10-FZ06NBA084FP-M306L48 preliminary datasheet flow Boost0 600V/84A PS* Features flow0 12mm housing ● *PS: 2x84A parallel switch (75A IGBT and 99mΩ C6) ● ultrafast IGBT with C6 MOSFET and SiC buck diodes ● symmetric booster ● ultra fast switching frequency ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● FZ06NBA084FP Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 58 76 A 225 A 111 169 W ±20 V 10 480 μs V 175 °C 600 V 49 63 A 210 A 88 133 W 175 °C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤125°C VGE=15V Tjmax Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 17 19 A tp limited by Tjmax Tc=25°C 112 A Th=80°C 111 169 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tj=Tjmax Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 3,5 4,5 6 2,12 2,24 2,72 Input Boost IGBT * Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint none Ω Input capacitance Cies 4000 pF Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,00025 VCE=VGE f=1MHz 75 0 250 400 V uA nA 400 Tj=25°C 30 V pF 115 15 400 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 94 nC 0,85 K/W * see dynamic characteristic at MosFET Input Boost FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 48 Rgon=4 Ω ** 350 15 77 di(rec)max /dt Erec RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,55 1,69 52 43 11 12 0,47 0,60 12292 9335 0,078 0,128 Thermal grease thickness≤50um λ = 1 W/mK 1,75 V A ns μC A/μs mWs 1,10 K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 15 10 V(GS)th VDS=VGS 0,00121 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time td(ON) tr td(OFF) tf Fall time Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH Rgon=4 Ω ** Rgoff=4 Ω ** 350 15 77 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,5 97 193 3 mΩ 3,5 100 5 17 16 6 7 105 124 6 7 0,15 0,29 0,40 0,84 V nA uA ns mWs 119 480 0-10 18,1 Tj=25°C 14 nC 61 2660 f=1MHz 0 100 pF Tj=25°C 154 Thermal grease thickness≤50um λ = 1 W/mK 1,05 K/W ** see gate drive conditions at characteristic figures Copyright by Vincotech 3 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max IGBT gate capacitor C value C 4,7 nF Thermistor Rated resistance* Power dissipation R25 R100 Tj=25°C Tj=100°C P B(25/100) B-value Tol. ±13% Tol. ±5% Tol. ±3% 19,1 1411 22 1486 24,9 1560 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. Copyright by Vincotech 4 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost IGBT+MOSFET IGBT+MOSFET 100 100 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 3 V to 19 V in steps of 2 V IGBT+MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 250 μs 126 °C 3 V to 19 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 5 150 IF (A) IC (A) Tj = Tjmax-25°C Tj = 25°C 125 60 100 45 Tj = Tjmax-25°C 75 30 50 Tj = 25°C 15 25 0 0 0 At tp = VCE = 1 250 10 2 3 4 5 6 7 V (V) GE 8 0 At tp = μs V Copyright by Vincotech 5 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost IGBT+MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) E (mWs) 1,200 E (mWs) IGBT+MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 2,100 Eoff High T Eoff Low T Eon High T 1,800 1,000 1,500 0,800 1,200 Eoff Low T 0,600 Eon Low T 0,900 Eon High T 0,400 0,600 Eon Low T 0,200 0,300 0,000 0,000 0 20 40 60 80 100 I C (A) 0 120 8 16 24 With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = 15 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = °C 25/126 VCE = 350 V VGE = 15 V IC = 78 A MOSFET turn off delayed by 100ns MOSFET turn off delayed by 100ns FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) E (mWs) RG( Ω ) 40 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,160 0,140 32 0,220 0,200 Erec High T Erec High T 0,120 0,180 Erec Low T 0,100 0,160 0,080 0,140 0,060 Erec Low T 0,120 0,040 0,100 0,020 0,000 0,080 0 20 40 60 80 100 I C (A) 120 0 5 10 15 With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = 15 V Rgon = 4 Ω With an inductive load at Tj = 25/126 °C VCE = 350 V VGE = 15 V IC = 78 A MOSFET turn off delayed by 100ns MOSFET turn off delayed by 100ns Copyright by Vincotech 6 20 25 30 R G ( Ω ) 35 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost IGBT+MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT+MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff 0,10 0,10 tdon tr tdon tf tr tf 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 120 100 0 5 10 15 With an inductive load at Tj = 126 °C VCE = 350 V VGE = 15 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 126 °C VCE = 350 V VGE = 15 V IC = 78 A MOSFET turn off delayed by 100ns MOSFET turn off delayed by 100ns FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) 20 30 R G ( Ω ) 35 25 FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,050 trr High T t rr(ms) t rr(ms) 0,014 0,013 0,040 trr Low T 0,012 trr High T 0,030 trr Low T 0,011 0,020 0,010 0,010 0,009 0,008 0,000 0 At Tj = VCE = VGE = Rgon = 20 25/126 350 15 4 40 60 80 100 I C (A) 0 120 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 5 25/126 350 78 15 10 15 20 25 30 R gon ( Ω ) 35 °C V A V Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) Qrr (mC) 0,80 0,8 0,75 0,70 Qrr High T Qrr High T 0,7 0,60 Qrr Low T 0,65 0,6 0,50 0,55 0,40 0,5 Qrr Low T 0,30 0,45 0,20 0,4 At 0 At Tj = VCE = VGE = Rgon = 20 25/126 350 15 4 40 60 80 100 I C (A) 0 120 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 5 10 25/126 350 78 15 15 20 25 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 60 30 R g on ( Ω) 35 IrrM (A) IrrM (A) 70 60 50 IRRM Low T 50 40 IRRM High T 40 30 30 20 20 IRRM Low T 10 10 IRRM high T 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/126 350 15 4 40 60 80 100 I C (A) 120 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 5 25/126 350 78 15 10 15 20 25 30 R gon (W) 35 °C V A V Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 20000 direc / dt (A/ms) 16000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dtLow T 18000 14000 dIo/dtLow T 16000 12000 di0/dtHigh T 14000 dIrec/dtLow T 12000 10000 dIrec/dtLow T dIrec/dtHigh T 10000 8000 8000 6000 6000 dIrec/dtHigh T 4000 4000 dI0/dt High T 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/126 350 15 4 40 60 80 100 I C (A) 120 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 5 25/126 350 78 15 10 15 20 25 30 R gon (W) 35 °C V A V FWD Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 0 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,85 K/W 10-4 10-3 1,09 R (C/W) 0,10 0,32 0,30 0,09 0,04 R (C/W) 0,06 0,22 0,55 0,16 0,10 9 100 t p (s) 101 1 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 1,8E+00 2,8E-01 8,4E-02 1,2E-02 5,0E-04 10-2 Tau (s) 4,1E+00 5,0E-01 1,1E-01 1,1E-02 1,6E-03 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost IGBT IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 210 90 IC (A) Ptot (W) Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) 180 75 150 60 120 45 90 30 60 15 30 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 75 IF (A) Ptot (W) 175 150 60 125 45 100 75 30 50 15 25 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Input Boost IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 103 VGE (V) 16 IC (A) 10 IGBT Figure 26 Gate voltage vs Gate charge 14 10uS 100uS 2 120V 12 100mS 10mS 1mS 480V 10 101 8 10 DC 0 6 4 10-1 2 0 0 101 10 At D= 102 V CE (V) 10 3 0 Tj = 100 Q g (nC) 150 200 At IG(REF)=1mA, RL=15Ω single pulse 80 ºC 15 V Tjmax ºC Th = VGE = 50 MOSFET Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) MOSFET Figure 28 Gate voltage vs Gate charge VGE = f(Qg) 10 VGE (V) ZthJH (K/W) 101 8 120V 0 10 480V 6 4 10-1 2 0 -2 10 -5 10 At D= RthJH = -4 10 -3 10 -2 10 10 -1 0 10 t p (s) 0 1 10 1 10 20 30 40 50 Q g (nC) 60 tp / T 1,05 K/W At IC = 18 A MOSFET thermal model values R (C/W) 0,06 0,23 0,53 0,15 0,08 0,05 Tau (s) 3,4E+00 4,0E-01 8,8E-02 1,5E-02 1,3E-03 4,7E-04 Copyright by Vincotech 11 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e KΩ 24000 Thermistor Figure 2 Typical NTC resistance values [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NBA084FP-M306L48 in DataMatrix as M306L48 in packaging barcode as M306L48 Outline Pinout Copyright by Vincotech 13 Revision: 2 10-FZ06NBA084FP-M306L48 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 14 Revision: 2