V23990-K240-A-PM MiniSKiiP® 3 PIM 1200V/70A MiniSkiip® 3 housing Features ● IGBT3 technology for low saturation losses ● Solderless spring contact mounting system Target Applications Schematic ● Industrial motor drives Types ● V23990-K240-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 69 93 A 700 A 2450 A2s D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C 77 Tc=80°C 117 W Tjmax 150 °C VCE 1200 V T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Copyright by Vincotech Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 66 66 108 108 Th=80°C Tc=80°C 142 215 A A A W ±20 V 10 900 µs V 150 °C Revision: 2.1 V23990-K240-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 64 66 A D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax 102 Th=80°C Tc=80°C A 100 151 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2.1 V23990-K240-A-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,02 0,94 0,88 0,75 4,00 6,00 1,35 D8,D9,D10,D11,D12,D13 Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,1 2 0,90 mA K/W T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 70 1200 70 0 20 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5 5,80 6,5 1,35 1,79 2,07 2,15 0,1 300 Rgoff=14 Ω Rgon=14 Ω ±15 600 70 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 3 td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,003 77 28 ns 486 188 8,77 mWs 7,18 4,8 f=1MHz 25 0 1 Tj=25°C pF 0,6 Tj=25°C ±15 Thermal grease thickness≤50um λ = 1 W/mK 500 nC 0,5 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 70 Rgoff=14 Ω 0 600 di(rec)max /dt Erec RthJH 70 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 1,67 1,73 1,8 A 121 ns 469 µC 17,62 A/µs 2787 mWs 6,89 Thermal grease thickness≤50um λ = 1 W/mK V 0,7 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C T=100°C P -3 3 T=25°C Power dissipation constant % Ω 1670,313 mW/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 1/K B-value B(25/100) Tol. % T=25°C 1,731*10-5 1/K² Vincotech NTC Reference Copyright by Vincotech E 3 Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 200 IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT 2 3 90 250 IF (A) V CE (V) 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V D1,D2,D3,D4,D5,D6,D7 FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 1 75 200 Tj = 25°C 60 150 Tj = Tjmax-25°C 45 100 30 Tj = Tjmax-25°C 50 15 Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 250 1 1,5 2 2,5 V F (V) 3 µs Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 18 E (mWs) E (mWs) 18 Eon High T 15 15 12 12 Eon High T Eoff High T 9 9 6 6 3 3 Eoff High T 0 0 0 30 60 90 120 I C (A) 0 150 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V Rgon = 14 Ω Rgoff = 14 Ω 5 10 15 20 25 30 R G ( Ω ) 35 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V IC = 69 A T1,T2,T3,T4,T5,T6,T7 IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 10 Tj = Tjmax -25°C Erec E (mWs) E (mWs) 10 8 8 Tj = Tjmax -25°C Erec 6 6 4 4 2 2 0 0 0 30 60 90 120 I C (A) 0 150 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 14 Ω Copyright by Vincotech 5 10 15 20 25 30 R G ( Ω ) 35 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 69 A 5 Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdoff tf tf tdon 0,1 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 30 60 90 120 I C (A) 0 150 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V Rgon = 14 Ω Rgoff = 14 Ω 5 10 15 20 25 R G ( Ω ) 35 30 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 69 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,7 t rr( µs) 0,7 D1,D2,D3,D4,D5,D6,D7 FWD trr 0,6 trr 0,6 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,5 0,5 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 30 125 600 ±15 14 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 5 125 600 69 ±15 10 15 20 25 30 R g on ( Ω ) 35 °C V A V Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 24 Qrr( µC) 24 D1,D2,D3,D4,D5,D6,D7 FWD 20 20 Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 16 16 12 12 8 8 4 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 30 125 600 ±15 14 60 90 I C (A) 120 0 150 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 5 10 125 600 69 ±15 15 20 25 30 R g on ( Ω) 35 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6,D7 FWD 180 Tj = Tjmax - 25°C IrrM (A) IrrM (A) 180 150 150 Tj = Tjmax -25°C IRRM 120 120 90 90 60 60 30 30 IRRM 0 0 0 30 At Tj = VCE = VGE = Rgon = 125 600 ±15 14 60 90 120 I C (A) 0 150 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 5 125 600 69 ±15 10 15 20 25 30 R gon ( Ω ) 35 °C V A V Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 5000 direc / dt (A/ µs) direc / dt (A/µ s) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 5000 dI0/dt dIrec/dt 4000 4000 3000 dIrec/dtHigh T 3000 2000 2000 di0/dtHigh T 1000 1000 dI0/dt dIrec/dt 0 0 0 At Tj = VCE = VGE = Rgon = 30 125 600 ±15 14 60 90 I C (A) 120 150 0 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 125 600 69 ±15 16 32 °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 100 ZthJH (K/W) 100 R gon ( Ω ) 24 10-1 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) At D= RthJH = tp / T 0,5 -2 10-5 102 101 K/W 10-4 10-2 10-1 100 t p (s) 102 101 tp / T 0,7 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,04 0,05 0,11 0,20 0,05 0,02 R (C/W) 0,03 0,05 0,16 0,35 0,08 0,04 Tau (s) 2,4E+01 2,0E+00 3,3E-01 8,0E-02 1,1E-02 9,3E-04 Copyright by Vincotech 10-3 8 Tau (s) 3,9E+01 2,8E+00 4,4E-01 1,1E-01 1,6E-02 1,4E-03 Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 70 Ptot (W) IC (A) 350 60 280 50 210 40 30 140 20 70 10 0 0 0 At Tj = 30 60 90 120 T h ( o C) 150 0 At Tj = VGE = °C 150 Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 30 150 15 60 120 T h ( o C) 150 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) D1,D2,D3,D4,D5,D6,D7 FWD 70 IF (A) Ptot (W) 250 90 60 200 50 150 40 30 100 20 50 10 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = °C Copyright by Vincotech 9 30 150 60 90 120 T h ( o C) 150 °C Revision: 2.1 V23990-K240-A-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 100mS 10mS VGE (V) 18 IC (A) 10 100uS 1mS 15 DC 10 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge 120V 2 12 480V 10 9 1 6 100 3 0 10-1 100 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 400 600 800 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 200 10 69 A Revision: 2.1 V23990-K240-A-PM D8,D9,D10,D11,D12,D13 Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) D8,D9,D10,D11,D12,D13 diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 0 IF (A) ZthJC (K/W) 10 D8,D9,D10,D11,D12,D13 diode 120 90 10 -1 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,3 0,6 0,9 1,2 V F (V) 10-2 1,5 10-5 At D= RthJH = µs 250 10-4 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 100 t p (s) 101 tp / T 0,90 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 100 Ptot (W) IF (A) 180 10-1 150 80 120 60 90 40 60 20 30 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 2.1 V23990-K240-A-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 2.1 V23990-K240-A-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 14 Ω Rgoff = 14 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 120 tdoff % IC % VCE 250 90 VGE 90% VCE 90% 200 150 60 VCE IC 100 tdon 30 tEoff VGE 50 IC 1% VGE10% VCE 3% IC10% 0 0 tEon VGE -30 -0,2 -50 -100 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 1 2,4 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 69 0,49 0,74 Output inverter IGBT 2,85 -15 15 600 69 0,07 0,45 3 3,15 time(us) 3,3 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 120 2,7 VGE (-100%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Figure 3 Turn-on Switching Waveforms & definition of tr 280 fitted % 2,55 VCE % Ic IC 100 240 IC 90% 80 200 IC 60% 60 160 120 IC 40% 40 VCE IC90% 80 20 tr IC10% 0 40 tf IC10% 0 -20 0,2 VC (100%) = IC (100%) = tf = 0,3 0,4 600 69 2,00 Copyright by Vincotech 0,5 0,6 time (us) 2,7 0,7 2,75 2,8 2,85 2,9 2,95 3 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 69 0,03 V A µs Revision: 2.1 V23990-K240-A-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 240 % Poff Pon % Eoff 100 200 80 160 Eon 60 120 40 80 20 40 0 0 VGE 10% VCE 3% IC 1% VGE 90% tEon tEoff -20 -0,1 0,05 0,2 -40 0,35 0,5 0,65 2,4 0,8 2,5 2,6 2,7 2,8 Poff (100%) = Eoff (100%) = tEoff = 41,57 7,13 0,74 2,9 3 3,1 3,2 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 41,57 8,51 0,45 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted 0 Vd IRRM10% -50 -100 -150 IRRM90% IRRM100% -200 2,6 2,7 2,8 2,9 3 3,1 3,2 3,3 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 600 69 121 0,47 Copyright by Vincotech V A A µs 14 Revision: 2.1 V23990-K240-A-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % % Id Qrr Erec 100 100 80 tErec 50 tQrr 60 0 40 -50 20 Prec -100 0 -20 -150 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 2,6 4 2,8 3 3,2 3,4 Id (100%) = Qrr (100%) = tQrr = 69 17,62 1,06 Copyright by Vincotech 3,6 3,8 4 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 41,57 6,89 1,06 kW mJ µs Revision: 2.1 V23990-K240-A-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K240-A-/0A/-PM V23990-K240-A-/1A/-PM V23990-K240-A-/0B/-PM V23990-K240-A-/1B/-PM K240A K240A K240A K240A in packaging barcode as K240A-/0A/ K240A-/1A/ K240A-/0B/ K240A-/1B/ Outline Pinout Copyright by Vincotech 16 Revision: 2.1 V23990-K240-A-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 2.1