V23990-P718-*-PM Maximum Ratings

V23990-P718-*-PM
flow 90CON 1
1600V/50A
Features
flow 90 housing
● 3~ phase input rectifier with or withot BRC
*optional half controlled
● Compatible with flow 90PACK 1
● Support designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
Target Applications
Schematic
● Motor drives
● Servo drives
Types
● V23990-P718-G-PM
● V23990-P718-G10-PM half controlled
● V23990-P718-H-PM w/o brake
● V23990-P718-H10-PM half controlled, w/o brake
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
52
71
A
850
A
3610
A2s
61
92
W
Tjmax
150
°C
VRRM
1600
V
43
50
A
620
A
1920
A 2s
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=45°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Rectifier Thyristor
Repetitive peak reverse voltage
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Thyristor
Ptot
Maximum Junction Temperature
copyright Vincotech
sine,d=0.5
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=45°C
Tj=Tjmax
Tjmax
Th=80°C
Tc=80°C
60
91
150
1
W
°C
Revision: 3
V23990-P718-*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
31
40
A
105
A
73
110
W
±20
V
Brake IGBT
Collector-emitter Break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
Th=80°C
Tc=80°C
tSC
Tj≤150°C
10
µs
VCC
VGE=15V
1200
V
Tjmax
150
°C
VRRM
1200
V
8
8
A
6
A
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
20
30
W
Tjmax
150
°C
VRRM
1200
V
14
19
A
30
A
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
29
44
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
V23990-P718-*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,23
1,21
0,92
0,81
5,0
6,8
1,5
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
59
Slope resistance (for power loss calc. only)
rt
59
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
59
1500
V
mΩ
0,05
Thermal grease
thickness≤50um
λ = 0,61 W/mK
V
mA
K/W
1,15
Input Rectifier Thyristor
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Gate controlled delay time
Gate controlled rise time
Critical rate of rise of off-state voltage
Critical rate of rise of on-state current
tGD
0,048
VD=6 V
35
35
1200
IG=0,5A
VD=1/2 VDRM
tGR
VD=2/3 VDRM
linear voltage rise
VD=2/3 VDRM
(di/dt)cr
IG=0,45A; f=50Hz
(dv/dt)cr
Circuit commutated turn-off time
tq
Holding current
IH
Latching current
IL
VD=2/3 VDRM
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tp=200 µs
tp=200 µs
42
100
42
IG=0,45A
tp=10 µs
VGT
VD=6 V
IGT
VD=6 V
Gate non-trigger voltage
VGD
VD=2/3 VDRM
Tj=150°C
Gate non-trigger current
IGD
VD=2/3 VDRM
Tj=150°C
RthJH
VGE(th)
VCE=VGE
V
V
mΩ
mA
µs
µs
tbd.
1000
500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Gate trigger current
1,9
0,05
5
2
Tj=150°C
Gate trigger voltage
Thermal resistance chip to heatsink per chip
1,36
1,38
1,00
0,89
0,01
0,01
Tj=150°C
VD=6 V
Thermal grease
thickness≤50um
λ = 0,61 W/mK
1
V/µs
A/µs
µs
150
75
mA
125
mA
1,5
50
0,2
5
V
mA
V
mA
K/W
1,16
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0015
15
35
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Turn-on delay time
Rise time
Turn-off delay time
Fall time
td(on)
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
copyright Vincotech
RthJH
5
5,8
6,5
1,3
2,11
2,40
2,25
0,25
650
6
Rgint
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgon=32 Ω
Rgoff=16 Ω
±15
600
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
56
56
19
26
492
577
109
167
2,06
2,42
1,79
2,79
V
V
mA
nA
Ω
ns
mWs
2530
f=1MHz
0
25
Tj=25°C
132
pF
115
Tj=25°C
Thermal grease
thickness≤50um
λ = 0,61 W/mK
3
205
nC
0,96
K/W
Revision: 3
V23990-P718-*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
3
Tj=25°C
Tj=125°C
Unit
Min
Typ
Max
1
1,60
1,57
2,2
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
Thermal grease
thickness≤50um
λ = 0,61 W/mK
3,22
V
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
±15
300
25
IRRM
Reverse recovery time
Peak rate of fall of recovery current
15
Rgon=32 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 0,61 W/mK
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
2,07
2,45
250
16,77
17,11
332
505
1,79
2,78
495
210
1,79
2,78
2,40
4
2,3
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 3
V23990-P718-*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
60
IC (A)
IC (A)
60
50
50
40
40
30
30
20
20
10
10
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
V CE (V)
4
IF (A)
IC (A)
30
25
25
20
20
15
15
10
10
Tj = Tjmax-25°C
5
5
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V) 10
0
At
tp =
µs
V
5
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
µs
Revision: 3
V23990-P718-*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
6
E (mWs)
7
E (mWs)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
6
Eon
Tj = Tjmax -25°C
5
Eon
Eon
5
Tj = Tjmax -25°C
4
Eoff
4
Eoff
3
Eoff
3
Eoff
2
2
0
0
0
5
10
15
20
25
30
35
40
I C45(A)
0
50
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
20
40
60
80
100
120
R G ( Ω ) 140
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
15
V
IC =
25
A
Brake IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,4
1,4
Tj = Tjmax - 25°C
E (mWs)
E (mWs)
Tj = 25°C
1
Tj = 25°C
1
Erec
1,2
1,2
Tj = Tjmax -25°C
1
1
Erec
Tj = 25°C
E rec
0,8
0,8
0,6
0,6
Tj = 25°C
Erec
0,4
0,4
0,2
0,2
0
0
0
0
5
10
15
20
25
30
35
40
I C45(A)
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
15
V
Rgon =
32
Ω
copyright Vincotech
20
40
50
60
80
100
120
RG (Ω )
140
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
15
V
IC =
25
A
6
Revision: 3
V23990-P718-*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
10
t ( µs)
1
tdoff
tdoff
1
tf
0,1
tdon
tr
tdon
tf
0,1
tr
0,01
0,01
0,001
0,001
0
10
20
30
I C (A)
40
50
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
40
60
80
100
120
R G ( Ω ) 140
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
IC =
25
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
10
20
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,96
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
101 10
K/W
7
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,40
K/W
10-2
10-1
100
t p (s)
101 10
Revision: 3
V23990-P718-*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
160
140
40
120
100
30
80
20
60
40
10
20
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
30
150
15
60
90
120
150
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
70
T h ( o C)
60
20
50
15
40
30
10
20
5
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
8
30
150
60
90
120
Th ( o C)
150
ºC
Revision: 3
V23990-P718-*-PM
Brake Inverse Diode
Brake inverse diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
ZthJC (K/W)
IF (A)
101
15
100
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
5
Tj = Tjmax-25°C
Tj = 25°C
0
0
1
At
tp =
2
3
10-2
4
µs
250
Brake inverse diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
10-3
At
D=
RthJH =
tp / T
3,22
K/W
10-2
10-1
t p (s)
10110
Brake inverse diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
100
8
IF (A)
Ptot (W)
VF (V)
40
6
30
4
20
2
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 Th ( C)
150
0
At
Tj =
ºC
9
30
150
60
90
120
Th ( o C)
150
ºC
Revision: 3
V23990-P718-*-PM
Input Rectifier Diode
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
IF (A)
ZthJC (K/W)
101
80
10
0
10
-1
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
At
tp =
1
VF (V)
10-2
1,5
10-5
At
D=
RthJH =
µs
250
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
t p (s)
10110
tp / T
1,15
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
140
100
120
80
100
60
80
60
40
40
20
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
10
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3
V23990-P718-*-PM
Thyristor
Thyristor
Figure 1
Typical thyristor forward current as
a function of forward voltage
IF= f(VF)
Thyristor
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
50
ZthJC (K/W)
IF (A)
60
40
10
0
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0
At
tp =
0,25
0,5
0,75
1
1,25
1,75 VF (V) 2
1,5
10-5
At
D=
RthJH =
µs
250
Thyristor
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
10110
tp / T
1,16
K/W
Thyristor
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
150
t p (s)
Ptot (W)
IF (A)
60
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3
V23990-P718-*-PM
Thyristor
Thyristor
Figure 5
Gate trigger characteristics
10
VG(V)
2
75W
(0,1ms)
20V;20 Ohm
10
1
PG(tp)
VGT
10
0
TJ=125oC
50W
(0,5ms)
TJ=25oC
25W
(8ms)
TJ=-40oC
VGD
IGT
10
IGD
-
10-
copyright Vincotech
10-
10-
100
12
10
10
1
2
IG(A)
Revision: 3
V23990-P718-*-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
120
%
tdoff
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
%
180
Uce
100
Uge 90%
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Ic
160
Uce 90%
140
80
Uge
120
60
Uce
Uge
100
Ic
80
40
tEoff
tdon
60
20
40
Ic 1%
20
0
Uge10%
-20
-0,2
Uce3%
Ic10%
0
tEon
-20
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
600
100
0,29
0,67
0,4
0,6
0,8
time (us)
4,9
5,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
%
Uce
Ic
5,3
-15
15
600
100
0,11
0,39
5,4
5,5
5,6
5,7
time(us)
V
V
V
A
µs
µs
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
120
fitted
5,2
Figure 4
Turn-off Switching Waveforms & definition of tf
%
5
180
Ic
160
100
140
Ic 90%
80
120
Uce
100
60
Ic90%
Ic 60%
80
40
Ic 40%
tr
60
40
20
Ic10%
20
Ic10%
0
0
tf
-20
0,15
-20
0,2
0,25
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,3
600
100
0,11
0,35
0,4
0,45
0,5
0,55
4,9
0,6
0,65
time (us)
5
5,1
5,2
5,3
5,4
5,5
5,6
5,7
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
100
0,03
V
A
µs
Revision: 3
V23990-P718-*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Eoff
100
Pon
%
Ic 1%
140
80
Eon
100
60
40
60
20
Uge90%
20
Uce3%
Uge10%
0
tEoff
tEon
-20
-20
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,3
59,91
8,87
0,67
0,4
0,5
0,6
0,7
0,8
time (us)
4,9
5
5,1
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
5,2
59,91
12,48
0,39
5,3
5,4
5,5
5,6
time(us)
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
Ud
fitted
0
IRRM10%
-40
IRRM90%
-80
IRRM100%
-120
4,7
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
14
4,9
5,1
600
100
-83
0,51
5,3
5,5
5,7
5,9
6,1
time(us)
V
A
A
µs
Revision: 3
V23990-P718-*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
100
Erec
100
Qrr
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
-20
4,8
5
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
5,2
5,4
100
20,73
1,03
5,6
5,8
6
6,2
6,4
time(us)
4,8
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
5
5,2
5,4
59,91
7,85
1,03
5,6
5,8
6
6,2
6,4
time(us)
kW
mJ
µs
Revision: 3
V23990-P718-*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing
without thermal paste 12mm housing
without thermal paste 12mm housing
Ordering Code
V23990-P718-G-PM
V23990-P718-G10-PM
V23990-P718-H-PM
V23990-P718-H10-PM
in DataMatrix as
P718-G
P718-G10
P718-H
P718-H10
in packaging barcode as
P718-G
P718-G10
P718-H
P718-H10
Outline
Pin table
Pin
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
53
50,1
47,2
40,2
37,3
34,4
27,4
24,5
21,6
18,7
15,8
12,9
7,1
0
0
3
7
9,9
12,8
44
47
50
Y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
7
7
7
7
7
7
Pinout
copyright Vincotech
16
Revision: 3
V23990-P718-*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 3