PI6ULS5V9306

PI6ULS5V9306
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dual bidirectional I2C-bus and SMBus voltage-level translator
exists between ports.
The PI6ULS5V9306 is not a bus buffer that provides
both level translation and physically isolates to either
side of the bus when both sides are connected. The
PI6ULS5V9306 only isolates both sides when the device
is disabled and provides voltage level translation when
active.
The PI6ULS5V9306 can also be used to run two
buses, one at 400 kHz operating frequency and the other
at 100 kHz operating frequency. If the two buses are
operating at different frequencies, the 100 kHz bus must
be isolated when the 400 kHz operation of the other bus
is required. If the master is running at 400 kHz, the
maximum system operating frequency may be less than
400 kHz because of the delays added by the translator.
As with the standard I2C-bus system, pull-up
resistors are required to provide the logic HIGH levels
on the translator’s bus. The PI6ULS5V9306 has a
standard open-collector configuration of the I2C-bus.
The size of these pull-up resistors depends on the system,
but each side of the translator must have a pull-up
resistor. The device is designed to work with Standardmode, Fast-mode and Fast mode Plus I2C-bus devices in
addition to SMBus devices.
When the SDA1 or SDA2 port is LOW, the clamp is
in the ON-state and a low resistance connection exists
between the SDA1 and SDA2 ports. When the higher
voltage is on the SDA2 port, and the SDA2 port is
HIGH , the voltage on the SDA1 port is limited to the
voltage set by VREF1. When the SDA1 port is HIGH,
the SDA2 port is pulled to the drain pull-up supply
voltage (VDPU) by the pull-up resistors. This
functionality allows a seamless translation between
higher and lower voltages selected by the user without
the need for directional control. The SCL1/SCL2
channel also functions as the SDA1/SDA2 channel.
All channels have the same electrical characteristics
and there is minimal deviation from one output to
another in voltage or propagation delay. This is a benefit
over discrete transistor voltage translation solutions,
since the fabrication of the switch is symmetrical. The
translator provides excellent ESD protection to lower
voltage devices, and at the same time protects less ESDresistant devices.
Features
 2-bit bidirectional translator for SDA and SCL lines
in mixed-mode I2C-bus applications
 Standard-mode, Fast-mode, and Fast-mode Plus
I2C-bus and SMBus compatible
 Less than 1.5 ns maximum propagation delay to
accommodate Standard mode and Fast mode I2Cbus devices and multiple masters
 Allows voltage level translation between:
 0.9V VREF1 and 1.8 V, 2.5 V, 3.3 V or 5 V
VREF2
 1.2 V VREF1 and 1.8 V, 2.5 V, 3.3 V or 5 V
VREF2
 1.5 V VREF1 and 2.5 V, 3.3 V or 5 V VREF2
 1.8 V VREF1 and 3.3 V or 5 V VREF2
 2.5 V VREF1 and 5 V VREF2
 3.3 V VREF1 and 5 V VREF2
 Provides bidirectional voltage translation with no
direction pin
 Low 3.5 ohm
-state connection between input
and output ports provides less signal distortion
 Open-drain I2C-bus I/O ports (SCL1, SDA1, SCL2
and SDA2)
 5 V tolerant I2C-bus I/O ports to support mixedmode signal operation
 High-impedance SCL1, SDA1, SCL2 and SDA2
pins for EN = LOW
 Lock-up free operation for isolation when EN =
LOW
 Flow through pin out for ease of printed-circuit
board trace routing
 ESD protection exceeds 4KV HBM per JESD22A114
 Package: TDFN2x3-8L, MSOP-8L,SOIC-8L

Description
The PI6ULS5V9306 is a dual bidirectional I2C-bus
and SMBus voltage-level translator with an enable (EN)
input, and is operational from 1.0 V to 3.3 V (VREF1)
and 1.8 V to 5.5 V(VREF2).
The PI6ULS5V9306 allows bidirectional voltage
translations between 1.0 V and 5 V without the use of a
direction pin. The low ON-state resistance (Ron) of the
switch allows connections to be made with minimal
propagation delay. When EN is HIGH, the translator
switch is on, and the SCL1 and SDA1 I/O are connected
to the SCL2 and SDA2 I/O respectively, allowing
bidirectional data flow between ports. When EN is LOW,
the translator switch is off, and a high-impedance state
2015-08-0006
PT0451-5
1
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pin Configuration
MSOP-8L/SOIC-8L(Top View)
TDFN2x3-8L(Top View)
Pin Description
Pin No
1
2
3
4
5
6
7
8
Name
GND
VREF1
SCL1
SDA1
SDA2
SCL2
VREF2
EN
Description
ground (0 V)
low-voltage side reference supply voltage for SCL1 and SDA1
serial clock, low-voltage side; connect to VREF1 through a pull-up resistor
serial data, low-voltage side; connect to VREF1 through a pull-up resistor
serial data, high-voltage side; connect to VREF2 through a pull-up resistor
serial clock, high-voltage side; connect to VREF2 through a pull-up resistor
high-voltage side reference supply voltage for SCL2 and SDA2
switch enable input; connect to VREF2 and pull-up through a high resistor
Block Diagram
EN
H
L
Function
SCL1 = SCL2;
SDA1 = SDA2
disabled
Figure.1Block Diagram
2015-08-0006
PT0451-5
2
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maximum Ratings
Note:
1. Stresses greater than those listed under
MAXIMUM RATINGS may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
reliability.
2. The input and input/output negative voltage
ratings may be exceeded if the input and
input/output clamp current ratings are observed.
Storage Temperature ................................................................................... -65oC to +150oC
Reference Voltage(2)..........................................................................................-0.5V to +6.0V
Reference bias voltage.......................................................................................-0.5V to+6.0V
DC Input Voltage .............................................................................................-0.5V to +6.0V
Control Input Votage(EN) ...............................................................................-0.5V to+6.0V
channel current (DC)....................................................................... 128mA
Input clamping Current..................................................................... -50mA
ESD: HBM Mode...........................................................................................................4000V
Recommended operation conditions
VCC = 2.7 V to 5.5 V; GND = 0 V; TA = -40 C to +85 C; unless otherwise specified
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
VI/O
Voltage on an input/output pin
SCL1, SDA1, SCL2, SDA2
0
-
5
V
VREF1
Reference voltage (1)
VREF1
0
-
5
V
VREF2
Reference bias voltage (2)
VREF2
0
-
5
V
VI(EN)
Input voltage on pin EN
-
0
-
5
V
I(pass)
Pass switch current
-
-
-
64
mA
TA
Ambient temperature
-
-40
-
85
oC
DC Electrical Characteristics
TA = -40 C to +85 C; unless otherwise specified
Parameter
Description
Input and output SDAB and SCLB
VIK
input clamping voltage
IIH
Ci(EN)
Cio(off)
Cio(on)
HIGH-level input current
input capacitance on pin EN
off-state input/output capacitance
(SCLn, SDAn)
on-state input/output capacitance
(SCLn, SDAn)
Test Conditions(1)
Min
Typ.(2)
Max
Unit
II = -18mA; VI(EN) = 0 V
-
-
-1.2
V
VI = 5 V; VI(EN) = 0 V
VI = 3 V or 0 V
-
11
5
-
µA
pF
VO = 3 V or 0 V; VI(EN) = 0 V
-
4
-
pF
VO = 3 V or 0 V; VI(EN) = 3 V
-
10.5
-
pF
VI(EN) = 4.5 V
-
3.5
5.5
Ω
VI(EN) = 3 V
-
4.7
7.0
Ω
VI(EN) = 2.3 V
-
6.3
9.5
Ω
VI(EN) = 1.5 V
-
60
140
Ω
VI(EN) = 4.5 V
1
6
15
Ω
VI(EN) = 3 V
20
60
140
Ω
VI(EN) = 2.3 V
20
60
140
Ω
VI = 0V;
IO = 64mA
Ron
ON-state resistance
(SCLn, SDAn)
(2)
VI = 2.4V; IO
= 15mA
VI = 1.7V;
IO = 15mA
Notes:
1) All typical values are at TA = 25 °C.
2) Measured by the voltage drop between the SCL1 and SCL2, or SDA1 and SDA2 terminals at the indicated current through the switch.
ON-state resistance is determined by the lowest voltage of the two terminals.
2015-08-0006
PT0451-5
3
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dynamic characteristics
TA = -40 C to +85 C; unless otherwise specified. Values guaranteed by design.
CL = 50 pF
Symbol
Parameter
CL = 30 pF
CL = 15 pF
Conditions
Unit
Min
VI(EN) = 3.3 V; VIH = 3.3 V; VIL = 0 V; VM = 1.15 V
LOW-to-HIGH
from (input) SCL2 or SDA2
tPLH
0
propagation delay to (output) SCL1 or SDA1
HIGH-to-LOW
from (input) SCL2 or SDA2
tPHL
0
propagation delay
to (output) SCL1 or SDA1
VI(EN) = 2.5 V; VIH = 3.3 V; VIL = 0 V; VM = 0.75 V
LOW-to-HIGH
from (input) SCL2 or SDA2
tPLH
0
propagation delay
to (output) SCL1 or SDA1
HIGH-to-LOW
from (input) SCL2 or SDA2
tPHL
0
propagation delay
to (output) SCL1 or SDA1
VI(EN) = 3.3 V; VIH = 2.3 V; VIL = 0 V; VT = 3.3 V; VM = 1.15 V; RL = 300
LOW-to-HIGH
ffrom (input) SCL1 orSDA1
tPLH
0
propagation delay to (output) SCL2 or SDA2
HIGH-to-LOW
from (input) SCL1 or SDA1
tPHL
0
propagation delay
to (output) SCL2 or SDA2
VI(EN) = 2.5 V; VIH = 1.5 V; VIL = 0 V; VT = 2.5 V; VM = 0.75 V; RL = 300
LOW-to-HIGH
from (input) SCL1 orSDA1
tPLH
0
propagation delay to (output) SCL2 or SDA2
HIGH-to-LOW
from (input) SCL1 or SDA1
tPHL
0
propagation delay
to (output) SCL2 or SDA2
Max
Min
Max
Min
Max
0.8
0
0.6
0
0.3
ns
1.2
0
1
0
0.5
ns
1
0
0.7
0
0.4
ns
1.3
0
1
0
0.6
ns
0.9
0
0.6
0
0.4
ns
1.4
0
1.1
0
0.7
ns
1
0
0.6
0
0.4
ns
1.3
0
1.3
0
0.8
ns
Figure.2 Load Circuit for Outputs
2015-08-0006
PT0451-5
4
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Functional Description
The PI6ULS5V9306 is a dual bidirectional I2C-bus and SMBus voltage-level translator with an enable (EN) input, and is
operational from 1.2 V to 3.3 V (VREF1) and 1.8 V to 5.5 V(VREF2).
The PI6ULS5V9306 allows bidirectional voltage translations between 1.2 V and 5 V without the use of a direction pin. The
low ON-state resistance (Ron) of the switch allows connections to be made with minimal propagation delay. When EN is HIGH,
the translator switch is on, and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O respectively, allowing
bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between
ports.
The PI6ULS5V9306 is not a bus buffer that provides both level translation and physically isolates to either side of the bus
when both sides are connected. The PI6ULS5V9306 only isolates both sides when the device is disabled and provides voltage
level translation when active.
The PI6ULS5V9306 can also be used to run two buses, one at 400kHz operating frequency and the other at 100 kHz operating
frequency. If the two buses are operating at different frequencies, the 100 kHz bus must be isolated when the 400 kHz operation of
the other bus is required. If the master is running at 400kHz, the maximum system operating frequency may be less than 400 kHz
because of the delays added by the translator.
As with the standard I2C-bus system, pull-up resistors are required to provide the logic HIGH levels on the translator’s bus.
The PI6ULS5V9306 has a standard open-collector configuration of the I2C-bus. The size of these pull-up resistors depends on the
system, but each side of the translator must have a pull-up resistor. The device is designed to work with Standard-mode, Fastmode and Fast mode Plus I2C-bus devices in addition to SMBus devices.
When the SDA1 or SDA2 port is LOW, the clamp is in the ON-state and a low resistance connection exists between the
SDA1 and SDA2 ports. When the higher voltage is on the SDA2 port, and the SDA2 port is HIGH, the voltage on the SDA1 port
is limited to the voltage set by VREF1. When the SDA1 port is HIGH, the SDA2 port is pulled to the drain pull-up supply voltage
(VDPU) by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by
the user without the need for directional control. The SCL1/SCL2 channel also functions as the SDA1/SDA2 channel.
All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or
propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is
symmetrical. The translator provides excellent ESD protection to lower voltage devices, and at the same time protects less ESDresistant devices.
Application Information
0.1μF or
0.01μF
Figure.3 Typical Open Drain Application Circuit (Switch Always Enabled )
2015-08-0006
PT0451-5
5
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0.1μF or
0.01μF
Figure.4 Typical Open Drain Application Circuit (Switch Enabled Control)
Open Drain Application
For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage),
the EN input must be connected to VREF2 and both pins pulled to high-side VDPU through a pull-up resistor
(typically 200 kΩ). This allows VREF2 to regulate the EN input. A filter capacitor on VREF2 is recommended.
Figure.5 Typical push-pull Application Circuit (Switch Enabled Control)
Push Pull Application
If used in push-pull system, the pull-up resistors on REF side are also needed. The data must be unidirectional or
the outputs must be 3-stateable and be controlled by some direction-control mechanism to prevent high-to-low
contentions in either direction.
2015-08-0006
PT0451-5
6
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Operating Voltage
Refer to Figure 2
VDPU
EN
VREF1
IPASS
IREF
TA
Ref2 side pull-up voltage on 200kΩ
Enable input voltage
Reference voltage
Pass switch current
Reference-transistor current
Operating free-air temperature
MIN TYP (1) MAX
VREF1 + 0.6 2.1
5
VREF1 + 0.6 2.1
5
0
1.5
4.4
14
5
–40
85
UNIT
V
V
V
mA
µA
°C
The pass through current : I_pass
I_pass is determined by the pull-up and the low voltage added on the PI6LS5V9306
In figure 6, I_pass= (VREF1-VOL1_9306)/RPU1
When V_IN is 0V, the PI6ULS5V9306 can support as large as 64mA pass through current in theory. But we recommend it’s
better to limit the I_pass in 15mA
Figure 6. Typical Open Drain Application Circuit
(1) The sink current : I_sink
The device would sink the total current from both pull-up resistors.
For example ,in figure bellow, when the SDA2 is pulled low by the I2C device, the sink current of the I2C device
I_sink=Ipass+I_2=I_1+I_2 . The same thing will happen when I2C master pull low the I2C bus.
The I_sink should be limited to not larger than the tolerance of the I2C devices.
(2) VIL,VOL of the external drive and VOL of PI6ULS5V9306
In normal application , the VIL of external devices should always be larger than the VOL of PI6ULS5V9306.
The value of PI6ULS5V9306’s VOL is determined by the pass through current and the low voltage added on the SDA,SCL pins.
The VOL_9306 =VIN_L + VUP ( VUP is mainly determined by the I_pass, it always less than 0.35V.)
(3) Low VREF application
The PI6ULS5V9306 can support very low Vref1 application in theory ,but we recommend not lower than 0.9V.Because when
VREF1 is less than 1.8V, the VOL of REF1 side is a concern in system .
For example, in figure 6, if VREF1=0.9V ,VDPU=3.3V he VIL of the REF1 side I2C master is normally 0.3*VREF1 =0.25V, but
the VOL of REF2 side can up to 0.1*VDPU=0.36V sometimes.
The system designer must make sure this situation doesn’t happen. A limit for the V OL of REF2 side devices is required then.
2015-08-0006
PT0451-5
7
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The bellow table shows the requirement for VOL of VREF2 side devices when using PI6ULS5V9306
(Requirement for VOL_DEVICE in figure 6)
The VOL requirement of VREF2 side external devices
(Temp=25ºC, Assume the VIL of VREF1 side devices is 0.3*VREF1)
≤3mA
10mA
15mA
0.9V
≤0.15V
≤0.1V
Not Recommended
1.2V
≤0.2V
≤0.15V
Not Recommended
1.5V
≤0.3V
≤0.25V
≤0.2V
1.8V
≤0.4V
≤0.35V
≤0.3V
I_pass
VREF1
Pull-up resistors and minimum values
Sizing the pull-up resistor on an open-drain bus is specific to the individual application and
is dependent on the following driver characteristics:
 The driver sink current
 The VOL of driver
 The VOL of the PI6ULS5V9306
 The VIL of the driver
 Frequency of operation
The following tables can be used to estimate the pull-up resistor value in different use cases so that the minimum resistance for the
pull-up resistor can be found.
Tables in bellow contain suggested minimum values of pull-up resistors for the PI6UILS5V9306 with typical voltage translation
levels and drive currents.
The calculated values assume that both drive currents are the same.
VOL = VIL = 0.1*VCC and accounts for a 5 % VCC tolerance of the supplies, 1 % resistor values. It should be noted that the
resistor chosen in the final application should be equal to or larger than the values shown in the tablew to ensure that the pass
voltage is less than 10 % of the VCC voltage, and the external driver should be able to sink the total current from both pull-up
resistors.
Pull-up resistor minimum values, 3 mA driver sink current for PI6ULS5V9306
A Side
0.9V
1.5V
RPU(A) = 845Ω
RPU(B) = 845Ω
1.8V
RPU(A) = 976Ω
RPU(B) = 976Ω
RPU(A) = 1.02kΩ
RPU(B) = 1.02kΩ
1.2V
1.5V
1.8V
B side
2.5V
RPU(A) = none
RPU(B) = 887Ω
Or both 1.2kΩ
RPU(A) = none
RPU(B) = 887Ω
Or both 1.3kΩ
RPU(A) = none
RPU(B) = 866Ω
Or both 1.38kΩ
RPU(A) = 1.47kΩ
RPU(B) = 1.47kΩ
2.5V
3.3V
2015-08-0006
3.3V
RPU(A) = none
RPU(B) = 1.18kΩ
Or both 1.5kΩ
RPU(A) = none
RPU(B) = 1.18kΩ
Or both 1.5kΩ
RPU(A) = none
RPU(B) = 1.18kΩ
Or both 1.5kΩ
RPU(A) = none
RPU(B) = 1.15kΩ
Or both 1.5kΩ
RPU(A) = 1.96kΩ
RPU(B) = 1.96kΩ
5.0V
RPU(A) = none
RPU(B) = 1.82kΩ
Or both 2.15kΩ
RPU(A) = none
RPU(B) = 1.82kΩ
Or both 2.25kΩ
RPU(A) = none
RPU(B) = 1.78kΩ
Or both 2.31kΩ
RPU(A) = none
RPU(B) = 1.78kΩ
Or both 2.42kΩ
RPU(A) = none
RPU(B) = 1.78kΩ
Or both 2.67kΩ
RPU(A) = none
RPU(B) = 1.74kΩ
Or both 2.95kΩ
PT0451-5
8
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pull-up resistor minimum values, 10 mA driver sink current for PI6ULS5V9306
A Side
B side
1.5V
RPU(A) = 255Ω
RPU(B) = 255Ω
0.9V
1.8V
RPU(A) = 287Ω
RPU(B) = 287Ω
RPU(A) = 309Ω
RPU(B) = 309Ω
1.2V
1.5V
1.8V
2.5V
RPU(A) = none
RPU(B) = 267Ω
Or both 363Ω
RPU(A) = none
RPU(B) = 267Ω
Or both 395Ω
RPU(A) = none
RPU(B) = 261Ω
Or both 427Ω
RPU(A) = 442Ω
RPU(B) = 442Ω
2.5V
3.3V
RPU(A) = none
RPU(B) = 357Ω
Or both 449Ω
RPU(A) = none
RPU(B) = 357Ω
Or both 481Ω
RPU(A) = none
RPU(B) = 348Ω
Or both 506Ω
RPU(A) = none
RPU(B) = 348Ω
Or both 538Ω
RPU(A) = 590Ω
RPU(B) = 590Ω
3.3V
5.0V
RPU(A) = none
RPU(B) = 549Ω
Or both 648Ω
RPU(A) = none
RPU(B) = 549Ω
Or both 681Ω
RPU(A) = none
RPU(B) = 536Ω
Or both 697Ω
RPU(A) = none
RPU(B) = 536Ω
Or both 729Ω
RPU(A) = none
RPU(B) = 521Ω
Or both 782Ω
RPU(A) = none
RPU(B) = 521Ω
Or both 865Ω
Pull-up resistor minimum values, 15 mA driver sink current for PI6ULS5V9306
A Side
0.9V
1.5V
RPU(A) = 169Ω
RPU(B) = 169Ω
1.8V
RPU(A) = 191Ω
RPU(B) = 191Ω
RPU(A) = 205Ω
RPU(B) = 205Ω
1.2V
1.5V
1.8V
B side
2.5V
RPU(A) = none
RPU(B) = 178Ω
Or both 242Ω
RPU(A) = none
RPU(B) = 178Ω
Or both 263Ω
RPU(A) = none
RPU(B) = 174Ω
Or both 278Ω
RPU(A) = 294Ω
RPU(B) = 294Ω
2.5V
3.3V
2015-08-0006
3.3V
RPU(A) = none
RPU(B) = 237Ω
Or both 302Ω
RPU(A) = none
RPU(B) = 237Ω
Or both 323Ω
RPU(A) = none
RPU(B) = 232Ω
Or both 337Ω
RPU(A) = none
RPU(B) = 232Ω
Or both 359Ω
RPU(A) = 392Ω
RPU(B) = 392Ω
5.0V
RPU(A) = none
RPU(B) = 365Ω
Or both 431Ω
RPU(A) = none
RPU(B) = 365Ω
Or both 453Ω
RPU(A) = none
RPU(B) = 464Ω
Or both 697Ω
RPU(A) = none
RPU(B) = 486Ω
Or both 729Ω
RPU(A) = none
RPU(B) = 536Ω
Or both 782Ω
RPU(A) = none
RPU(B) = 348Ω
Or both 578Ω
PT0451-5
9
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Frequency Application
The maximum frequency is limited by the minimum pulse width LOW and HIGH as well as rise time and fall time.
The rise and fall times are dependent upon translation voltages, the drive strength, the total node capacitance (CL) and the pullup resistors (RPU) that are present on the bus. The node capacitance is the addition of the PCB trace capacitance and the device
capacitance that exists on the bus.
Because of the dependency of the external components, PCB layout and the different device operating states the calculation of
rise and fall times is complex and has several inflection points along the curve.
The main component of the rise and fall times is the RC time constant of the bus line when the device is in its two primary
operating states: when device is in the ON state and it is low-impedance, the other is when the device is OFF isolating the A-side
from the B-side.
There are some basic guidelines to follow that will help maximize the performance of the device:
• Keep trace length to a minimum by placing the PI6ULS5V9306 close to the processor.
• The signal round trip time on trace should be shorter than the rise or fall time of signal to reduce reflections.
• The faster the edge of the signal, the higher the chance for ringing.
• The higher drive strength controlled by the pull-up resistor (up to 15 mA), the higher the frequency the device can use.
The system designer must design the pull-up resistor value based on external current drive strength and limit the node capacitance
(minimize the wire, stub, connector and trace length) to get the desired operation frequency result.
2015-08-0006
PT0451-5
10
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mechanical Information
TDFN2x3-8(ZE)
PKG. DIMENSIONS(MM)
SYMBOL
MIN.
MAX
A
0.70
0.80
A1
0.00
0.50
0.20REF
A3
D
1.92
2.08
E
2.92
3.07
D1
1.40
1.60
E1
1.40
1.60
0.20MIN
k
b
0.20
0.30
e
0.50TYP
L
0.22
0.38
Note:
Ref: JEDEC MO-229
2015-08-0006
PT0451-5
11
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recommended Land pattern for TDFN2x3-8L
Note:
All linear dimensions are in millimeters
2015-08-0006
PT0451-5
12
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MSOP-8(U)
2015-08-0006
PT0451-5
13
8/18/15
PI6ULS5V9306
Dual bidirectional I2C-bus and
SMBus voltage-level translator
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SOIC-8(W)
Ordering Information
Part No.
Package Code
Package
PI6ULS5V9306ZEEX
ZE
Lead free and Green TDFN2x3-8L,Tape & Reel
PI6ULS5V9306UE
U
Lead free and Green MSOP-8L
PI6ULS5V9306UEX
U
Lead free and Green MSOP-8L,Tape & Reel
PI6ULS5V9306WE
W
8-Pin,150 mil Wide SOIC
PI6ULS5V9306WEX
W
8-Pin,150 mil Wide SOIC, Tape & Reel
Note:

E = Pb-free and Green

Adding X Suffix= Tape/Reel
Pericom Semiconductor Corporation  1-800-435-2336  www.pericom.com
Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply
the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The
company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.
2015-08-0006
PT0451-5
14
8/18/15