V23990-P719-*-PM Maximum Ratings

V23990-P719-*-PM
flow 90CON 1
1600V/75A
Features
flow 90 housing
● 3~ phase input rectifier with or withot BRC
*optional half controlled
● Compatible with flow 90PACK 1
● Support designs with 90° mounting angle between
heatsink and PCB
● Clip-in PCB mounting
Target Applications
Schematic
● Motor drives
● Servo drives
Types
● V23990-P719-G-PM
● V23990-P719-H-PM w/o brake
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
66
90
A
900
A
4050
A2s
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=45°C
Tj=Tjmax
Th=80°C
72
Tc=80°C
110
W
Tjmax
150
°C
VCE
1200
V
35
45
A
105
A
75
114
W
±20
V
Brake IGBT
Collector-emitter Break down voltage
DC collector current
IC
Tj=Tjmax
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
tSC
Tj≤125°C
10
VCC
VGE=15V
900
µs
V
150
°C
Tjmax
1
Revision: 3
V23990-P719-*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
7,5
7,5
A
6
A
21
32
W
Tjmax
150
°C
VRRM
1200
V
20
25
A
30
A
37
56
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
V23990-P719-*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
0,8
1,19
1,16
0,91
0,78
0,004
0,005
1,7
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
76
Slope resistance (for power loss calc. only)
rt
76
Reverse current
Ir
Thermal resistance chip to heatsink per chip
76
1500
RthJH
Thermal grease
thickness≤50um
λ = 0,61 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
Ω
0,1
mA
K/W
0,97
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,0015
15
35
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Turn-on delay time
Rise time
Turn-off delay time
Fall time
5
5,8
6,5
1,3
1,80
2,02
2,25
0,25
650
6
Rgint
td(on)
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
RthJH
Rgon=32 Ω
Rgoff=16 Ω
±15
600
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
47
48
19
25
457
544
122
187
2,99
3,60
2,68
4,11
ns
mWs
2530
f=1MHz
0
Tj=25°C
25
pF
132
115
Tj=25°C
Thermal grease
thickness≤50um
λ = 0,61 W/mK
205
nC
0,93
K/W
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
3
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 0,61 W/mK
1,60
1,57
2,2
3,3
V
K/W
Brake FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
VF
15
Ir
±15
300
25
IRRM
trr
Qrr
Rgon=32 Ω
Rgon=32 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 0,61 W/mK
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,75
1,73
250
21
24
356
522
2,83
4,56
280
137
2,83
4,56
1,88
3
2,3
V
µA
A
ns
µC
A/µs
mWs
K/W
Revision: 3
V23990-P719-*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
V CE (V)
4
IF (A)
IC (A)
30
25
25
20
20
15
15
Tj = Tjmax-25°C
10
10
Tj = Tjmax-25°C
5
5
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V) 10
0
At
tp =
µs
V
4
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
µs
Revision: 3
V23990-P719-*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
10
7
E (mWs)
E (mWs)
Eon
Eon
6
8
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Tj = Tjmax -25°C
Eon
Eon
5
Tj = Tjmax -25°C
Eoff
Eoff
6
4
Eoff
Eoff
3
4
2
2
Tj = 25°C
Tj = 25°C
1
0
0
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
10
20
30
40
50
R G ( Ω ) 70
60
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
15
V
IC =
35
A
Brake IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
E (mWs)
2,5
Tj = Tjmax - 25°C
Erec
2
2
Tj = Tjmax -25°C
1,5
1,5
Tj = 25°C
Erec
Erec
1
1
Tj = 25°C
Erec
0,5
0,5
0
0
0
0
10
20
30
40
50
60
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
600
V
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
10
20
70
30
40
50
60
RG (Ω )
70
With an inductive load at
Tj =
25/125
°C
VCE =
600
V
VGE =
15
V
IC =
35
A
5
Revision: 3
V23990-P719-*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
10
t ( µs)
1
tdoff
tf
tdoff
1
0,1
tdon
tf
tr
tdon
0,1
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
30
40
60 R G ( Ω )
50
70
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
IC =
35
A
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10
-5
At
D=
RthJH =
10
-4
10
tp / T
0,93
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
10
-5
At
D=
RthJH =
K/W
10
tp / T
1,88
IGBT thermal model values
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,03
0,11
0,44
0,23
0,06
0,06
R (C/W)
0,04
0,16
0,72
0,47
0,32
0,17
Tau (s)
6,2E+00
9,8E-01
1,4E-01
4,2E-02
5,5E-03
3,5E-04
copyright Vincotech
-4
6
Tau (s)
9,4E+00
9,2E-01
1,3E-01
3,1E-02
6,1E-03
5,7E-04
Revision: 3
V23990-P719-*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
175
150
50
125
40
100
30
75
20
50
10
25
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
30
150
15
60
90
120
150
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
80
T h ( o C)
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
7
30
150
60
90
120
Th ( o C)
150
ºC
Revision: 3
V23990-P719-*-PM
Brake Inverse Diode
Brake inverse diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
1
ZthJC (K/W)
IF (A)
10
15
Tj = 25°C
10
0
10
-1
Tj = Tjmax-25°C
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
5
0
0
1
At
tp =
2
3
10-2
4
µs
250
Brake inverse diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
10-3
At
D=
RthJH =
tp / T
3,30
K/W
10-2
10-1
t p (s)
101 10
Brake inverse diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
100
8
IF (A)
Ptot (W)
VF (V)
40
6
30
4
20
2
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C) 150
0
At
Tj =
ºC
8
30
150
60
90
120
Th ( o C)
150
ºC
Revision: 3
V23990-P719-*-PM
Input rectifier diode
Input rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Input rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
80
10
0
10
-1
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
1
VF (V)
1,5
10-2
2
10-5
At
D=
RthJH =
µs
250
10-4
Input rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
101 10
tp / T
0,967
K/W
Input rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
120
Ptot (W)
IF (A)
160
100
100
120
80
80
60
40
40
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
9
30
150
60
90
120
T h ( o C) 150
ºC
Revision: 3
V23990-P719-*-PM
Switching Definitions Brake IGBT
General conditions
Tj
= 125 °C
Rgon
= 4Ω
Rgoff
= 4Ω
Brake IGBT
Figure 1
120
tdoff
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
%
180
Uce
%
100
Uge 90%
Ic
160
Uce 90%
Uge
80
Brake IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
140
120
60
Uce
100
Ic
40
Uge
80
tEoff
tdon
60
20
40
Ic 1%
20
0
Uge10%
Uce3%
Ic10%
0
tEon
-20
-0,1
-20
0
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,3
-15
15
600
100
0,29
0,67
0,4
0,5
0,6
0,7
0,8
time (us)
4,8
4,9
5
5,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Brake IGBT
Figure 3
5,2
-15
15
600
100
0,11
0,39
5,3
5,4
5,5
V
V
V
A
µs
µs
Brake IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
5,6
5,7
time(us)
Turn-on Switching Waveforms & definition of tr
140
%
%
180
Ic
160
120
fitted
Uce
Ic
140
100
120
Ic 90%
Uce
80
100
60
Ic 60%
40
Ic90%
80
tr
60
Ic 40%
40
20
20
Ic10%
0
Ic10%
tf
0
-20
-20
0,1
0,15
0,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,25
0,3
600
100
0,11
0,35
0,4
0,45
0,5
0,55
4,9
0,6
0,65
time (us)
5
5,1
5,2
5,3
5,4
5,5
5,6
5,7
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
10
600
100
0,03
V
A
µs
Revision: 3
V23990-P719-*-PM
Switching Definitions Brake IGBT
Braker IGBT
Figure 5
Brake IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Eoff
100
Pon
%
Ic 1%
140
80
Eon
100
60
40
60
20
Uge90%
20
Uce3%
Uge10%
0
tEon
tEoff
-20
-0,1
-20
0
0,1
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,3
0,4
59,91
8,87
0,67
0,5
0,6
0,7
4,9
0,8
0,9
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
5
5,1
59,91
12,48
0,39
5,2
5,3
5,4
5,5
5,6
time(us)
kW
mJ
µs
Brake FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
Id
%
80
trr
40
Ud
fitted
0
IRRM10%
-40
IRRM90%
-80
IRRM100%
-120
4,7
4,9
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
5,1
5,3
600
100
10
0,11
5,5
5,7
5,9
6,1
6,3
time(us)
V
A
A
µs
11
Revision: 3
V23990-P719-*-PM
Switching Definitions Brake IGBT
Brake FWD
Figure 8
Brake FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Id
100
Erec
100
Qrr
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
-20
4,8
5
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
5,2
5,4
100
20,73
1,03
5,6
5,8
6
6,2
6,4
time(us)
4,8
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
12
5
5,2
5,4
59,91
7,85
1,03
5,6
5,8
6
6,2
6,4
time(us)
kW
mJ
µs
Revision: 3
V23990-P588-*4*-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing
Ordering Code
V23990-P719-G-PM
V23990-P588-H-PM
in DataMatrix as
P719-G
P719-H
in packaging barcode as
P719-G
P719-H
Outline
Pin table
Pin
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
53
50,1
47,2
40,2
37,3
34,4
27,4
24,5
21,6
18,7
15,8
12,9
7,1
0
0
3
7
9,9
12,8
44
47
50
Y
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
7
7
7
7
7
7
Pinout
copyright Vincotech
13
Revision: 3
V23990-P719-*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
14
Revision: 3