H7N0602AB Silicon N Channel MOS FET High Speed Power Switching REJ03G0068-0200Z Rev.2.00 Oct.30.2003 Features • Low on-resistance RDS(on) = 4.1 mΩ typ. • Low drive current • Available for 4.5 V gate drive Outline TO-220AB D G S 1 2 Rev.2.00, Oct.30.2003, page 1 of 9 3 1. Gate 2. Drain (Flange) 3. Source H7N0602AB Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Drain to source voltage VDSS 60 V Gate to source voltage VGSS ±20 V Drain current ID 85 A Note1 Drain peak current ID (pulse) 340 A Body-drain diode reverse drain current IDR 85 A 65 A Note3 Avalanche current IAP Avalanche energy EARNote3 362 mJ Channel dissipation Pch Note2 100 W Channel temperature Tch 150 °C Storage temperature Tstg –55 to +150 °C Notes: 1. PW ≤ 10 µs, duty cycle ≤ 1% 2. Value at Tc = 25°C 3. Value at Tch = 25°C, Rg ≥ 50 Ω Rev.2.00, Oct.30.2003, page 2 of 9 H7N0602AB Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS — — V ID = 10 mA, VGS = 0 Gate to source breakdown Voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 Zero gate voltage drain current IDSS — — 10 µA VDS = 60 V, VGS = 0 Gate to source cutoff voltage VGS(off) 1.5 — 2.5 V ID = 1 mA, VDS = 10 VNote1 Static drain to source on state RDS(on) — 4.1 5.2 mΩ ID = 45 A, VGS = 10 VNote1 — 6.2 9.0 mΩ ID = 45 A, VGS = 4.5 VNote1 resistance 60 Forward transfer admittance |yfs| 70 120 — S ID = 45 A, VGS = 10 VNote1 Input capacitance Ciss — 9000 — pF VDS = 10 V Output capacitance Coss — 1000 — pF VGS = 0 Reverse transfer capacitance Crss — 470 — pF f = 1 MHz Total gate charge Qg — 140 — nC VDD = 25 V Gate to source charge Qgs — 30 — nC VGS = 10 V Gate to drain charge Qgd — 30 — nC ID = 85 A Turn-on delay time td(on) — 55 — ns VGS = 10 V, ID = 45 A Rise time tr — 290 — ns RL = 0.67 Ω Turn-off delay time td(off) — 140 — ns Rg = 4.7 Ω Fall time tf — 50 — ns Body–drain diode forward voltage VDF — 0.95 — V IF = 85 A, VGS = 0 Body–drain diode reverse recovery time — 45 — ns IF = 85 A, VGS = 0 diF/dt = 100 A/µs trr Notes: 1. Pulse test Rev.2.00, Oct.30.2003, page 3 of 9 H7N0602AB Main Characteristics Power vs. Temperature Derating Maximum Safe Operation Area 1000 (A) 300 ID Drain Current 100 80 100 Case Temperature 150 1 Operation in (A) 4.5 V ID ID 120 10 30 Drain to Source Voltage VDS 4.0 V 80 3.5 V 40 160 VDS = 10 V Pulse Test 120 80 40 Tc = 75°C 25°C –25°C 3V 0 2 4 6 Drain to Source Voltage Rev.2.00, Oct.30.2003, page 4 of 9 8 VDS 100 (V) Typical Transfer Characteristics Drain Current (A) 160 3 200 Pulse Test 6.0 V this area is limited by RDS(on) 0.1 Ta = 25°C 0.1 0.3 1 200 Typical Output Characteristics VGS = 10 V PW = 10 ms (1 shot) 3 Tc (°C) 200 DC Operation (Tc = 25°C) 10 0.3 50 µs µs s m 30 0 Drain Current 0 100 150 10 10 1 Channel Dissipation Pch (W) 200 10 (V) 0 1 2 3 Gate to Source Voltage 4 VGS 5 (V) H7N0602AB Static Drain to Source on State Resistance vs. Drain Current Pulse Test 400 300 ID = 50 A 200 100 20 A Drain to Source on State Resistance RDS(on) (mΩ) 10 A 16 20 VGS (V) 12 4 8 Gate to Source Voltage 0 Static Drain to Source on State Resistance vs. Temperature 20 Pulse Test 16 12 50 A 10, 20 A 8 4.5 V 4 0 –50 VGS = 10 V 0 50 10, 20, 50 A 100 Case Temperature Rev.2.00, Oct.30.2003, page 5 of 9 150 Tc (°C) 200 Drain to Source on State Resistance RDS(on) (mΩ) 500 100 Pulse Test 30 10 VGS = 4.5 V 10 V 3 1 1 3 30 100 300 1000 10 Drain Current ID (A) Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |yfs| (S) Drain to Source Saturation Voltage VDS(on) (V) Drain to Source Saturation Voltage vs. Gate to Source Voltage 1000 VDS = 10 V Pulse Test 300 Tc = –25°C 100 25°C 30 75°C 10 3 1 1 3 10 30 100 Drain Current ID 300 1000 (A) H7N0602AB Body-Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 100000 di / dt = 100 A / µs VGS = 0, Ta = 25°C 300 Capacitance C (pF) Reverse Recovery Time trr (ns) 1000 100 30 10 30000 3000 1000 Coss 300 3 1 0.1 Ciss 10000 VGS = 0 f = 1 MHz 100 0 0.3 1 3 10 30 100 Reverse Drain Current IDR (A) 10 20 30 40 Drain to Source Voltage VDS Dynamic Input Characteristics VDS VDD = 50 V 25 V 10 V 40 20 0 12 8 VDD = 50 V 25 V 10 V 40 80 120 160 Gate Charge Qg (nc) Rev.2.00, Oct.30.2003, page 6 of 9 4 0 200 (V) 1000 tf 300 Switching Time t (ns) 60 VGS 16 VGS 20 ID = 85 A 80 50 (V) Switching Characteristics Gate to Source Voltage Drain to Source Voltage VDS (V) 100 Crss 100 tr td(off) td(on) 30 tr tf 10 VGS = 10 V, VDD = 30 V 3 PW = 5 µs, duty < 1 % Rg = 4.7 Ω 1 0.1 0.3 3 10 1 Drain Current ID 30 (A) 100 H7N0602AB Reverse Drain Current vs. Source to Drain Voltage Maximum Avalanche Energy vs. Channel Temperature Derating Reverse Drain Current IDR (A) Repetitive Avalanche Energy EAR (mJ) 200 10 V 160 120 80 5V VGS = 0, –5 V 40 Pulse Test 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 VSD 500 IAP = 65 A VDD = 25 V duty < 0.1 % Rg > 50 Ω 400 300 200 100 0 25 (V) 50 75 100 125 Channel Temperature Tch (°C) Avalanche Test Circuit V DS Monitor Avalanche Waveform EAR = L 1 2 • L • I AP • 2 I AP Monitor VDSS VDSS – V DD V (BR)DSS I AP Rg D. U. T V DS VDD ID Vin 15 V 50Ω 0 Rev.2.00, Oct.30.2003, page 7 of 9 150 VDD H7N0602AB Normalized Transient Thermal Impedance vs. Pulse Width Normalized Transient Thermal Impedance γs (t) 3 Tc = 25°C 1 D=1 0.5 0.3 0.2 0.1 θch - c(t) = γs (t) • θch - c θch - c = 1.25°C/ W, Tc = 25°C 0.1 0.05 0.03 PDM D= 1 0.0 PW T PW T 0.01 10 µ 100 µ 1m 10 m 100 m 1 10 Pulse Width PW (S) Switching Time Test Circuit Vout Monitor Vin Monitor Rg Waveform 90% D.U.T. RL Vin Vout Vin 10 V V DS = 30V 10% 90% td(on) Rev.2.00, Oct.30.2003, page 8 of 9 10% tr 10% 90% td(off) tf H7N0602AB Package Dimensions As of January, 2003 Unit: mm 2.79 ± 0.2 11.5 Max 10.16 ± 0.2 4.44 ± 0.2 9.5 φ 3.6 –0.08 +0.1 1.26 ± 0.15 15.0 ± 0.3 18.5 ± 0.5 1.27 6.4 +0.2 –0.1 8.0 7.8 ± 0.5 1.5 Max 0.76 ± 0.1 2.54 ± 0.5 2.54 ± 0.5 14.0 ± 0.5 2.7 Max 0.5 ± 0.1 Package Code JEDEC JEITA Mass (reference value) Rev.2.00, Oct.30.2003, page 9 of 9 TO-220AB Conforms Conforms 1.8 g Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0