V23990-K229-A10-PM Maximum Ratings

V23990-K229-A10-PM
target datasheet
MiniSKiiP® 2 PIM
1200V/25A
MiniSKiiP® 2 housing
Features
● Solderless interconnection
● Trench Fieldstop technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K229-A10-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
45
A
370
A
680
A2s
56
W
Tjmax
150
°C
VCE
1200
V
33
A
tp limited by Tjmax
75
A
VCE ≤ 1200V, Tj ≤ Top max
50
A
78
W
±20
V
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IDC
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
tSC
Tj≤150°C
10
VCC
VGE=15V
800
µs
V
150
°C
Tjmax
1
Revision: 1
V23990-K229-A10-PM
target datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
29
A
200
A
47
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1
V23990-K229-A10-PM
target datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,15
1,13
0,92
0,8
10
10
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
25
1500
V
mΩ
0,1
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
K/W
1,25
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VGE(th)
15
ICES
0
IGES
Integrated Gate resistor
Rgint
Rise time
Turn-off delay time
Fall time
0,001
VCE(sat)
Gate-emitter leakage current
Turn-on delay time
VCE=VGE
25
1200
0
±25
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5
5,8
6,5
1,35
1,71
1,9
2,15
0,05
300
Rgoff=tbd Ω
Rgon=tbd Ω
±15
600
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
8
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
ns
mWs
1,8
f=1MHz
25
0
0,3
Tj=25°C
nF
0,2
480
±15
25
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
160
nC
0,9
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
28
Rgon=tbd Ω
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,44
1,44
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
µC
A/µs
mWs
1,5
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
Tj=25°C
R100=1670 Ω
Tc=100°C
A-value
B(25/50)
B-value
B(25/100)
Vincotech PTC Reference
copyright Vincotech
3
%
Ω
Tj=25°C
7,635*10-3
1/K
Tj=25°C
1,731*10-5
Tj=25°C
3
-3
1670
Tc=100°C
R
1/K²
E
Revision: 1
V23990-K229-A10-PM
target datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
0
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IF (A)
IC (A)
60
4
50
50
40
40
30
30
20
20
10
Tj = Tjmax-25°C
10
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
250
1
1,5
V F (V)
2
µs
Revision: 1
V23990-K229-A10-PM
target datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
10
1
0
100
Zth-JH (K/W)
1
ZthJH (K/W)
10
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D=
RthJH =
tp / T
0,90
K/W
10-4
10-2
10-1
100
t p (s)
10110
tp / T
1,5
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,04
0,11
0,38
0,25
0,08
0,04
R (C/W)
0,04
0,12
0,44
0,62
0,19
0,12
Tau (s)
1,3E+01
1,1E+00
1,6E-01
4,3E-02
5,7E-03
3,7E-04
copyright Vincotech
10-3
5
Tau (s)
6,4E+01
1,8E+00
2,4E-01
6,3E-02
7,6E-03
7,8E-04
Revision: 1
V23990-K229-A10-PM
target datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
180
T1,T2,T3,T4,T5,T6,T7 IGBT
150
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
30
150
60
90
o
120 T h ( C)
150
0
At
Tj =
VGE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
30
150
15
60
120
T h ( o C)
150
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
60
Ptot (W)
IF (A)
100
90
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
°C
6
30
150
60
90
120
T h ( o C)
150
°C
Revision: 1
V23990-K229-A10-PM
target datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
16
IC (A)
VGE (V)
10
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
14
10
2
12
100uS
120V
10
101
480V
1mS
8
10
10mS
0
6
100mS
10
4
-1
DC
2
0
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
103
2
0
V CE (V)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 27
40
25
80
120
200
Q g (nC)
240
A
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
160
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
17,5
250
225
15
200
12,5
175
150
10
125
7,5
100
75
5
50
2,5
25
0
0
12
13
14
15
16
17
18
19
V GE (V)
20
12
13
14
At
VCE =
800
V
At
VCE =
800
V
Tj ≤
150
ºC
Tj ≤
150
ºC
copyright Vincotech
7
15
16
17
18
19
V GE (V)
20
Revision: 1
V23990-K229-A10-PM
target datasheet
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
60
IC MAX
Ic CHIP
50
40
Ic
MODULE
30
VCE MAX
20
10
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
copyright Vincotech
ºC
8
Revision: 1
V23990-K229-A10-PM
target datasheet
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
80
IF (A)
ZthJC (K/W)
101
70
60
10
50
0
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
10
0
0
0,25
0,5
0,75
1
1,25
1,5
10-2
V F (V) 1,75
10
At
tp =
At
D=
RthJH =
µs
250
-5
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10
-4
10
-3
10
10
-1
10
0
t p (s)
1
10 10
tp / T
1,25
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
60
IF (A)
Ptot (W)
140
-2
120
50
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
9
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 1
V23990-K229-A10-PM
target datasheet
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
45
copyright Vincotech
65
85
105
T (°C)
125
10
Revision: 1
V23990-K229-A10-PM
target datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K229-A10-/0A/-PM
V23990-K229-A10-/1A/-PM
V23990-K229-A10-/0B/-PM
V23990-K229-A10-/1B/-PM
K229A10
K229A10
K229A10
K229A10
in packaging barcode as
K229A10-/0A/
K229A10-/1A/
K229A10-/0B/
K229A10-/1B/
Outline
Pinout
copyright Vincotech
11
Revision: 1
V23990-K229-A10-PM
target datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
12
Revision: 1