V23990-K220-A-PM MiniSKiiP® 2 PIM 1200V/35A MiniSKiiP® 2 housing Features ● Solderless interconnection ● Trench Fieldstop technology ASK MARKETING Target Applications Schematic ● Industrial Motor Drives ASK MARKETING Types ● V23990-K220-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 40 53 A 370 A 680 A2s 56 85 W Tjmax 150 °C VCE 1200 V 41 54 A tp limited by Tjmax 105 A VCE ≤ 1200V, Tj ≤ Top max 105 A D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 93 141 W ±20 V 10 <1200 µs V 150 °C Revision: 3.1 V23990-K220-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 27 34 A 200 A D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 47 71 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+125 °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 3.1 V23990-K220-A-PM Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,13 1,28 0,9 0,77 10 10 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 25 1600 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,1 mA K/W 1,25 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0015 15 35 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Collector-emitter cut-off current incl. Diode Turn-on delay time Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 5,8 6,5 1,75 1,95 Rgoff=28 Ω Rgon=28 Ω V V 0,4 4 600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tr Eon 5 mA nA Ω 6 td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 80 29 ns 486 188 4,98 mWs 3,57 2500 f=1MHz 0 Tj=25°C 25 pF 130 110 Tj=25°C ±15 Thermal grease thickness≤50um λ = 1 W/mK 203 nC 0,75 K/W 1,48 1,5 V D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 28 Rgon=28 Ω 0 600 di(rec)max /dt Erec RthJH 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C A 34 ns 715 µC 9,12 A/µs 204 mWs 3,66 Thermal grease thickness≤50um λ = 1 W/mK 1,5 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P -3 3 T=25°C Power dissipation constant % Ω 1670,313 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference copyright Vincotech E 3 Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 90 IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 Tj = 25°C IF (A) IC (A) 50 4 40 40 30 30 20 20 Tj = Tjmax-25°C 10 10 Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 250 1 1,5 V F (V) 2 µs Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 13 9 E (mWs) E (mWs) Eon High T Eon High T 7,5 10 6 8 4,5 Eoff High T 5 Eoff High T 3 3 1,5 0 0 0 25 50 I C (A) 75 0 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V Rgon = 28 Ω Rgoff = 28 Ω Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) 15 30 45 60 75 RG( Ω ) 90 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V IC = 35 A D1,D2,D3,D4,D5,D6,D7 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 D1,D2,D3,D4,D5,D6,D7 FWD 5 E (mWs) E (mWs) Erec 4 4 3 3 2 2 1 1 0 Erec 0 0 25 50 I C (A) 75 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 28 Ω copyright Vincotech 15 30 45 60 75 R G ( Ω ) 90 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 35 A 5 Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) tdoff t ( µs) 1,00 tf tf 0,10 tdon 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 25 I C (A) 50 75 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 28 Ω Rgoff = 28 Ω 10 20 30 40 50 60 70 RG( Ω ) 80 90 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 1,2 t rr( µs) 1,2 trr 0,9 0,9 trr 0,6 0,6 0,3 0,3 0 0 0 At Tj = VCE = VGE = Rgon = 25 125 600 ±15 28 copyright Vincotech 50 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω 6 15 125 600 35 ±15 30 45 60 75 R gon ( Ω ) 90 °C V A V Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 15 Qrr( µC) Qrr( µC) 15 Qrr 12 12 9 9 Qrr 6 6 3 3 0 0 0 At At Tj = VCE = VGE = Rgon = 25 125 600 ±15 28 50 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 15 125 600 35 ±15 30 45 75 R gon ( Ω) 90 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 40 IrrM (A) IrrM (A) 40 60 IRRM 30 IRRM 30 20 20 10 10 0 0 0 At Tj = VCE = VGE = Rgon = 25 125 600 ±15 28 copyright Vincotech 50 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω 7 15 125 600 35 ±15 30 45 60 75 R gon ( Ω ) 90 °C V A V Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 1400 direc / dt (A/ µs) direc / dt (A/µ s) 1200 D1,D2,D3,D4,D5,D6,D7 FWD 1000 1200 1000 800 di0/dtHigh T 800 di0/dtHigh T 600 600 400 400 dIrec/dtHigh T 200 200 dIrec/dtHigh T 0 0 0 125 600 ±15 28 50 I C (A) 75 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 15 125 600 35 ±15 30 45 1 0 ZthJH (K/W) 1 100 75 R gon ( Ω ) 90 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 60 Zth-JH (K/W) At Tj = VCE = VGE = Rgon = 25 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= RthJH = 10 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T 0,75 Thermal grease R (C/W) 0,04 0,16 0,43 0,09 0,03 -4 K/W RthJH = 0,73 K/W IGBT thermal model values Phase change interface Tau (s) 4,0E+00 6,0E-01 1,5E-01 2,0E-02 1,5E-03 copyright Vincotech R (C/W) 0,00 0,00 0,00 0,00 0,00 10-5 10-4 At D= RthJH = 1,50 R (C/W) 0,04 0,12 0,44 0,62 0,19 0,12 8 10-2 10-1 100 t p (s) 10110 tp / T Thermal grease Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 10-3 K/W RthJH = 1,46 K/W FWD thermal model values Phase change interface Tau (s) 6,4E+01 1,8E+00 2,4E-01 6,3E-02 7,6E-03 7,8E-04 R (C/W) 0,00 0,00 0,00 0,00 0,00 0,00 Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 60 Ptot (W) IC (A) 200 T1,T2,T3,T4,T5,T6,T7 IGBT 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 30 150 60 120 T h ( o C) 150 0 At Tj = VGE = °C Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 150 15 60 100 90 120 T h ( o C) 150 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 IF (A) Ptot (W) 90 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = °C 9 30 150 60 90 120 T h ( o C) 150 °C Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) VGE (V) 103 IC (A) 1mS 20 10mS 240V 16 10 DC 2 100mS 960V 12 10 1 8 100 4 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 0 103 V CE (V) 2 At IC = single pulse 80 ºC ±15 V Tjmax ºC T1,T2,T3,T4,T5,T6,T7 IGBT Figure 27 75 35 150 Q g (nC) 300 A T1,T2,T3,T4,T5,T6,T7 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 225 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 15 350 300 12,5 250 10 200 7,5 150 5 100 2,5 50 0 0 12 13 14 15 16 V GE (V) 17 12 14 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 150 ºC Tj = 150 ºC copyright Vincotech 10 16 18 V GE (V) 20 Revision: 3.1 V23990-K220-A-PM T1,T2,T3,T4,T5,T6,T7 IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) 75 IC (A) IC MAX 60 Ic CHIP Ic MODULE 45 30 VCE MAX 15 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Rgon = Rgoff = 150 °C 4Ω 4Ω copyright Vincotech 11 Revision: 3.1 V23990-K220-A-PM D8,D9,D10,D11,D12,D13 D8,D9,D10,D11,D12,D13 diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode Tj = 25°C 80 Tj = Tjmax-25°C 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 0 0,0 At tp = 0,5 1,0 1,5 2,0 V F (V) 10 2,5 µs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode -2 10-5 10-4 10-3 At D= RthJH = 1,25 10-2 100 t p (s) 10110 tp / T K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 70 IF (A) Ptot (W) 120 10-1 60 90 50 40 60 30 20 30 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 12 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3.1 V23990-K220-A-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 13 Revision: 3.1 V23990-K220-A-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 4Ω Rgoff = 4Ω Output inverter IGBT Figure 1 120 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 350 tdoff % Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) % IC VCE 300 100 VGE 90% VCE 90% 250 80 IC 200 60 150 tEoff 40 VCE 100 tdon 20 IC 1% VGE10% 0 VCE 3% IC10% 0 VGE -20 -0,4 VGE 50 tEon -50 -0,2 0 0,2 0,4 0,6 0,8 1 2,8 3 3,2 3,4 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 75 0,19 0,71 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 -15 15 600 75 0,06 0,20 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 350 Ic % % 120 300 VCE IC 100 250 IC 90% 80 200 IC 60% 60 150 VCE 40 IC 40% 100 IC90% tr 20 50 IC10% 0 IC10% 0 fitted tf -20 0 0,1 0,2 0,3 0,4 -50 3,05 0,5 3,06 3,07 3,08 3,09 VC (100%) = IC (100%) = tf = copyright Vincotech 600 75 0,09 3,1 3,11 3,12 3,13 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 14 600 75 0,01 V A µs Revision: 3.1 V23990-K220-A-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 250 % Eoff Poff % 100 Pon 200 80 150 Eon 60 100 40 50 20 VGE 10% VGE 90% IC 1% 0 VCE 3% 0 tEoff tEon -50 -20 -0,2 0 0,2 0,4 0,6 2,9 0,8 3 3,1 time (us) Poff (100%) = Eoff (100%) = tEoff = 44,87 6,31 0,71 3,2 3,3 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 44,87 3,46 0,20 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 Id % 100 fitted trr 50 Vd 0 IRRM10% -50 -100 -150 IRRM90% IRRM100% -200 -250 2,8 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,2 600 75 -165 0,16 3,4 3,6 time(us) 3,8 V A A µs 15 Revision: 3.1 V23990-K220-A-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 Id % Qrr Prec % 100 125 Erec 50 tQrr 100 0 75 tErec -50 50 -100 25 -150 0 -200 -250 -25 3 3,2 3,4 3,6 3,8 4 4,2 3 3,2 3,4 3,6 44,87 9,32 1,00 kW mJ µs time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 75 18,79 1,00 Prec (100%) = Erec (100%) = tErec = A µC µs 16 3,8 4 time(us) 4,2 Revision: 3.1 V23990-K220-A-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K22-T-PM) with std lid (black V23990-K22-T-PM) and P12 with thin lid (white V23990-K23-T-PM) with thin lid (white V23990-K23-T-PM) and P12 Ordering Code in DataMatrix as V23990-K220-A-/0A/-PM V23990-K220-A-/1A/-PM V23990-K220-A-/0B/-PM V23990-K220-A-/1B/-PM K220A K220A K220A K220A in packaging barcode as K220A-/0A/ K220A-/1A/ K220A-/0B/ K220A-/1B/ Outline Pinout copyright Vincotech 17 Revision: 3.1 V23990-K220-A-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 18 Revision: 3.1