V23990-P719-*-PM flow 90CON 1 1600V/75A Features flow 90 housing ● 3~ phase input rectifier with or withot BRC *optional half controlled ● Compatible with flow 90PACK 1 ● Support designs with 90° mounting angle between heatsink and PCB ● Clip-in PCB mounting Target Applications Schematic ● Motor drives ● Servo drives Types ● V23990-P719-G-PM ● V23990-P719-H-PM w/o brake Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 66 90 A 900 A 4050 A2s Input Rectifier Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=45°C Tj=Tjmax Th=80°C 72 Tc=80°C 110 W Tjmax 150 °C VCE 1200 V 35 45 A 105 A 75 114 W ±20 V Brake IGBT Collector-emitter Break down voltage DC collector current IC Tj=Tjmax Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Th=80°C Tc=80°C Th=80°C Tc=80°C tSC Tj≤125°C 10 VCC VGE=15V 900 µs V 150 °C Tjmax 1 Revision: 3 V23990-P719-*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 7,5 7,5 A 6 A 21 32 W Tjmax 150 °C VRRM 1200 V 20 25 A 30 A 37 56 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Brake Inverse Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 V23990-P719-*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 0,8 1,19 1,16 0,91 0,78 0,004 0,005 1,7 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 76 Slope resistance (for power loss calc. only) rt 76 Reverse current Ir Thermal resistance chip to heatsink per chip 76 1500 RthJH Thermal grease thickness≤50um λ = 0,61 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V Ω 0,1 mA K/W 0,97 Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,0015 15 35 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Turn-on delay time Rise time Turn-off delay time Fall time 5 5,8 6,5 1,3 1,80 2,02 2,25 0,25 650 6 Rgint td(on) tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C RthJH Rgon=32 Ω Rgoff=16 Ω ±15 600 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 47 48 19 25 457 544 122 187 2,99 3,60 2,68 4,11 ns mWs 2530 f=1MHz 0 Tj=25°C 25 pF 132 115 Tj=25°C Thermal grease thickness≤50um λ = 0,61 W/mK 205 nC 0,93 K/W Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 3 Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 0,61 W/mK 1,60 1,57 2,2 3,3 V K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink per chip copyright Vincotech VF 15 Ir ±15 300 25 IRRM trr Qrr Rgon=32 Ω Rgon=32 Ω ±15 300 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 0,61 W/mK 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,75 1,73 250 21 24 356 522 2,83 4,56 280 137 2,83 4,56 1,88 3 2,3 V µA A ns µC A/µs mWs K/W Revision: 3 V23990-P719-*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 V CE (V) 4 IF (A) IC (A) 30 25 25 20 20 15 15 Tj = Tjmax-25°C 10 10 Tj = Tjmax-25°C 5 5 Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 3 V23990-P719-*-PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 10 7 E (mWs) E (mWs) Eon Eon 6 8 Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Tj = Tjmax -25°C Eon Eon 5 Tj = Tjmax -25°C Eoff Eoff 6 4 Eoff Eoff 3 4 2 2 Tj = 25°C Tj = 25°C 1 0 0 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 10 20 30 40 50 R G ( Ω ) 70 60 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = 15 V IC = 35 A Brake IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2,5 Tj = Tjmax - 25°C Erec 2 2 Tj = Tjmax -25°C 1,5 1,5 Tj = 25°C Erec Erec 1 1 Tj = 25°C Erec 0,5 0,5 0 0 0 0 10 20 30 40 50 60 I C (A) With an inductive load at Tj = °C 25/125 VCE = 600 V VGE = 15 V Rgon = 16 Ω copyright Vincotech 10 20 70 30 40 50 60 RG (Ω ) 70 With an inductive load at Tj = 25/125 °C VCE = 600 V VGE = 15 V IC = 35 A 5 Revision: 3 V23990-P719-*-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 10 t ( µs) 1 tdoff tf tdoff 1 0,1 tdon tf tr tdon 0,1 tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 30 40 60 R G ( Ω ) 50 70 Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 10 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V IC = 35 A 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10 -5 At D= RthJH = 10 -4 10 tp / T 0,93 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 10 -5 At D= RthJH = K/W 10 tp / T 1,88 IGBT thermal model values 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,03 0,11 0,44 0,23 0,06 0,06 R (C/W) 0,04 0,16 0,72 0,47 0,32 0,17 Tau (s) 6,2E+00 9,8E-01 1,4E-01 4,2E-02 5,5E-03 3,5E-04 copyright Vincotech -4 6 Tau (s) 9,4E+00 9,2E-01 1,3E-01 3,1E-02 6,1E-03 5,7E-04 Revision: 3 V23990-P719-*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 175 150 50 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 150 0 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 30 150 15 60 90 120 150 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 80 T h ( o C) 25 60 20 40 15 10 20 5 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 7 30 150 60 90 120 Th ( o C) 150 ºC Revision: 3 V23990-P719-*-PM Brake Inverse Diode Brake inverse diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 1 ZthJC (K/W) IF (A) 10 15 Tj = 25°C 10 0 10 -1 Tj = Tjmax-25°C 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 5 0 0 1 At tp = 2 3 10-2 4 µs 250 Brake inverse diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 10-3 At D= RthJH = tp / T 3,30 K/W 10-2 10-1 t p (s) 101 10 Brake inverse diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 100 8 IF (A) Ptot (W) VF (V) 40 6 30 4 20 2 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 8 30 150 60 90 120 Th ( o C) 150 ºC Revision: 3 V23990-P719-*-PM Input rectifier diode Input rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Input rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 80 10 0 10 -1 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 VF (V) 1,5 10-2 2 10-5 At D= RthJH = µs 250 10-4 Input rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 t p (s) 101 10 tp / T 0,967 K/W Input rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 120 Ptot (W) IF (A) 160 100 100 120 80 80 60 40 40 20 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 9 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-P719-*-PM Switching Definitions Brake IGBT General conditions Tj = 125 °C Rgon = 4Ω Rgoff = 4Ω Brake IGBT Figure 1 120 tdoff Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 % 180 Uce % 100 Uge 90% Ic 160 Uce 90% Uge 80 Brake IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 140 120 60 Uce 100 Ic 40 Uge 80 tEoff tdon 60 20 40 Ic 1% 20 0 Uge10% Uce3% Ic10% 0 tEon -20 -0,1 -20 0 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,3 -15 15 600 100 0,29 0,67 0,4 0,5 0,6 0,7 0,8 time (us) 4,8 4,9 5 5,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Brake IGBT Figure 3 5,2 -15 15 600 100 0,11 0,39 5,3 5,4 5,5 V V V A µs µs Brake IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 5,6 5,7 time(us) Turn-on Switching Waveforms & definition of tr 140 % % 180 Ic 160 120 fitted Uce Ic 140 100 120 Ic 90% Uce 80 100 60 Ic 60% 40 Ic90% 80 tr 60 Ic 40% 40 20 20 Ic10% 0 Ic10% tf 0 -20 -20 0,1 0,15 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,25 0,3 600 100 0,11 0,35 0,4 0,45 0,5 0,55 4,9 0,6 0,65 time (us) 5 5,1 5,2 5,3 5,4 5,5 5,6 5,7 time(us) VC (100%) = IC (100%) = tr = V A µs 10 600 100 0,03 V A µs Revision: 3 V23990-P719-*-PM Switching Definitions Brake IGBT Braker IGBT Figure 5 Brake IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Poff Eoff 100 Pon % Ic 1% 140 80 Eon 100 60 40 60 20 Uge90% 20 Uce3% Uge10% 0 tEon tEoff -20 -0,1 -20 0 0,1 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,3 0,4 59,91 8,87 0,67 0,5 0,6 0,7 4,9 0,8 0,9 time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 5 5,1 59,91 12,48 0,39 5,2 5,3 5,4 5,5 5,6 time(us) kW mJ µs Brake FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 Ud fitted 0 IRRM10% -40 IRRM90% -80 IRRM100% -120 4,7 4,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 5,1 5,3 600 100 10 0,11 5,5 5,7 5,9 6,1 6,3 time(us) V A A µs 11 Revision: 3 V23990-P719-*-PM Switching Definitions Brake IGBT Brake FWD Figure 8 Brake FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Id 100 Erec 100 Qrr 80 tErec tQrr 50 60 40 0 20 Prec -50 0 -100 -20 4,8 5 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 5,2 5,4 100 20,73 1,03 5,6 5,8 6 6,2 6,4 time(us) 4,8 Prec (100%) = Erec (100%) = tErec = A µC µs 12 5 5,2 5,4 59,91 7,85 1,03 5,6 5,8 6 6,2 6,4 time(us) kW mJ µs Revision: 3 V23990-P588-*4*-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing Ordering Code V23990-P719-G-PM V23990-P588-H-PM in DataMatrix as P719-G P719-H in packaging barcode as P719-G P719-H Outline Pin table Pin X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 53 50,1 47,2 40,2 37,3 34,4 27,4 24,5 21,6 18,7 15,8 12,9 7,1 0 0 3 7 9,9 12,8 44 47 50 Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 7 7 7 7 Pinout copyright Vincotech 13 Revision: 3 V23990-P719-*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 14 Revision: 3