V23990-K209-A-PM datasheet MiniSKiiP® 1 PIM 1200V / 8A MiniSKiiP® 1 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT3 technology Target Applications Schematic ● Industrial drives Types ● V23990-K209-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 29 A 220 A 240 A2s 46 W Tjmax 150 °C VCE 1200 V 18 A 24 A 62 W ±20 V 10 900 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms half sine wave Tj=Tjmax Th=80°C Tj=25°C Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Revision: 3 V23990-K209-A-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 12 A 29 A 28 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 V23990-K209-A-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max D8,D9,D10,D11,D12,D13 Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink 1500 RthJH Thermal grease thickness≤50um λ =1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,51 1,42 0,86 0,79 0,03 0,03 V V Ω 0,05 mA K/W 1,5 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00015 15 8 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH 5 5,8 5,6 1,1 1,75 1,85 1,9 0,03 300 Rgoff=54 Ω Rgon=54 Ω ±15 600 8 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 46 44 21 27 317 385 96 174 0,65 0,82 0,54 0,82 ns mWs 551 f=1MHz 0 Tj=25°C 25 40 pF 17 ±15 Tj=25°C Thermal grease thickness≤50um λ =1 W/mK 58 nC 1,5 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 5 IRRM trr Qrr diF/dt=tbd A/us 600 0 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink RthJH 8 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,55 1,57 7,8 8,8 434 610 1,16 1,77 75 38 0,48 0,75 Thermal grease thickness≤50um λ =1 W/mK 1,77 V A ns µC A/µs mWs 2,5 K/W 1000 Ω PTC Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C R -3 3 1670,313 Ω 1/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Vincotech NTC Reference copyright Vincotech % T=100°C 1/K² E 3 Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 20 IC (A) IF (A) 12 5 16 9 12 Tj = 25°C 6 Tj = Tjmax-25°C 8 3 Tj = 25°C 4 Tj = Tjmax-25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 1 250 µs 1,5 2 2,5 V F (V) 3 Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 1,5 E (mWs) 2 Eon High T 1,6 Eon High T 1,2 Eon Low T Eoff High T 1,2 0,9 Eon Low T Eoff High T Eoff Low T 0,8 0,6 Eoff Low T 0,3 0,4 0 0 0 3 6 9 12 I C (A) 15 0 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = Ω 81 Rgoff = 81 Ω 80 120 160 RG(Ω) 200 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V IC = 8 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1 0,8 Erec 0,8 E (mWs) E (mWs) 40 Tj = Tjmax -25°C Erec Tj = Tjmax -25°C 0,6 Erec 0,6 Tj = 25°C Erec Tj = 25°C 0,4 0,4 0,2 0,2 0 0 0 3 6 9 12 I C (A) 15 0 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = ±15 V Rgon = 81 Ω copyright Vincotech 40 80 120 160 R G ( Ω ) 200 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = ±15 V IC = 8 A 5 Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff tf tf 0,1 0,1 tdon tdon tr tr 0,01 0,01 0,001 0,001 0 2 4 6 8 10 12 I C (A) 16 14 0 With an inductive load at Tj = °C 125 VCE = 600 V VGE = ±15 V Rgon = Ω 81 Rgoff = 81 Ω 40 80 120 160 R G ( Ω ) 200 With an inductive load at Tj = 125 °C VCE = 600 V VGE = ±15 V IC = 8 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,8 t rr( µs) 0,8 trr Tj = Tjmax -25°C trr Tj = Tjmax -25°C 0,6 0,6 trr trr Tj = 25°C Tj = 25°C 0,4 0,4 0,2 0,2 0 0 0 At Tj = VCE = VGE = Rgon = 4 25/125 600 ±15 81 copyright Vincotech 8 12 I C (A) 16 °C V V Ω 6 0 40 At Tj = VR = IF = VGE = 25/125 600 8 ±15 80 120 160 R g on ( Ω ) 200 °C V A V Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr( µC) 2,5 Qrr( µC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr 2 2 Tj = Tjmax -25°C Qrr 1,6 Tj = Tjmax -25°C Qrr 1,5 1,2 Qrr Tj = 25°C Tj = 25°C 1 0,8 0,5 0,4 0 At 0 At Tj = VCE = VGE = Rgon = 0 4 8 12 I C (A) 16 °C V V Ω 25/125 600 ±15 81 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 40 At Tj = VR = IF = VGE = 25/125 600 8 ±15 80 120 160 R g on ( Ω) 200 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 12 IrrM (A) IrrM (A) 10 Tj = Tjmax -25°C IRRM 8 Tj = 25°C IRRM 9 Tj = Tjmax - 25°C 6 IRRM IRRM Tj = 25°C 6 4 3 2 0 0 0 At Tj = VCE = VGE = Rgon = 4 25/125 600 ±15 81 copyright Vincotech 8 12 I C (A) 16 °C V V Ω 7 0 40 At Tj = VR = IF = VGE = 25/125 600 8 ±15 80 120 160 R gon ( Ω ) 200 °C V A V Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 500 dI0/dt direc / dt (A/ µs) direc / dt (A/µ s) 400 dI0/dt dIrec/dt dIrec/dt 400 300 300 200 200 100 100 0 0 0 At Tj = VCE = VGE = Rgon = 4 25/125 600 ±15 81 8 I C (A) 12 16 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 25/125 600 8 ±15 80 120 R gon ( Ω ) 200 160 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 10 0 10 -1 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-5 1 10 10 At D= RthJH = tp / T 1,5 K/W 10-4 10-3 R (K/W) 0,06 0,18 0,56 0,46 0,19 0,10 R (K/W) 0,05 0,25 0,88 0,73 0,33 0,26 8 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 2,5 IGBT thermal model values Tau (s) 1,0E+01 5,8E-01 9,9E-02 1,8E-02 2,8E-03 2,9E-04 10-2 Tau (s) 9,0E+00 6,6E-01 1,2E-01 2,9E-02 4,8E-03 6,9E-04 Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 25 IC (A) Ptot (W) 120 100 20 80 15 60 10 40 5 20 0 0 0 At Tj = 50 100 T h ( o C) 150 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 20 Ptot (W) IF (A) 60 200 16 45 12 30 8 15 4 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = °C 9 30 150 60 90 o 120 T h ( C) 150 °C Revision: 3 V23990-K209-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 20 IC (A) VGE (V) 103 17,5 100uS 240V 1mS 102 15 960V 12,5 10mS 100mS 10 101 7,5 DC 10 5 0 2,5 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 25 37,5 50 62,5 75 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 12,5 10 8 A Revision: 3 V23990-K209-A-PM datasheet D8,D9,D10,D11,D12,D13 Diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 1 IF (A) ZthJC (K/W) 10 30 100 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = Tjmax-25°C 10-1 10 Tj = 25°C 0 0 0,5 1 1,5 10-2 2 V F (V) 10-5 At tp = At D= RthJH = µs 250 Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 t p (s) 101 10 tp / T 1,5 K/W Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 10-4 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-K209-A-PM datasheet Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 3 V23990-K209-A-PM datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 81 Ω Rgon Rgoff = 81 Ω Output inverter IGBT Figure 1 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 % 125 tEoff % Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) VCE IC 200 100 VCE 90% VGE 90% 150 75 VGE IC VCE 100 50 VGE tdoff tdon 25 50 IC 1% 0 -25 -0,2 VCE 3% IC10% VGE10% 0 tEon -50 0 0,2 0,4 0,6 0,8 2,5 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 600 8 0,39 0,64 2,6 Output inverter IGBT Figure 3 2,7 2,8 -15 15 600 8 0,04 0,48 V V V A µs µs 2,9 time(us) 3,1 Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3 Turn-on Switching Waveforms & definition of tr 250 120 fitted % IC 100 % VCE Ic 200 IC 90% 80 150 IC 60% 60 100 IC90% IC 40% 40 VCE tr 50 20 IC10% 0 IC 10% 0 tf -50 -20 0,1 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 600 8 0,17 0,4 0,5 time (us) 2,7 0,6 2,75 2,8 2,85 2,9 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 8 0,03 V A µs Revision: 3 V23990-K209-A-PM datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 Pon % % Eoff 100 150 IC 1% Poff 75 Eon 100 50 50 25 VGE 90% Uce3% Uge10% 0 tEon 0 tEoff -25 -0,2 -50 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 4,79 0,82 0,64 0,4 0,6 time (us) 0,8 2,5 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,6 2,7 2,8 4,79 0,82 0,48 kW mJ µs 2,9 3 time(us) 3,1 Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 Id 100 % trr 50 Vd fitted 0 IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 2,6 2,8 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3 600 8 9 0,61 3,2 3,4 time(us) 3,6 V A A µs 14 Revision: 3 V23990-K209-A-PM datasheet Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % Id 100 % Qrr Erec 100 tQrr 50 75 0 50 -50 25 tErec Prec 0 -100 -25 -150 2,6 2,8 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3 8 1,77 1,08 3,2 3,4 3,6 2,6 3,8 4 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 2,8 3 4,79 0,75 1,08 3,2 3,4 3,6 3,8 time(us) 4 kW mJ µs Revision: 3 V23990-K209-A-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K209-A-/0A/-PM V23990-K209-A-/1A/-PM V23990-K209-A-/0B/-PM V23990-K209-A-/1B/-PM K209A K209A K209A K209A in packaging barcode as K209A-/0A/ K209A-/1A/ K209A-/0B/ K209A-/1B/ Outline Pinout copyright Vincotech 16 Revision: 3 V23990-K209-A-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 3