V23990-P718-*-PM flow 90CON 1 1600V/50A Features flow 90 housing ● 3~ phase input rectifier with or withot BRC *optional half controlled ● Compatible with flow 90PACK 1 ● Support designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting Target Applications Schematic ● Motor drives ● Servo drives Types ● V23990-P718-G-PM ● V23990-P718-G10-PM half controlled ● V23990-P718-H-PM w/o brake ● V23990-P718-H10-PM half controlled, w/o brake Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 52 71 A 850 A 3610 A2s 61 92 W Tjmax 150 °C VRRM 1600 V 43 50 A 620 A 1920 A 2s Input Rectifier Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=45°C Tj=Tjmax Th=80°C Tc=80°C Input Rectifier Thyristor Repetitive peak reverse voltage Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Thyristor Ptot Maximum Junction Temperature copyright Vincotech sine,d=0.5 Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=45°C Tj=Tjmax Tjmax Th=80°C Tc=80°C 60 91 150 1 W °C Revision: 3 V23990-P718-*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 31 40 A 105 A 73 110 W ±20 V Brake IGBT Collector-emitter Break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature Th=80°C Tc=80°C tSC Tj≤150°C 10 µs VCC VGE=15V 1200 V Tjmax 150 °C VRRM 1200 V 8 8 A 6 A Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Brake Inverse Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 20 30 W Tjmax 150 °C VRRM 1200 V 14 19 A 30 A Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 29 44 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 V23990-P718-*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,23 1,21 0,92 0,81 5,0 6,8 1,5 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 59 Slope resistance (for power loss calc. only) rt 59 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 59 1500 V mΩ 0,05 Thermal grease thickness≤50um λ = 0,61 W/mK V mA K/W 1,15 Input Rectifier Thyristor Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Gate controlled delay time Gate controlled rise time Critical rate of rise of off-state voltage Critical rate of rise of on-state current tGD 0,048 VD=6 V 35 35 1200 IG=0,5A VD=1/2 VDRM tGR VD=2/3 VDRM linear voltage rise VD=2/3 VDRM (di/dt)cr IG=0,45A; f=50Hz (dv/dt)cr Circuit commutated turn-off time tq Holding current IH Latching current IL VD=2/3 VDRM Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tp=200 µs tp=200 µs 42 100 42 IG=0,45A tp=10 µs VGT VD=6 V IGT VD=6 V Gate non-trigger voltage VGD VD=2/3 VDRM Tj=150°C Gate non-trigger current IGD VD=2/3 VDRM Tj=150°C RthJH VGE(th) VCE=VGE V V mΩ mA µs µs tbd. 1000 500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Gate trigger current 1,9 0,05 5 2 Tj=150°C Gate trigger voltage Thermal resistance chip to heatsink per chip 1,36 1,38 1,00 0,89 0,01 0,01 Tj=150°C VD=6 V Thermal grease thickness≤50um λ = 0,61 W/mK 1 V/µs A/µs µs 150 75 mA 125 mA 1,5 50 0,2 5 V mA V mA K/W 1,16 Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0015 15 35 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time td(on) tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate copyright Vincotech RthJH 5 5,8 6,5 1,3 2,11 2,40 2,25 0,25 650 6 Rgint Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgon=32 Ω Rgoff=16 Ω ±15 600 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 56 56 19 26 492 577 109 167 2,06 2,42 1,79 2,79 V V mA nA Ω ns mWs 2530 f=1MHz 0 25 Tj=25°C 132 pF 115 Tj=25°C Thermal grease thickness≤50um λ = 0,61 W/mK 3 205 nC 0,96 K/W Revision: 3 V23990-P718-*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj 3 Tj=25°C Tj=125°C Unit Min Typ Max 1 1,60 1,57 2,2 Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH Thermal grease thickness≤50um λ = 0,61 W/mK 3,22 V K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip copyright Vincotech ±15 300 25 IRRM Reverse recovery time Peak rate of fall of recovery current 15 Rgon=32 Ω ±15 300 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 0,61 W/mK 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 2,07 2,45 250 16,77 17,11 332 505 1,79 2,78 495 210 1,79 2,78 2,40 4 2,3 V µA A ns µC A/µs mWs K/W Revision: 3 V23990-P718-*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 V CE (V) 4 IF (A) IC (A) 30 25 25 20 20 15 15 10 10 Tj = Tjmax-25°C 5 5 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 5 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 3 V23990-P718-*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 6 E (mWs) 7 E (mWs) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 6 Eon Tj = Tjmax -25°C 5 Eon Eon 5 Tj = Tjmax -25°C 4 Eoff 4 Eoff 3 Eoff 3 Eoff 2 2 0 0 0 5 10 15 20 25 30 35 40 I C45(A) 0 50 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 20 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = 15 V IC = 25 A Brake IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,4 1,4 Tj = Tjmax - 25°C E (mWs) E (mWs) Tj = 25°C 1 Tj = 25°C 1 Erec 1,2 1,2 Tj = Tjmax -25°C 1 1 Erec Tj = 25°C E rec 0,8 0,8 0,6 0,6 Tj = 25°C Erec 0,4 0,4 0,2 0,2 0 0 0 0 5 10 15 20 25 30 35 40 I C45(A) With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = 15 V Rgon = 32 Ω copyright Vincotech 20 40 50 60 80 100 120 RG (Ω ) 140 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = 15 V IC = 25 A 6 Revision: 3 V23990-P718-*-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 10 t ( µs) 1 tdoff tdoff 1 tf 0,1 tdon tr tdon tf 0,1 tr 0,01 0,01 0,001 0,001 0 10 20 30 I C (A) 40 50 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 40 60 80 100 120 R G ( Ω ) 140 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V IC = 25 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 10 20 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,96 copyright Vincotech 10-3 10-2 10-1 100 t p (s) 101 10 K/W 7 10-5 10-4 10-3 At D= RthJH = tp / T 2,40 K/W 10-2 10-1 100 t p (s) 101 10 Revision: 3 V23990-P718-*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 160 140 40 120 100 30 80 20 60 40 10 20 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 30 150 15 60 90 120 150 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 70 T h ( o C) 60 20 50 15 40 30 10 20 5 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 8 30 150 60 90 120 Th ( o C) 150 ºC Revision: 3 V23990-P718-*-PM Brake Inverse Diode Brake inverse diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 ZthJC (K/W) IF (A) 101 15 100 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 5 Tj = Tjmax-25°C Tj = 25°C 0 0 1 At tp = 2 3 10-2 4 µs 250 Brake inverse diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 10-3 At D= RthJH = tp / T 3,22 K/W 10-2 10-1 t p (s) 10110 Brake inverse diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 100 8 IF (A) Ptot (W) VF (V) 40 6 30 4 20 2 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 Th ( C) 150 0 At Tj = ºC 9 30 150 60 90 120 Th ( o C) 150 ºC Revision: 3 V23990-P718-*-PM Input Rectifier Diode Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 IF (A) ZthJC (K/W) 101 80 10 0 10 -1 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 At tp = 1 VF (V) 10-2 1,5 10-5 At D= RthJH = µs 250 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 t p (s) 10110 tp / T 1,15 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 140 100 120 80 100 60 80 60 40 40 20 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = ºC 10 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-P718-*-PM Thyristor Thyristor Figure 1 Typical thyristor forward current as a function of forward voltage IF= f(VF) Thyristor Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 50 ZthJC (K/W) IF (A) 60 40 10 0 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 At tp = 0,25 0,5 0,75 1 1,25 1,75 VF (V) 2 1,5 10-5 At D= RthJH = µs 250 Thyristor Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 10110 tp / T 1,16 K/W Thyristor Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 150 t p (s) Ptot (W) IF (A) 60 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-P718-*-PM Thyristor Thyristor Figure 5 Gate trigger characteristics 10 VG(V) 2 75W (0,1ms) 20V;20 Ohm 10 1 PG(tp) VGT 10 0 TJ=125oC 50W (0,5ms) TJ=25oC 25W (8ms) TJ=-40oC VGD IGT 10 IGD - 10- copyright Vincotech 10- 10- 100 12 10 10 1 2 IG(A) Revision: 3 V23990-P718-*-PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 4Ω Rgoff = 4Ω Output inverter IGBT Figure 1 120 % tdoff Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 % 180 Uce 100 Uge 90% Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Ic 160 Uce 90% 140 80 Uge 120 60 Uce Uge 100 Ic 80 40 tEoff tdon 60 20 40 Ic 1% 20 0 Uge10% -20 -0,2 Uce3% Ic10% 0 tEon -20 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 600 100 0,29 0,67 0,4 0,6 0,8 time (us) 4,9 5,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 % Uce Ic 5,3 -15 15 600 100 0,11 0,39 5,4 5,5 5,6 5,7 time(us) V V V A µs µs Output inverter IGBT Turn-on Switching Waveforms & definition of tr 120 fitted 5,2 Figure 4 Turn-off Switching Waveforms & definition of tf % 5 180 Ic 160 100 140 Ic 90% 80 120 Uce 100 60 Ic90% Ic 60% 80 40 Ic 40% tr 60 40 20 Ic10% 20 Ic10% 0 0 tf -20 0,15 -20 0,2 0,25 VC (100%) = IC (100%) = tf = copyright Vincotech 0,3 600 100 0,11 0,35 0,4 0,45 0,5 0,55 4,9 0,6 0,65 time (us) 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) VC (100%) = IC (100%) = tr = V A µs 13 600 100 0,03 V A µs Revision: 3 V23990-P718-*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Eoff 100 Pon % Ic 1% 140 80 Eon 100 60 40 60 20 Uge90% 20 Uce3% Uge10% 0 tEoff tEon -20 -20 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,3 59,91 8,87 0,67 0,4 0,5 0,6 0,7 0,8 time (us) 4,9 5 5,1 Pon (100%) = Eon (100%) = tEon = kW mJ µs 5,2 59,91 12,48 0,39 5,3 5,4 5,5 5,6 time(us) kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 Ud fitted 0 IRRM10% -40 IRRM90% -80 IRRM100% -120 4,7 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 14 4,9 5,1 600 100 -83 0,51 5,3 5,5 5,7 5,9 6,1 time(us) V A A µs Revision: 3 V23990-P718-*-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id 100 Erec 100 Qrr 80 tErec tQrr 50 60 40 0 20 Prec -50 0 -100 -20 4,8 5 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 5,2 5,4 100 20,73 1,03 5,6 5,8 6 6,2 6,4 time(us) 4,8 Prec (100%) = Erec (100%) = tErec = A µC µs 15 5 5,2 5,4 59,91 7,85 1,03 5,6 5,8 6 6,2 6,4 time(us) kW mJ µs Revision: 3 V23990-P718-*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing without thermal paste 12mm housing without thermal paste 12mm housing Ordering Code V23990-P718-G-PM V23990-P718-G10-PM V23990-P718-H-PM V23990-P718-H10-PM in DataMatrix as P718-G P718-G10 P718-H P718-H10 in packaging barcode as P718-G P718-G10 P718-H P718-H10 Outline Pin table Pin X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 53 50,1 47,2 40,2 37,3 34,4 27,4 24,5 21,6 18,7 15,8 12,9 7,1 0 0 3 7 9,9 12,8 44 47 50 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 Pinout copyright Vincotech 16 Revision: 3 V23990-P718-*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 3