V23990-K220-A-PM Maximum Ratings

V23990-K220-A-PM
MiniSKiiP® 2 PIM
1200V/35A
MiniSKiiP® 2 housing
Features
● Solderless interconnection
● Trench Fieldstop technology
ASK MARKETING
Target Applications
Schematic
● Industrial Motor Drives
ASK MARKETING
Types
● V23990-K220-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
40
53
A
370
A
680
A2s
56
85
W
Tjmax
150
°C
VCE
1200
V
41
54
A
tp limited by Tjmax
105
A
VCE ≤ 1200V, Tj ≤ Top max
105
A
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
93
141
W
±20
V
10
<1200
µs
V
150
°C
Revision: 3.1
V23990-K220-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
27
34
A
200
A
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
47
71
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+125
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 3.1
V23990-K220-A-PM
Characteristic Values
Parameter
Value
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,13
1,28
0,9
0,77
10
10
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
25
1600
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,1
mA
K/W
1,25
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0015
15
35
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Collector-emitter cut-off current incl. Diode
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
5,8
6,5
1,75
1,95
Rgoff=28 Ω
Rgon=28 Ω
V
V
0,4
4
600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tr
Eon
5
mA
nA
Ω
6
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
80
29
ns
486
188
4,98
mWs
3,57
2500
f=1MHz
0
Tj=25°C
25
pF
130
110
Tj=25°C
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
203
nC
0,75
K/W
1,48
1,5
V
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
28
Rgon=28 Ω
0
600
di(rec)max
/dt
Erec
RthJH
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
A
34
ns
715
µC
9,12
A/µs
204
mWs
3,66
Thermal grease
thickness≤50um
λ = 1 W/mK
1,5
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
-3
3
T=25°C
Power dissipation constant
%
Ω
1670,313
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
90
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
Tj = 25°C
IF (A)
IC (A)
50
4
40
40
30
30
20
20
Tj = Tjmax-25°C
10
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
250
1
1,5
V F (V)
2
µs
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
13
9
E (mWs)
E (mWs)
Eon High T
Eon High T
7,5
10
6
8
4,5
Eoff High T
5
Eoff High T
3
3
1,5
0
0
0
25
50
I C (A)
75
0
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
Rgon =
28
Ω
Rgoff =
28
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
15
30
45
60
75
RG( Ω )
90
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
IC =
35
A
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
D1,D2,D3,D4,D5,D6,D7 FWD
5
E (mWs)
E (mWs)
Erec
4
4
3
3
2
2
1
1
0
Erec
0
0
25
50
I C (A)
75
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
28
Ω
copyright Vincotech
15
30
45
60
75 R G ( Ω )
90
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
5
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
tdoff
t ( µs)
1,00
tf
tf
0,10
tdon
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
25
I C (A)
50
75
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
28
Ω
Rgoff =
28
Ω
10
20
30
40
50
60
70
RG( Ω )
80
90
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
1,2
t rr( µs)
1,2
trr
0,9
0,9
trr
0,6
0,6
0,3
0,3
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
125
600
±15
28
copyright Vincotech
50
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
15
125
600
35
±15
30
45
60
75 R gon ( Ω )
90
°C
V
A
V
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
15
Qrr( µC)
Qrr( µC)
15
Qrr
12
12
9
9
Qrr
6
6
3
3
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
25
125
600
±15
28
50
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
15
125
600
35
±15
30
45
75
R gon ( Ω) 90
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
40
IrrM (A)
IrrM (A)
40
60
IRRM
30
IRRM
30
20
20
10
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
125
600
±15
28
copyright Vincotech
50
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
15
125
600
35
±15
30
45
60
75
R gon ( Ω )
90
°C
V
A
V
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
1400
direc / dt (A/ µs)
direc / dt (A/µ s)
1200
D1,D2,D3,D4,D5,D6,D7 FWD
1000
1200
1000
800
di0/dtHigh T
800
di0/dtHigh T
600
600
400
400
dIrec/dtHigh T
200
200
dIrec/dtHigh T
0
0
0
125
600
±15
28
50
I C (A)
75
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
15
125
600
35
±15
30
45
1
0
ZthJH (K/W)
1
100
75
R gon ( Ω )
90
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
60
Zth-JH (K/W)
At
Tj =
VCE =
VGE =
Rgon =
25
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
At
D=
RthJH =
10
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
0,75
Thermal grease
R (C/W)
0,04
0,16
0,43
0,09
0,03
-4
K/W
RthJH =
0,73
K/W
IGBT thermal model values
Phase change interface
Tau (s)
4,0E+00
6,0E-01
1,5E-01
2,0E-02
1,5E-03
copyright Vincotech
R (C/W)
0,00
0,00
0,00
0,00
0,00
10-5
10-4
At
D=
RthJH =
1,50
R (C/W)
0,04
0,12
0,44
0,62
0,19
0,12
8
10-2
10-1
100
t p (s)
10110
tp / T
Thermal grease
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
10-3
K/W
RthJH =
1,46
K/W
FWD thermal model values
Phase change interface
Tau (s)
6,4E+01
1,8E+00
2,4E-01
6,3E-02
7,6E-03
7,8E-04
R (C/W)
0,00
0,00
0,00
0,00
0,00
0,00
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
60
Ptot (W)
IC (A)
200
T1,T2,T3,T4,T5,T6,T7 IGBT
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
30
150
60
120
T h ( o C)
150
0
At
Tj =
VGE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
150
15
60
100
90
120
T h ( o C)
150
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
IF (A)
Ptot (W)
90
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
°C
9
30
150
60
90
120
T h ( o C)
150
°C
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
VGE (V)
103
IC (A)
1mS
20
10mS
240V
16
10
DC
2
100mS
960V
12
10
1
8
100
4
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
0
103
V CE (V)
2
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 27
75
35
150
Q g (nC)
300
A
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
225
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
15
350
300
12,5
250
10
200
7,5
150
5
100
2,5
50
0
0
12
13
14
15
16
V GE (V)
17
12
14
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
150
ºC
Tj =
150
ºC
copyright Vincotech
10
16
18
V GE (V)
20
Revision: 3.1
V23990-K220-A-PM
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
75
IC (A)
IC MAX
60
Ic CHIP
Ic
MODULE
45
30
VCE MAX
15
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Rgon =
Rgoff =
150 °C
4Ω
4Ω
copyright Vincotech
11
Revision: 3.1
V23990-K220-A-PM
D8,D9,D10,D11,D12,D13
D8,D9,D10,D11,D12,D13 diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
D8,D9,D10,D11,D12,D13 diode
Tj = 25°C
80
Tj = Tjmax-25°C
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
0
0,0
At
tp =
0,5
1,0
1,5
2,0
V F (V)
10
2,5
µs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
-2
10-5
10-4
10-3
At
D=
RthJH =
1,25
10-2
100
t p (s)
10110
tp / T
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
70
IF (A)
Ptot (W)
120
10-1
60
90
50
40
60
30
20
30
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C) 150
0
At
Tj =
ºC
12
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3.1
V23990-K220-A-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
13
Revision: 3.1
V23990-K220-A-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
120
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
350
tdoff
%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
%
IC
VCE
300
100
VGE 90%
VCE 90%
250
80
IC
200
60
150
tEoff
40
VCE
100
tdon
20
IC 1%
VGE10%
0
VCE 3%
IC10%
0
VGE
-20
-0,4
VGE
50
tEon
-50
-0,2
0
0,2
0,4
0,6
0,8
1
2,8
3
3,2
3,4
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
75
0,19
0,71
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
-15
15
600
75
0,06
0,20
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
350
Ic
%
%
120
300
VCE
IC
100
250
IC 90%
80
200
IC 60%
60
150
VCE
40
IC 40%
100
IC90%
tr
20
50
IC10%
0
IC10%
0
fitted
tf
-20
0
0,1
0,2
0,3
0,4
-50
3,05
0,5
3,06
3,07
3,08
3,09
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
75
0,09
3,1
3,11
3,12
3,13
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
14
600
75
0,01
V
A
µs
Revision: 3.1
V23990-K220-A-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
250
%
Eoff
Poff
%
100
Pon
200
80
150
Eon
60
100
40
50
20
VGE 10%
VGE 90%
IC 1%
0
VCE 3%
0
tEoff
tEon
-50
-20
-0,2
0
0,2
0,4
0,6
2,9
0,8
3
3,1
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
44,87
6,31
0,71
3,2
3,3
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
44,87
3,46
0,20
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
Id
%
100
fitted
trr
50
Vd
0
IRRM10%
-50
-100
-150
IRRM90%
IRRM100%
-200
-250
2,8
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,2
600
75
-165
0,16
3,4
3,6
time(us)
3,8
V
A
A
µs
15
Revision: 3.1
V23990-K220-A-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
Id
%
Qrr
Prec
%
100
125
Erec
50
tQrr
100
0
75
tErec
-50
50
-100
25
-150
0
-200
-250
-25
3
3,2
3,4
3,6
3,8
4
4,2
3
3,2
3,4
3,6
44,87
9,32
1,00
kW
mJ
µs
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
75
18,79
1,00
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
3,8
4
time(us)
4,2
Revision: 3.1
V23990-K220-A-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K22-T-PM)
with std lid (black V23990-K22-T-PM) and P12
with thin lid (white V23990-K23-T-PM)
with thin lid (white V23990-K23-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K220-A-/0A/-PM
V23990-K220-A-/1A/-PM
V23990-K220-A-/0B/-PM
V23990-K220-A-/1B/-PM
K220A
K220A
K220A
K220A
in packaging barcode as
K220A-/0A/
K220A-/1A/
K220A-/0B/
K220A-/1B/
Outline
Pinout
copyright Vincotech
17
Revision: 3.1
V23990-K220-A-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
18
Revision: 3.1