10-FZ06NBA084FP-M306L48 Maximum Ratings

10-FZ06NBA084FP-M306L48
preliminary datasheet
flow Boost0
600V/84A PS*
Features
flow0 12mm housing
● *PS: 2x84A parallel switch (75A IGBT and 99mΩ C6)
● ultrafast IGBT with C6 MOSFET and SiC buck diodes
● symmetric booster
● ultra fast switching frequency
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● FZ06NBA084FP
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
58
76
A
225
A
111
169
W
±20
V
10
480
μs
V
175
°C
600
V
49
63
A
210
A
88
133
W
175
°C
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤125°C
VGE=15V
Tjmax
Input Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
17
19
A
tp limited by Tjmax
Tc=25°C
112
A
Th=80°C
111
169
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
3,5
4,5
6
2,12
2,24
2,72
Input Boost IGBT *
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
none
Ω
Input capacitance
Cies
4000
pF
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,00025
VCE=VGE
f=1MHz
75
0
250
400
V
uA
nA
400
Tj=25°C
30
V
pF
115
15
400
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
94
nC
0,85
K/W
* see dynamic characteristic at MosFET
Input Boost FWD
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
48
Rgon=4 Ω **
350
15
77
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,55
1,69
52
43
11
12
0,47
0,60
12292
9335
0,078
0,128
Thermal grease
thickness≤50um
λ = 1 W/mK
1,75
V
A
ns
μC
A/μs
mWs
1,10
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
15
10
V(GS)th
VDS=VGS
0,00121
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
td(ON)
tr
td(OFF)
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
Rgon=4 Ω **
Rgoff=4 Ω **
350
15
77
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,5
97
193
3
mΩ
3,5
100
5
17
16
6
7
105
124
6
7
0,15
0,29
0,40
0,84
V
nA
uA
ns
mWs
119
480
0-10
18,1
Tj=25°C
14
nC
61
2660
f=1MHz
0
100
pF
Tj=25°C
154
Thermal grease
thickness≤50um
λ = 1 W/mK
1,05
K/W
** see gate drive conditions at characteristic figures
Copyright by Vincotech
3
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
IGBT gate capacitor
C value
C
4,7
nF
Thermistor
Rated resistance*
Power dissipation
R25
R100
Tj=25°C
Tj=100°C
P
B(25/100)
B-value
Tol. ±13%
Tol. ±5%
Tol. ±3%
19,1
1411
22
1486
24,9
1560
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
4
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
IGBT+MOSFET
IGBT+MOSFET
100
100
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
3 V to 19 V in steps of 2 V
IGBT+MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
250
μs
126
°C
3 V to 19 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
5
150
IF (A)
IC (A)
Tj = Tjmax-25°C
Tj = 25°C
125
60
100
45
Tj = Tjmax-25°C
75
30
50
Tj = 25°C
15
25
0
0
0
At
tp =
VCE =
1
250
10
2
3
4
5
6
7 V (V)
GE
8
0
At
tp =
μs
V
Copyright by Vincotech
5
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
μs
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
IGBT+MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
E (mWs)
1,200
E (mWs)
IGBT+MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
2,100
Eoff High T
Eoff Low T
Eon High T
1,800
1,000
1,500
0,800
1,200
Eoff Low T
0,600
Eon Low T
0,900
Eon High T
0,400
0,600
Eon Low T
0,200
0,300
0,000
0,000
0
20
40
60
80
100
I C (A)
0
120
8
16
24
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
°C
25/126
VCE =
350
V
VGE =
15
V
IC =
78
A
MOSFET turn off delayed by 100ns
MOSFET turn off delayed by 100ns
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
E (mWs)
RG( Ω )
40
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,160
0,140
32
0,220
0,200
Erec High T
Erec High T
0,120
0,180
Erec Low T
0,100
0,160
0,080
0,140
0,060
Erec Low T
0,120
0,040
0,100
0,020
0,000
0,080
0
20
40
60
80
100
I C (A)
120
0
5
10
15
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
With an inductive load at
Tj =
25/126
°C
VCE =
350
V
VGE =
15
V
IC =
78
A
MOSFET turn off delayed by 100ns
MOSFET turn off delayed by 100ns
Copyright by Vincotech
6
20
25
30 R G ( Ω ) 35
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
IGBT+MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT+MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
0,10
0,10
tdon
tr
tdon
tf
tr
tf
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A) 120
100
0
5
10
15
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
126
°C
VCE =
350
V
VGE =
15
V
IC =
78
A
MOSFET turn off delayed by 100ns
MOSFET turn off delayed by 100ns
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
20
30 R G ( Ω ) 35
25
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,050
trr High T
t rr(ms)
t rr(ms)
0,014
0,013
0,040
trr Low T
0,012
trr High T
0,030
trr Low T
0,011
0,020
0,010
0,010
0,009
0,008
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/126
350
15
4
40
60
80
100
I C (A)
0
120
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
5
25/126
350
78
15
10
15
20
25
30 R gon ( Ω ) 35
°C
V
A
V
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
Qrr (mC)
0,80
0,8
0,75
0,70
Qrr High T
Qrr High T
0,7
0,60
Qrr Low T
0,65
0,6
0,50
0,55
0,40
0,5
Qrr Low T
0,30
0,45
0,20
0,4
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/126
350
15
4
40
60
80
100
I C (A)
0
120
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
10
25/126
350
78
15
15
20
25
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
60
30 R g on ( Ω) 35
IrrM (A)
IrrM (A)
70
60
50
IRRM Low T
50
40
IRRM High T
40
30
30
20
20
IRRM Low T
10
10
IRRM high T
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/126
350
15
4
40
60
80
100 I C (A)
120
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
5
25/126
350
78
15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
20000
direc / dt (A/ms)
16000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dtLow T
18000
14000
dIo/dtLow T
16000
12000
di0/dtHigh T
14000
dIrec/dtLow T
12000
10000
dIrec/dtLow T
dIrec/dtHigh T
10000
8000
8000
6000
6000
dIrec/dtHigh T
4000
4000
dI0/dt High T
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/126
350
15
4
40
60
80
100
I C (A) 120
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
5
25/126
350
78
15
10
15
20
25
30 R gon (W) 35
°C
V
A
V
FWD
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
0
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,85
K/W
10-4
10-3
1,09
R (C/W)
0,10
0,32
0,30
0,09
0,04
R (C/W)
0,06
0,22
0,55
0,16
0,10
9
100
t p (s)
101 1
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
1,8E+00
2,8E-01
8,4E-02
1,2E-02
5,0E-04
10-2
Tau (s)
4,1E+00
5,0E-01
1,1E-01
1,1E-02
1,6E-03
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
IGBT
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
210
90
IC (A)
Ptot (W)
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
180
75
150
60
120
45
90
30
60
15
30
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
75
IF (A)
Ptot (W)
175
150
60
125
45
100
75
30
50
15
25
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Input Boost
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
103
VGE (V)
16
IC (A)
10
IGBT
Figure 26
Gate voltage vs Gate charge
14
10uS
100uS
2
120V
12
100mS
10mS
1mS
480V
10
101
8
10
DC
0
6
4
10-1
2
0
0
101
10
At
D=
102
V CE (V)
10
3
0
Tj =
100
Q g (nC)
150
200
At
IG(REF)=1mA, RL=15Ω
single pulse
80
ºC
15
V
Tjmax
ºC
Th =
VGE =
50
MOSFET
Figure 27
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
MOSFET
Figure 28
Gate voltage vs Gate charge
VGE = f(Qg)
10
VGE (V)
ZthJH (K/W)
101
8
120V
0
10
480V
6
4
10-1
2
0
-2
10
-5
10
At
D=
RthJH =
-4
10
-3
10
-2
10
10
-1
0
10
t p (s)
0
1
10 1
10
20
30
40
50
Q g (nC)
60
tp / T
1,05
K/W
At
IC =
18
A
MOSFET thermal model values
R (C/W)
0,06
0,23
0,53
0,15
0,08
0,05
Tau (s)
3,4E+00
4,0E-01
8,8E-02
1,5E-02
1,3E-03
4,7E-04
Copyright by Vincotech
11
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25



NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
KΩ
24000
Thermistor
Figure 2
Typical NTC resistance values
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NBA084FP-M306L48
in DataMatrix as
M306L48
in packaging barcode as
M306L48
Outline
Pinout
Copyright by Vincotech
13
Revision: 2
10-FZ06NBA084FP-M306L48
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
14
Revision: 2