V23990-K209-A-PM Maximum Ratings

V23990-K209-A-PM
datasheet
MiniSKiiP® 1 PIM
1200V / 8A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT3 technology
Target Applications
Schematic
● Industrial drives
Types
● V23990-K209-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
29
A
220
A
240
A2s
46
W
Tjmax
150
°C
VCE
1200
V
18
A
24
A
62
W
±20
V
10
900
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
half sine wave
Tj=Tjmax
Th=80°C
Tj=25°C
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 3
V23990-K209-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
12
A
29
A
28
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
V23990-K209-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
D8,D9,D10,D11,D12,D13
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink
1500
RthJH
Thermal grease
thickness≤50um
λ =1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,51
1,42
0,86
0,79
0,03
0,03
V
V
Ω
0,05
mA
K/W
1,5
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00015
15
8
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
5
5,8
5,6
1,1
1,75
1,85
1,9
0,03
300
Rgoff=54 Ω
Rgon=54 Ω
±15
600
8
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
46
44
21
27
317
385
96
174
0,65
0,82
0,54
0,82
ns
mWs
551
f=1MHz
0
Tj=25°C
25
40
pF
17
±15
Tj=25°C
Thermal grease
thickness≤50um
λ =1 W/mK
58
nC
1,5
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
5
IRRM
trr
Qrr
diF/dt=tbd A/us
600
0
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink
RthJH
8
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,55
1,57
7,8
8,8
434
610
1,16
1,77
75
38
0,48
0,75
Thermal grease
thickness≤50um
λ =1 W/mK
1,77
V
A
ns
µC
A/µs
mWs
2,5
K/W
1000
Ω
PTC
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
R
-3
3
1670,313
Ω
1/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
Vincotech NTC Reference
copyright Vincotech
%
T=100°C
1/K²
E
3
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
20
IC (A)
IF (A)
12
5
16
9
12
Tj = 25°C
6
Tj = Tjmax-25°C
8
3
Tj = 25°C
4
Tj = Tjmax-25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
1
250
µs
1,5
2
2,5
V F (V)
3
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
1,5
E (mWs)
2
Eon High T
1,6
Eon High T
1,2
Eon Low T
Eoff High T
1,2
0,9
Eon Low T
Eoff High T
Eoff Low T
0,8
0,6
Eoff Low T
0,3
0,4
0
0
0
3
6
9
12
I C (A)
15
0
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
81
Rgoff =
81
Ω
80
120
160
RG(Ω)
200
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
IC =
8
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1
0,8
Erec
0,8
E (mWs)
E (mWs)
40
Tj = Tjmax -25°C
Erec
Tj = Tjmax -25°C
0,6
Erec
0,6
Tj = 25°C
Erec
Tj = 25°C
0,4
0,4
0,2
0,2
0
0
0
3
6
9
12
I C (A)
15
0
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
±15
V
Rgon =
81
Ω
copyright Vincotech
40
80
120
160
R G ( Ω ) 200
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
5
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tf
tf
0,1
0,1
tdon
tdon
tr
tr
0,01
0,01
0,001
0,001
0
2
4
6
8
10
12
I C (A) 16
14
0
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
Rgon =
Ω
81
Rgoff =
81
Ω
40
80
120
160
R G ( Ω ) 200
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
8
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,8
t rr( µs)
0,8
trr
Tj = Tjmax -25°C
trr
Tj = Tjmax -25°C
0,6
0,6
trr
trr
Tj = 25°C
Tj = 25°C
0,4
0,4
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/125
600
±15
81
copyright Vincotech
8
12
I C (A)
16
°C
V
V
Ω
6
0
40
At
Tj =
VR =
IF =
VGE =
25/125
600
8
±15
80
120
160
R g on ( Ω )
200
°C
V
A
V
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr( µC)
2,5
Qrr( µC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr
2
2
Tj = Tjmax -25°C
Qrr
1,6
Tj = Tjmax -25°C
Qrr
1,5
1,2
Qrr
Tj = 25°C
Tj = 25°C
1
0,8
0,5
0,4
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
0
4
8
12
I C (A)
16
°C
V
V
Ω
25/125
600
±15
81
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
40
At
Tj =
VR =
IF =
VGE =
25/125
600
8
±15
80
120
160
R g on ( Ω)
200
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
12
IrrM (A)
IrrM (A)
10
Tj = Tjmax -25°C
IRRM
8
Tj = 25°C
IRRM
9
Tj = Tjmax - 25°C
6
IRRM
IRRM
Tj = 25°C
6
4
3
2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/125
600
±15
81
copyright Vincotech
8
12
I C (A)
16
°C
V
V
Ω
7
0
40
At
Tj =
VR =
IF =
VGE =
25/125
600
8
±15
80
120
160
R gon ( Ω ) 200
°C
V
A
V
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
500
dI0/dt
direc / dt (A/ µs)
direc / dt (A/µ s)
400
dI0/dt
dIrec/dt
dIrec/dt
400
300
300
200
200
100
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
4
25/125
600
±15
81
8
I C (A)
12
16
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
25/125
600
8
±15
80
120
R gon ( Ω ) 200
160
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
10
0
10
-1
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-5
1
10 10
At
D=
RthJH =
tp / T
1,5
K/W
10-4
10-3
R (K/W)
0,06
0,18
0,56
0,46
0,19
0,10
R (K/W)
0,05
0,25
0,88
0,73
0,33
0,26
8
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
2,5
IGBT thermal model values
Tau (s)
1,0E+01
5,8E-01
9,9E-02
1,8E-02
2,8E-03
2,9E-04
10-2
Tau (s)
9,0E+00
6,6E-01
1,2E-01
2,9E-02
4,8E-03
6,9E-04
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
25
IC (A)
Ptot (W)
120
100
20
80
15
60
10
40
5
20
0
0
0
At
Tj =
50
100
T h ( o C)
150
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
60
200
16
45
12
30
8
15
4
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
°C
9
30
150
60
90
o
120 T h ( C)
150
°C
Revision: 3
V23990-K209-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
20
IC (A)
VGE (V)
103
17,5
100uS
240V
1mS
102
15
960V
12,5
10mS
100mS
10
101
7,5
DC
10
5
0
2,5
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
25
37,5
50
62,5
75
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
12,5
10
8
A
Revision: 3
V23990-K209-A-PM
datasheet
D8,D9,D10,D11,D12,D13
Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
1
IF (A)
ZthJC (K/W)
10
30
100
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
Tj = Tjmax-25°C
10-1
10
Tj = 25°C
0
0
0,5
1
1,5
10-2
2
V F (V)
10-5
At
tp =
At
D=
RthJH =
µs
250
Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
t p (s)
101 10
tp / T
1,5
K/W
Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
10-4
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3
V23990-K209-A-PM
datasheet
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 3
V23990-K209-A-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 81 Ω
Rgon
Rgoff
= 81 Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
%
125
tEoff
%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
VCE
IC
200
100
VCE 90%
VGE 90%
150
75
VGE
IC
VCE
100
50
VGE
tdoff
tdon
25
50
IC 1%
0
-25
-0,2
VCE 3%
IC10%
VGE10%
0
tEon
-50
0
0,2
0,4
0,6
0,8
2,5
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
600
8
0,39
0,64
2,6
Output inverter IGBT
Figure 3
2,7
2,8
-15
15
600
8
0,04
0,48
V
V
V
A
µs
µs
2,9
time(us)
3,1
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3
Turn-on Switching Waveforms & definition of tr
250
120
fitted
%
IC
100
%
VCE
Ic
200
IC 90%
80
150
IC 60%
60
100
IC90%
IC 40%
40
VCE
tr
50
20
IC10%
0
IC 10%
0
tf
-50
-20
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
600
8
0,17
0,4
0,5
time (us)
2,7
0,6
2,75
2,8
2,85
2,9
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
8
0,03
V
A
µs
Revision: 3
V23990-K209-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
200
Pon
%
%
Eoff
100
150
IC 1%
Poff
75
Eon
100
50
50
25
VGE 90%
Uce3%
Uge10%
0
tEon
0
tEoff
-25
-0,2
-50
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
4,79
0,82
0,64
0,4
0,6
time (us)
0,8
2,5
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,6
2,7
2,8
4,79
0,82
0,48
kW
mJ
µs
2,9
3
time(us)
3,1
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
Id
100
%
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
2,6
2,8
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3
600
8
9
0,61
3,2
3,4
time(us)
3,6
V
A
A
µs
14
Revision: 3
V23990-K209-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
Id
100
%
Qrr
Erec
100
tQrr
50
75
0
50
-50
25
tErec
Prec
0
-100
-25
-150
2,6
2,8
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3
8
1,77
1,08
3,2
3,4
3,6
2,6
3,8
4
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
2,8
3
4,79
0,75
1,08
3,2
3,4
3,6
3,8
time(us)
4
kW
mJ
µs
Revision: 3
V23990-K209-A-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K209-A-/0A/-PM
V23990-K209-A-/1A/-PM
V23990-K209-A-/0B/-PM
V23990-K209-A-/1B/-PM
K209A
K209A
K209A
K209A
in packaging barcode as
K209A-/0A/
K209A-/1A/
K209A-/0B/
K209A-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 3
V23990-K209-A-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 3