NP80N04KHE-E1-AY - Renesas Electronics

To our customers,
Old Company Name in Catalogs and Other Documents
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.
Renesas Electronics website: http://www.renesas.com
April 1st, 2010
Renesas Electronics Corporation
Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice
1.
2.
3.
4.
5.
6.
7.
All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.
When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.
“Standard”:
8.
9.
10.
11.
12.
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”:
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
DATA SHEET
MOS FIELD EFFECT TRANSISTOR
NP80N04EHE, NP80N04KHE
NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
SWITCHING
N-CHANNEL POWER MOS FET
DESCRIPTION
These products are N-channel MOS Field Effect Transistors designed for high current switching applications.
ORDERING INFORMATION
PART NUMBER
NP80N04EHE-E1-AY
Note1, 2
NP80N04EHE-E2-AY
Note1, 2
NP80N04KHE-E1-AY
Note1
NP80N04KHE-E2-AY
Note1
NP80N04CHE-S12-AZ
Note1, 2
NP80N04DHE-S12-AY
Note1, 2
NP80N04MHE-S18-AY
Note1
NP80N04NHE-S18-AY
Note1
LEAD PLATING
PACKING
PACKAGE
TO-263 (MP-25ZJ) typ. 1.4 g
Pure Sn (Tin)
Tape 800 p/reel
TO-263 (MP-25ZK) typ. 1.5 g
Sn-Ag-Cu
Pure Sn (Tin)
TO-220 (MP-25) typ. 1.9 g
Tube 50 p/tube
Notes 1. Pb-free (This product does not contain Pb in the external electrode.)
2. Not for new design
TO-262 (MP-25 Fin Cut) typ. 1.8 g
TO-220 (MP-25K) typ. 1.9 g
TO-262 (MP-25SK) typ. 1.8 g
(TO-220)
FEATURES
• Channel temperature 175 degree rated
• Super low on-state resistance
RDS(on) = 8.0 mΩ MAX. (VGS = 10 V, ID = 40 A)
• Low input capacitance
(TO-262)
Ciss = 2200 pF TYP.
• Built-in gate protection diode
(TO-263)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
Document No. D14239EJ7V0DS00 (7th edition)
Date Published October 2007 NS
Printed in Japan
The mark <R> shows major revised points.
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
1999, 2007
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)
Drain to Source Voltage (VGS = 0 V)
VDSS
40
V
Gate to Source Voltage (VDS = 0 V)
VGSS
±20
V
Drain Current (DC) (TC = 25°C)
Drain Current (Pulse)
Note1
Note2
Total Power Dissipation (TA = 25°C)
ID(DC)
±80
A
ID(pulse)
±280
A
1.8
W
PT
Total Power Dissipation (TC = 25°C)
PT
120
W
Channel Temperature
Tch
175
°C
Tstg
−55 to +175
°C
Storage Temperature
Single Avalanche Current
Note3
IAS
52/31/13
A
Single Avalanche Energy
Note3
EAS
2.7/96/169
mJ
Notes 1. Calculated constant current according to MAX. allowable channel temperature.
2. PW ≤ 10 μs, Duty cycle ≤ 1%
3. Starting Tch = 25°C, RG = 25 Ω, VGS = 20 → 0 V (See Figure 4.)
THERMAL RESISTANCE
Channel to Case Thermal Resistance
Rth(ch-C)
1.25
°C/W
Channel to Ambient Thermal Resistance
Rth(ch-A)
83.3
°C/W
2
Data Sheet D14239EJ7V0DS
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristics
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
Zero Gate Voltage Drain Current
IDSS
VDS = 40 V, VGS = 0 V
10
μA
Gate to Source Leakage Current
IGSS
VGS = ±20 V, VDS = 0 V
±10
μA
Gate to Source Threshold Voltage
VGS(th)
VDS = VGS, ID = 250 μA
2.0
3.0
4.0
V
Forward Transfer Admittance
| yfs |
VDS = 10 V, ID = 40 A
15
31
Drain to Source On-state Resistance
RDS(on)
VGS = 10 V, ID = 40 A
Input Capacitance
Ciss
Output Capacitance
S
6.2
8.0
mΩ
VDS = 25 V,
2200
3300
pF
Coss
VGS = 0 V,
490
730
pF
Reverse Transfer Capacitance
Crss
f = 1 MHz
230
410
pF
Turn-on Delay Time
td(on)
VDD = 20 V, ID = 40 A,
24
52
ns
Rise Time
tr
VGS = 10 V,
14
36
ns
Turn-off Delay Time
td(off)
RG = 1 Ω
44
88
ns
Fall Time
tf
15
37
ns
Total Gate Charge
QG
VDD = 32 V,
40
60
nC
Gate to Source Charge
QGS
VGS = 10 V,
12
nC
Gate to Drain Charge
QGD
ID = 80 A
16
nC
Body Diode Forward Voltage
VF(S-D)
IF = 80 A, VGS = 0 V
1.0
V
Reverse Recovery Time
trr
IF = 80 A, VGS = 0 V,
40
ns
Reverse Recovery Charge
Qrr
di/dt = 100 A/μs
50
nC
TEST CIRCUIT 1 AVALANCHE CAPABILITY
D.U.T.
RG = 25 Ω
PG.
VGS = 20 → 0 V
TEST CIRCUIT 2 SWITCHING TIME
D.U.T.
L
50 Ω
VGS
RL
Wave Form
RG
PG.
VDD
VGS
0
VGS
10%
90%
VDD
VDS
90%
BVDSS
IAS
90%
VDS
VGS
0
VDS
10%
0
10%
Wave Form
VDS
ID
τ
VDD
Starting Tch
τ = 1 μs
Duty Cycle ≤ 1%
td(on)
tr
ton
td(off)
tf
toff
TEST CIRCUIT 3 GATE CHARGE
D.U.T.
IG = 2 mA
PG.
50 Ω
RL
VDD
Data Sheet D14239EJ7V0DS
3
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
TYPICAL CHARACTERISTICS (TA = 25°C)
Figure1. DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
Figure2. TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
PT - Total Power Dissipation - W
dT - Percentage of Rated Power - %
140
100
80
60
40
20
0
25
0
50
75
100
80
60
40
20
0
100 125 150 175 200
25
0
50
75
100 125 150 175 200
TC - Case Temperature - °C
TC - Case Temperature - °C
Figure3. FORWARD BIAS SAFE OPERATING AREA
Figure4. SINGLE AVALANCHE ENERGY
DERATING FACTOR
ID(pulse)
d
ite
im V)
) L 10
n
o
S(
=
100
=1
0μ
s
10
ID(DC)
0μ
1m
Po
DC
Lim wer
ite Dis
sip
d
ati
RDVGS
(
PW
Single Pulse Avalanche Energy - mJ
1000
ID - Drain Current - A
120
s
s
on
10
1
TC = 25°C
Single pulse
0.1
0.1
1
10
180
169 mJ
160
140
120
100 96 mJ
60
40
20
2.7 mJ
0
25
100
IAS = 13 A
31 A
52 A
80
50
75
100
125
150
175
Starting Tch - Starting Channel Temperature - °C
VDS - Drain to Source Voltage - V
Figure5. TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
rth(t) - Transient Thermal Resistance - °C/W
1000
100
Rth(ch-A) = 83.3°C/W
10
Rth(ch-C) = 1.25°C/W
1
0.1
Single pulse
0.01
10 μ
100 μ
1m
10 m
100 m
1
PW - Pulse Width - s
4
Data Sheet D14239EJ7V0DS
10
100
1000
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
Figure7. DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
Figure6. FORWARD TRANSFER CHARACTERISTICS
1000
300
Pulsed
ID - Drain Current - A
ID - Drain Current - A
250
100
TA = −40°C
25°C
75°C
150°C
175°C
10
1
VGS = 10 V
200
150
100
50
0.1
1
2
3
VDS = 10 V
5
6
4
Pulsed
0
10
TA = 175°C
75°C
25°C
−40°C
0.1
0.1
1
10
100
RDS(on) - Drain to Source On-state Resistance - mΩ
ID - Drain Current - A
Figure10. DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
20
Pulsed
10
VGS = 10 V
0
1
10
100
1000
RDS(on) - Drain to Source On-state Resistance - mΩ
Figure8. FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
100
VDS = 10 V
Pulsed
0.01
0.01
4
3
VDS - Drain to Source Voltage - V
VGS(th) - Gate to Source Threshold Voltage - V
| yfs | - Forward Transfer Admittance - S
VGS - Gate to Source Voltage - V
1
2
1
0
Figure9. DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
50
Pulsed
40
30
20
10
0
ID = 40 A
0
2
4
6
8
10
12
14
16
18
VGS - Gate to Source Voltage - V
Figure11. GATE TO SOURCE THRESHOLD VOLTAGE vs.
CHANNEL TEMPERATURE
VDS = VGS
ID = 250 μA
4.0
3.0
2.0
1.0
0
−50
0
50
100
150
Tch - Channel Temperature - °C
ID - Drain Current - A
Data Sheet D14239EJ7V0DS
5
1000 Pulsed
Pulsed
IF - Diode Forward Current - A
16
12
VGS = 10 V
8
4
−50
50
0
100
10
1
0.1
0
150
Figure15. SWITCHING CHARACTERISTICS
1000
Coss
Crss
100
10
100
tf
100
td(off)
td(on)
tr
10
VDD = 20 V
VGS = 10 V
RG = 1 Ω
1
0.1
100
10
1
VDS - Drain to Source Voltage - V
ID - Drain Current - A
Figure16. REVERSE RECOVERY TIME vs.
DIODE FORWARD CURRENT
Figure17. DYNAMIC INPUT/OUTPUT CHARACTERISTICS
di/dt = 100 A/μs
VGS = 0 V
100
10
16
80
14
12
60
VGS
VDD = 32 V
20 V
8V
40
10
8
6
4
20
VDS
2
ID = 80 A
1.0
10
100
0
0
IF - Diode Forward Curren - A
10
20
30
QG - Gate Charge - nC
Data Sheet D14239EJ7V0DS
40
VGS - Gate to Source Voltage - V
1000
1
0.1
1.5
1.0
1000
Ciss
1
0.5
VF(S-D) - Source to Drain Voltage - V
td(on), tr, td(off), tf - Switching Time - ns
Ciss, Coss, Crss - Capacitance - pF
0V
Tch - Channel Temperature - °C
10
0.1
6
VGS = 10 V
100
ID = 40 A
0
Figure14. CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
10000
VGS = 0 V
f = 1 MHz
trr - Reverse Recovery Time - ns
Figure13. SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
Figure12. DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
VDS - Drain to Source Voltage - V
RDS(on) - Drain to Source On-state Resistance - mΩ
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
PACKAGE DRAWINGS (Unit: mm)
Note
1.3 ± 0.2
10.0 ± 0.3
No plating
7.88 MIN.
4
2
3
1.4 ± 0.2
0.7 ± 0.2
2.54 TYP.
9.15 ± 0.3
8.0 TYP.
8.5 ± 0.2
1
5.7 ± 0.4
1.0 ± 0.5
4
4.45 ± 0.2
0.025 to
0.25
P.
.5R
0
TY
R
0.8
2.54 TYP.
P.
TY
0.5 ± 0.2
0.75 ± 0.2
0.5 ±
2.8 ± 0.2
1.Gate
2.Drain
3.Source
4.Fin (Drain)
2
1.Gate
2.Drain
2.5
15.5 MAX.
4
1
0.75 ± 0.1
2.54 TYP.
1.3 ± 0.2
12.7 MIN.
6.0 MAX.
1 2 3
0.5 ± 0.2
2.8 ± 0.2
0.75 ± 0.3
2.54 TYP.
2
3
1.0 ± 0.5
10 TYP.
Note
4.8 MAX.
1.3 ± 0.2
8.5 ± 0.2
1.3 ± 0.2
4.Fin (Drain)
12.7 MIN.
4.8 MAX.
10.0 TYP.
1.3 ± 0.2
3
3.Source
φ 3.6 ± 0.2
5.9 MIN.
3.0 ± 0.3
1
<R> 4)TO-262 (MP-25 Fin Cut)
4
8ο
0.25
Note
10.6 MAX.
0.2
0 to
2.54
3)TO-220 (MP-25)
1.3 ± 0.2
2.54 ± 0.25
4.8 MAX.
10 TYP.
1.35 ± 0.3
2)TO-263 (MP-25ZK)
15.25 ± 0.5
1)TO-263 (MP-25ZJ)
0.5 ± 0.2
2.8 ± 0.2
2.54 TYP.
1.Gate
2.Drain
3.Source
4.Fin (Drain)
2.54 TYP.
1.Gate
2.Drain
3.Source
4.Fin (Drain)
Note Not for new design
Data Sheet D14239EJ7V0DS
7
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
0.8 ± 0.1
0.5 ± 0.2
2.5 ± 0.2
2.54 TYP.
1.Gate
2.Drain
3.Source
4.Fin (Drain)
1.3 ± 0.2
1.27 ± 0.2
3.1 ± 0.3
1 2 3
4.45 ± 0.2
10.1 ± 0.3
4
8.9 ± 0.2
15.9 MAX.
1.27 ± 0.2
2.54 TYP.
10.0 ± 0.2
13.7 ± 0.3
3
13.7 ± 0.3
1 2
4.45 ± 0.2
1.3 ± 0.2
3.1 ± 0.2
4
φ 3.8 ± 0.2
6.3 ± 0.3
2.8 ± 0.3
10.0 ± 0.2
1.2 ± 0.3
6)TO-262 (MP-25SK)
5)TO-220 (MP-25K)
0.8 ± 0.1
0.5 ± 0.2
2.54 TYP.
2.5 ± 0.2
2.54 TYP.
1.Gate
2.Drain
3.Source
4.Fin (Drain)
EQUIVALENT CIRCUIT
Drain
Gate
Gate
Protection
Diode
Remark
Body
Diode
Source
The diode connected between the gate and source of the transistor serves as a protector against ESD.
When this device actually used, an additional protection circuit is externally required if a voltage exceeding
the rated voltage may be applied to this device.
8
Data Sheet D14239EJ7V0DS
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
TAPE INFORMATION
There are two types (-E1, -E2) of taping depending on the direction of the device.
Draw-out side
Reel side
MARKING INFORMATION
NEC
80N04
HE
Pb-free plating marking
Abbreviation of part number
Lot code
RECOMMENDED SOLDERING CONDITIONS
These products should be soldered and mounted under the following recommended conditions.
For soldering methods and conditions other than those recommended below, please contact an NEC Electronics
sales representative.
For technical information, see the following website.
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)
Soldering Method
Soldering Conditions
Infrared reflow
Maximum temperature (Package's surface temperature): 260°C or below
MP-25ZJ, MP-25ZK
Time at maximum temperature: 10 seconds or less
Time of temperature higher than 220°C: 60 seconds or less
Preheating time at 160 to 180°C: 60 to 120 seconds
Recommended
Condition Symbol
IR60-00-3
Maximum number of reflow processes: 3 times
Maximum chlorine content of rosin flux (percentage mass): 0.2% or less
Wave soldering
Maximum temperature (Solder temperature): 260°C or below
MP-25, MP-25K, MP-25SK,
Time: 10 seconds or less
MP-25 Fin Cut
Maximum chlorine content of rosin flux: 0.2% (wt.) or less
Partial heating
Maximum temperature (Pin temperature): 350°C or below
MP-25ZJ, MP-25ZK,
Time (per side of the device): 3 seconds or less
MP-25K, MP-25SK
Maximum chlorine content of rosin flux: 0.2% (wt.) or less
Partial heating
Maximum temperature (Pin temperature): 300°C or below
MP-25, MP-25 Fin Cut
Time (per side of the device): 3 seconds or less
THDWS
P350
P300
Maximum chlorine content of rosin flux: 0.2% (wt.) or less
Caution Do not use different soldering methods together (except for partial heating).
Data Sheet D14239EJ7V0DS
9
NP80N04EHE, NP80N04KHE, NP80N04CHE, NP80N04DHE, NP80N04MHE, NP80N04NHE
• The information in this document is current as of October, 2007. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
• NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
• NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).
M8E 02. 11-1