.15
3.33
VOUT REGULATION (V)
5.20
5.10
5.05
5.00
4.95
4.90
4.85
4.80
2.4
LOAD CURRENT(A)
FIGURE 7. EFFICIENCY vs LOAD(%) FOR ALL PWMs (6A, 25A, 25A)
VOUT REGULATION (V)
10
15
LOAD CURRENT (A)
FIGURE 6. TOTAL EFFICIENCY vs LOAD PWM2 AND PWM3 (EN/SS1
IS GROUNDED)
95
EFFICIENCY (%)
94
3.32
3.31
3.30
3.29
3.28
3.27
0
5
10
15
20
LOAD CURRENT (A)
FIGURE 9. LOAD REGULATION of PWM2 (V IN = 12V)
4
25
3.26
0
5
10
15
20
25
LOAD CURRENT (A)
FIGURE 10. LOAD REGULATION of PWM3 (V IN = 12V)
AN1799.0
December 5, 2012
Application Note 1799
Typical Performance Curves
Oscilloscope Plots were taken at VIN = 12V, VIN2 = 12V and jumpers in default positions, unless otherwise noted. (Continued)
VO1(AC) AT 50mV/DIV
VO1(AC) AT 50mV/DIV
VO2(AC) AT 50mV/DIV
VO3(AC) AT 50mV/DIV
TIME AT 200µs/DIV
TIME AT 5µs/DIV
FIGURE 11. OUTPUT RIPPLE (V IN = 12V, FULL LOAD, 20MHz BW)
FIGURE 12. LOAD TRANSIENT RESPONSE of PWM1 (1.25A TO 3.75A
AT 2A/µs)
VO3(AC) AT 50mV/DIV
VO2(AC) AT 100mV/DIV
TIME AT 200µs/DIV
FIGURE 13. LOAD TRANSIENT RESPONSE of PWM2 (6.25A TO
18.75A AT 2A/µs)
TIME AT 200µs/DIV
FIGURE 14. LOAD TRANSIENT RESPONSE OF PWM1 (6.25A TO
18.75A AT 2A/µs)
VIN AT 5V/DIV
VIN AT 5V/DIV
VO1 AT 2V/DIV
VO1 AT 2V/DIV
VO2 AT 2V/DIV
VO2 AT 2V/DIV
VO3 AT 2V/DIV
VO3 AT 2V/DIV
TIME AT 10ms/DIV
FIGURE 15. POWER-UP SEQUENCING (DEFAULT CONFIGURATION)
5
TIME AT 10ms/DIV
FIGURE 16. POWER-UP SEQUENCING (EN2 = PGOOD1)
AN1799.0
December 5, 2012
Application Note 1799
Typical Performance Curves
Oscilloscope Plots were taken at VIN = 12V, VIN2 = 12V and jumpers in default positions, unless otherwise noted. (Continued)
PHASE AT 5V/DIV
VO AT 100mV/DIV
TIME AT 200ms/DIV
FIGURE 17. OVERCURRENT PROTECTION RESPONSE OF PWM1
6
PHASE AT 5V/DIV
VO AT 0.5V/DIV
TIME AT 20ms/DIV
FIGURE 18. OVERCURRENT PROTECTION OF PWM2
AN1799.0
December 5, 2012
Schematic, Main
VIN
7V to 16V
1
VFB1
3
VO1SNS
VO1
TP12
1
CLKOUT
Cf f1
PGOOD1
Cp1
PGOOD1
DNP
R2
4.99k
1%
PGOOD2
RPG2 100k
3
PGOOD3
VCC5V
1
CBS
1µ
16V
J16
UG3
PH3
PH3
CO21
CO25
CO27
CO28
CO24
270µ
16V
DNP
6. 3V
DNP
10V
10µF
10V
10µ
10V
CO23
5V@25A
10µ
J9
10V
1
CO22
CO26
CO29
DNP
10V
DNP
10V
1 TP8
GND
40
ISEN1
39
PHASE1
38
BOOT1
37
UGATE1
36
LGATE1
35
LGATE2
34
UGATE2
33
BOOT2
32
PHASE2
31
ISEN2
RPG3 100k
CIN5
VO3
CB3 0.22µ 16V
25
PHASE3
24
ISEN3
23
MODE/SYNC
22
EN3
21
TK/SS3
Rsen3 2.0k
Q3
BSC0902NS
MODESYNC
EN3
1% R7 DNP
CS3
47n
PH3
2
LG3
1
L3 1.0µH
VO3
1
CO35
CO31
CO37
270µ
16V
DNP
DNP
CO32
CO36
270µ
16V
DNP
VO3
1%59k R3
DNP
VO2SNS R8 30.9k 1%
2 VO1
BIAS
VO2
Cff2 470p
R11
4. 99k
1%
Cp2
Do NOT connect unless VO1 is less than 6V
DNP
R19, R20, R21 and R23 are for EVAL board testing only.
They are not necessary in end applications.
EN2
PFO_N
PFO_N
DISABLE
PGOOD1 PGOOD1
TP14
JMODE
61
MODESYNC 5
Ext. Clock SYNC
5 6
4
3
VCC5V
CCM
3 4
2
1
1 2
DEM
MODE/SYNC
5
EN3
3
1
JEN3
5 6
3 4
1 2
6
VCC5V
4
2
VCC5V
JEN1
DISABLE
EN2
EN2
EN3
PWM3 is configured to track the VO2 by default.
1 23
EN1 2
3
AN1799.0
December 5, 2012
5
6
5 6
TP13
1 EN2 3
4
3 4
1
2
EN2
1 2
TP15
EN3
1
1
JEN2
J10
CO34 3.3V@25A
10µ
16V
CO38
VO3SNS
Cp3
TP9
VO3
CO33
10µ
16V
10µ
16V
1
J11
1 TP10
GND
330p Cf f3
R6
15.8k
1%
1
VO3SNS
CL3
820p
QL3
BSC0902NS
VO2
R9
DNP
0.1%
R13 10
RL3
1.6
RB3 0
26
BOOT3
FB3
PGOOD2
10µ
25V
J8
1
270µ
16V
QU3
BSC0902NS
28
27
UGATE3
ISL9444
PGOOD
EXTBIAS
29
PGND
LGATE3
RPG1
100k
3
2
1000p
CLKOUT
1
1
R1 30.9k 1%
RL2
1.6
Q7
DNP
30
ROC3 243k
PFI_x
TP4
PFI_Ext
2
0.47µ
35V
PFI_Ext
1
CFIN
2
PFI
EXTBIAS 3
EXTBIAS
VCC5V 4
VCC_5V
10V
5
VIN
Cs1 47n EN/SS1 6
EN/SS1
7
FB1
8
OCSET1
88.7k RT
9
RT
ROC1
10
243k
PGOOD1
CVCC 4. 7µ
47n CS2
DNP
SVIN
DNP
RFIN 22
243k ROC2
1
1
2
VIN
23
CO11 VIN2
2
10µ
25V
13
PG3_DLY
EN2 14 EN2
15
SGND
16
OCSET2
17
FB2
18
TK/SS2
19
OCSET3
20
FB3
VIN
R5 12.1k 1%
DNP
CO15
R12
10
1%
VIN
CLKOUT
CLKOUT
PFO_N
DNP CDLY
DNP
1
Rsen2
2. 0k
VO2SNS
ENABLE
EN/SS1
DISABLE
Application Note 1799
CO12
CO13
PFI_Select
R4 51.1k 1%
QL2
BSC0902NS
VO2
CIN4
U1
PFI_x
TP6 1
GND
TP3
PFO_N
CL1
470p
PGOOD3
560µF
PAD
CO16
DNP
10V
CIN7
10µ
25V
CL2
820p
PGOOD2
PGOOD3
CO14
12
1µF
10V
RB2
0
RB1
0
Rsen1
2. 0k
11
10µ
10V
CO18
1
RL1
1. 6
LG2
CB2
0.22µ
16V
CB1
0.22µ
16V
L1 4. 7µH
CO17
5Vsb @ 5A
PH2
Q2
BSC0902NS
LG1
QL1
BSC057N03
L2 1.0µH
1
PH2
Q1
DNP
VO1
VO1
CIN11
10µF
25V
QU2
BSC0902NS
UG2
41
7
1
J15
UG1
VO1SNS
CIN8
10µ
25V
Q6
DNP
PH1
R10
10
1%
J14
CIN6
10µ
25V
100µ
35V
QU1
BSC057N03
DNP
CIN3
10µ
25V
CIN1
PH1
TP2 1
GND
TP16 1
GND
TP5 1
VO1
J7
CIN9
100µ
35V
1 TP7
VO2
VIN
Q5
DNP
100µ
35V
CIN2
1
J13
J6
VIN2
PFO_N 1
J2
1
CIN10
3
1
TP11 1
VIN2
J1
3
TP1 1
VIN
J3
Application Note 1799
Schematic (Optional Circuits and Optional Footprints)
VO2
LOAD TRANSIENT CIRCUIT 2
VO3
LOAD TRANSIENT CIRCUIT 3
2
1
2
PH1
VO1
LOAD TRANSIENT CIRCUIT 1
VO2
L5 DNP
PH2
VO3
L6 DNP
J12
2
VO2
1
J19
ISTEP3
DNP
Q10
VO1
1
R21
DNP,
0.01
J5
ISTEP2
J4
2
R20
DNP,
10k
1
PH3
2
L4
DNP
R22 R17
DNP DNP,
10k 0.1
J18
2
1
J17
ISTEP2
3
VO1
1
R19
DNP
0.01
2
R18
DNP
10k
VO3
1
Q9
DNP
Q8
DNP
Bill of Materials
ITEM QTY
REFERENCE
VALUE
DESCRIPTION
PART #
VENDOR
ESSENTIAL COMPONENTS
1
1
CBS
1µ
Ceramic CAP, X5R, 16V, SM0603
Generic
Generic
2
3
CB1, CB2, CB3
0.22µ
Ceramic CAP, X5R, 16V, SM0603
Generic
Generic
3
1
CFIN
0.47µ
Ceramic CAP, X5R, 35V, SM0603
Generic
Generic
4
3
CIN1, CIN2, CIN10
100µ
Alum. CAP, 25V
UTT1E101MPD
Nichicon
5
7
Ceramic CAP, X5R, 25V, SM1206
Generic
Generic
6
1
CL1
470p
Ceramic CAP, NP0 or C0G, SM0805
Generic
Generic
7
2
CL2, CL3
820p
Ceramic CAP, NP0 or C0G, SM0805
Generic
Generic
8
8
CO17, CO18, CO23, CO24, CO28, CO33,
CO34, CO38
10µ
Ceramic CAP, X5R, 10V, SM0805
Generic
Generic
9
5
CO16, CO21, CO22, CO32, CO35
270µF
OSCON, 16V, RADIAL 8x8
16SEPC270MX
SANYO
10
3
CS1, CS2, CS3
47n
Ceramic CAP, NP0 or C0G, SM0603
Generic
Generic
11
1
CVCC
4.7µ
Ceramic CAP, X5R 10V, SM0805
Generic
Generic
12
2
Cff1
1000p
Ceramic CAP, NP0 or C0G, SM0603
Generic
Generic
13
1
Cff2
470p
Ceramic CAP, NP0 or C0G, SM0603
Generic
Generic
14
1
Cff3
330p
Ceramic CAP, NP0 or C0G, SM0604
Generic
Generic
15
1
L1
4.7µH
INDUCTOR, ISAT > 10A
7443320470
Wurth Electronics
16
2
L2, L3
1.0µH
INDUCTOR, ISAT > 35A
SER2010-102ML
Coilcraft
17
2
QU1, QL1
Single Channel NFET, 30V
BSC057N03
Infineon
18
6
QU2, QL2, Q2, QU3, QL3, Q3
Single Channel NFET, 30V
BSC0902NS
Infineon
19
3
RB1, RB2, RB3
0
RESISTOR, SM0603
Generic
Generic
20
1
RFIN
22
RESISTOR, SM0603, 10%
Generic
Generic
21
3
RL1, RL2, RL3
1.6
RESISTOR, SM0805, 10%
Generic
Generic
22
3
ROC1, ROC2, ROC3
243k
RESISTOR, SM0603, 1%
Generic
Generic
23
3
RPG1, RPG2, RPG3
100k
RESISTOR, SM0603, 10%
Generic
Generic
CIN3, CIN4, CIN5, CIN6, CIN7, CIN8, CIN11 10µ
8
AN1799.0
December 5, 2012
Application Note 1799
Bill of Materials (Continued)
ITEM QTY
REFERENCE
VALUE
DESCRIPTION
PART #
VENDOR
24
1
RT
88.7k
RESISTOR, SM0603, 1%
Generic
Generic
25
3
Rsen1, Rsen2, Rsen3
2.0k
RESISTOR, SM0603, 1%
Generic
Generic
26
2
R1, R8
30.9k
RESISTOR, SM0603,1%
Generic
Generic
27
2
R2, R11
4.99k
RESISTOR, SM0603,1%
Generic
Generic
28
1
R3
59k
RESISTOR, SM0603,1%
Generic
Generic
29
1
R4
51.1k
RESISTOR, SM0603, 1%
Generic
Generic
30
1
R5
12.1k
RESISTOR, SM0603,1%
Generic
Generic
31
1
R6
15.8k
RESISTOR, SM0603, 1%
Generic
Generic
32
3
R10, R12, R13
10
RESISTOR, SM0603, 10%
Generic
Generic
33
1
U1
Triple PWM Controller, 40L- 5x5 QFN
ISL9444IRZ
Intersil
EVAL BOARD HARDWARE AND RESISTOR JUMPERs
34
3
JEN1, J14, J15
1x3 Header
Generic
Generic
35
3
JEN2, JEN3, JMODE
2x3 Header
Generic
Generic
36
10
J1, J2, J3, J6, J7, J8, J9, J10, J11, J13
CONN- Big Lug, TERMINAL POST
KPA8CTP
37
1
J16
1x2 Header
Generic
Generic
38
16
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8,
TP9, TP10, TP11, TP12, TP13, TP14,
TP15, TP16
CONN-TURRET, TERMINAL POST, TH
1514-2
KEYSTONE
39
5
JEN1, J14, JEN2, JEN3, JMODE
Connector Jumper
SPC02SYAN
Sullins
BIAS
OPTIONAL FOOTPRINTs
40
4
Cp1, Cp2, Cp3, CDLY
DNP
Ceramic CAP, NP0 or C0G, SM0603
41
2
CO25, CO11, CO31
DNP
ELEC. CAP, RADIAL 8x8
42
2
CO13, CO29, CO14
DNP
CAP, SM1210
43
4
CO12, CO15, CO26, CO27, CO36, CO37
DNP
ELEC. CAP, SM7343
44
6
J4, J5, J12, J17, J18, J19
DNP
45
3
L4, L5, L6
DNP
INDUCTOR
46
2
Q1, Q5, Q6, Q7
DNP
Single Channel NFET
47
2
R7, R9
DNP
RESISTOR, SM0603
DNP
N-Channel MOSFET, TO252
COMPONENTs FOR LOAD TRANSIENT TEST CIRCUITs
48
3
Q8, Q9, Q10
49
1
R17, R19, R21
DNP, 0.01
RESISTOR, SM2512
50
3
R18, R20, R22
DNP, 10k
RESISTOR, SM0603
9
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
FIGURE 19. TOP SILKSCREEN
10
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 20. TOP LAYER
11
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 21. TOP LAYER ZOOM IN
12
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 22. SECOND LAYER
13
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 23. BOTTOM SILKSCREEN
14
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 24.
15
AN1799.0
December 5, 2012
Application Note 1799
ISL9444EVAL3Z PCB Layout
(Continued)
FIGURE 25. BOTTOM SILKSCREEN
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is
cautioned to verify that the Application Note or Technical Brief is current before proceeding.
For information regarding Intersil Corporation and its products, see www.intersil.com
16
AN1799.0
December 5, 2012