V23990-K229-A10-PM target datasheet MiniSKiiP® 2 PIM 1200V/25A MiniSKiiP® 2 housing Features ● Solderless interconnection ● Trench Fieldstop technology Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K229-A10-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 45 A 370 A 680 A2s 56 W Tjmax 150 °C VCE 1200 V 33 A tp limited by Tjmax 75 A VCE ≤ 1200V, Tj ≤ Top max 50 A 78 W ±20 V D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IDC Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C tSC Tj≤150°C 10 VCC VGE=15V 800 µs V 150 °C Tjmax 1 Revision: 1 V23990-K229-A10-PM target datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 29 A 200 A 47 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1 V23990-K229-A10-PM target datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,15 1,13 0,92 0,8 10 10 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 25 1500 V mΩ 0,1 Thermal grease thickness≤50um λ = 1 W/mK V mA K/W 1,25 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VGE(th) 15 ICES 0 IGES Integrated Gate resistor Rgint Rise time Turn-off delay time Fall time 0,001 VCE(sat) Gate-emitter leakage current Turn-on delay time VCE=VGE 25 1200 0 ±25 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5 5,8 6,5 1,35 1,71 1,9 2,15 0,05 300 Rgoff=tbd Ω Rgon=tbd Ω ±15 600 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 8 td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd ns mWs 1,8 f=1MHz 25 0 0,3 Tj=25°C nF 0,2 480 ±15 25 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 160 nC 0,9 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 28 Rgon=tbd Ω di(rec)max /dt Erec RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,44 1,44 tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd Thermal grease thickness≤50um λ = 1 W/mK V A ns µC A/µs mWs 1,5 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 Tj=25°C R100=1670 Ω Tc=100°C A-value B(25/50) B-value B(25/100) Vincotech PTC Reference copyright Vincotech 3 % Ω Tj=25°C 7,635*10-3 1/K Tj=25°C 1,731*10-5 Tj=25°C 3 -3 1670 Tc=100°C R 1/K² E Revision: 1 V23990-K229-A10-PM target datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 0 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 IF (A) IC (A) 60 4 50 50 40 40 30 30 20 20 10 Tj = Tjmax-25°C 10 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 250 1 1,5 V F (V) 2 µs Revision: 1 V23990-K229-A10-PM target datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 10 1 0 100 Zth-JH (K/W) 1 ZthJH (K/W) 10 D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 0,90 K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 1,5 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,04 0,11 0,38 0,25 0,08 0,04 R (C/W) 0,04 0,12 0,44 0,62 0,19 0,12 Tau (s) 1,3E+01 1,1E+00 1,6E-01 4,3E-02 5,7E-03 3,7E-04 copyright Vincotech 10-3 5 Tau (s) 6,4E+01 1,8E+00 2,4E-01 6,3E-02 7,6E-03 7,8E-04 Revision: 1 V23990-K229-A10-PM target datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 180 T1,T2,T3,T4,T5,T6,T7 IGBT 150 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 30 150 60 90 o 120 T h ( C) 150 0 At Tj = VGE = °C Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 30 150 15 60 120 T h ( o C) 150 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 60 Ptot (W) IF (A) 100 90 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = °C 6 30 150 60 90 120 T h ( o C) 150 °C Revision: 1 V23990-K229-A10-PM target datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 16 IC (A) VGE (V) 10 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge 14 10 2 12 100uS 120V 10 101 480V 1mS 8 10 10mS 0 6 100mS 10 4 -1 DC 2 0 10 0 At D= Th = VGE = Tj = 10 1 10 103 2 0 V CE (V) At IC = single pulse 80 ºC 15 V Tjmax ºC T1,T2,T3,T4,T5,T6,T7 IGBT Figure 27 40 25 80 120 200 Q g (nC) 240 A T1,T2,T3,T4,T5,T6,T7 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 160 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 17,5 250 225 15 200 12,5 175 150 10 125 7,5 100 75 5 50 2,5 25 0 0 12 13 14 15 16 17 18 19 V GE (V) 20 12 13 14 At VCE = 800 V At VCE = 800 V Tj ≤ 150 ºC Tj ≤ 150 ºC copyright Vincotech 7 15 16 17 18 19 V GE (V) 20 Revision: 1 V23990-K229-A10-PM target datasheet T1,T2,T3,T4,T5,T6,T7 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 60 IC MAX Ic CHIP 50 40 Ic MODULE 30 VCE MAX 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 copyright Vincotech ºC 8 Revision: 1 V23990-K229-A10-PM target datasheet D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 80 IF (A) ZthJC (K/W) 101 70 60 10 50 0 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 20 Tj = Tjmax-25°C Tj = 25°C 10 0 0 0,25 0,5 0,75 1 1,25 1,5 10-2 V F (V) 1,75 10 At tp = At D= RthJH = µs 250 -5 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10 -4 10 -3 10 10 -1 10 0 t p (s) 1 10 10 tp / T 1,25 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 60 IF (A) Ptot (W) 140 -2 120 50 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = ºC 9 30 150 60 90 120 T h ( o C) 150 ºC Revision: 1 V23990-K229-A10-PM target datasheet Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 45 copyright Vincotech 65 85 105 T (°C) 125 10 Revision: 1 V23990-K229-A10-PM target datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K229-A10-/0A/-PM V23990-K229-A10-/1A/-PM V23990-K229-A10-/0B/-PM V23990-K229-A10-/1B/-PM K229A10 K229A10 K229A10 K229A10 in packaging barcode as K229A10-/0A/ K229A10-/1A/ K229A10-/0B/ K229A10-/1B/ Outline Pinout copyright Vincotech 11 Revision: 1 V23990-K229-A10-PM target datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 12 Revision: 1