V23990-P768-A60-PM datasheet flow PIM 2 1200 V / 50 A Features flow 2 housing ● 3~rectifier,BRC,Inverter, NTC ● Very Compact housing, easy to route ● Mitsubishi IGBT and FWD Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P768-A60-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 79 A 490 A 1200 A2s 95 W Tjmax 150 °C VCE 1200 V 54 A tp limited by Tjmax 100 A VCE ≤ 1200V, Tj ≤ Top max 100 A 155 W Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM Tj=Tjmax tp=10ms I2t-value I2t Power dissipation Ptot Maximum Junction Temperature Th=80°C Tj=150°C Tj=Tjmax Th=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C ±20 V tSC Tj≤150°C 10 µs VCC VGE=15V 850 V 175 °C Tjmax 1 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 49 A 100 A 126 W Tjmax 175 °C VCE 1200 V 45 A tp limited by Tjmax 135 A VCE ≤ 1200V, Tj ≤ Top max 70 A 137 W ±20 V 10 800 µs V Tjmax 175 °C VRRM 1200 V 16 A 20 A 69 W 175 °C Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Th=80°C Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Turn off safe operating area Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Tj≤150°C VGE=15V Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Brake Inverse Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Th=80°C Tjmax Brake Diode Peak Repetitive Reverse Voltage DC forward current 1200 VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 2 Th=80°C Th=80°C V 28 A 100 A 86 W 175 °C 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 3 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 1,1 1,05 0,89 0,78 4 5 1,8 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 50 Slope resistance (for power loss calc. only) rt 50 Reverse current Ir Thermal resistance chip to heatsink 50 1500 RthJH Phase-Change Material ʎ=3,4W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mΩ 0,1 mA K/W 0,74 Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,005 50 1200 0 20 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1,2 1,79 2,12 2,2 150 500 Rgoff=16 Ω Rgon=16 Ω 600 ±15 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink 10 106 106 28 46 157 200 58 89 2,61 5,1 2,49 4,08 ns mWs 3100 f=1MHz 0 Tj=25°C 10 340 pF 37 15 600 50 Tj=25°C Phase-Change Material ʎ=3,4W/mK 105 nC 0,61 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 50 Rgon=16 Ω ±15 600 di(rec)max /dt Erec RthJH Phase-Change Material ʎ=3,4W/mK 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 2,73 2,18 33 35 388 489 4,01 10,39 1018 121 1,84 4,97 0,75 4 3,3 V A ns µC A/µs mWs K/W 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,5 1,92 2,37 2,3 Brake Transistor Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time VCE=VGE 0,0012 35 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH 250 120 none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=16 Ω Rgon=16 Ω ±15 600 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V µA nA Ω 83 89 27 27 191 269 54 125 2,00 2,92 1,74 3,18 ns mWs 1950 f=1MHz 0 Tj=25°C 25 pF 155 115 15 960 35 Tj=25°C Phase-Change Material ʎ=3,4W/mK 160 nC 0,69 K/W Brake Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF RthJH 10 Tj=25°C Tj=150°C 1,2 Phase-Change Material ʎ=3,4W/mK 1,80 1,76 2,2 1,38 V K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Rgon=16 Ω Rgon=16 Ω ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink RthJH copyright Vincotech 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 25 Phase-Change Material ʎ=3,4W/mK 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 2,24 2,36 60 30,8 39,2 146,4 423,1 2,321 4,84 1749 917 0,9089 1,982 1,1 5 2,9 V µA A ns µC A/µs mWs K/W 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=25°C T=25°C Power dissipation constant Ω 21511 -4,5 +4,5 % 210 mW T=25°C 3,5 mW/K B-value B(25/50) T=25°C 3884 K B-value B(25/100) T=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 6 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 125 125 100 100 75 75 50 50 25 25 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IC (A) IF (A) 50 4 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = tp = VCE = 2 4 6 8 10 V GE (V) 12 0 0,5 1 1,5 2 2,5 3 3,5 V F (V) 4 At 25/150 250 10 copyright Vincotech °C µs V tp = 7 250 µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 15 E (mWs) E (mWs) 15 Eon High T 12 12 9 9 Eon High T Eon Low T 6 Eoff High T Eoff Low T 3 Eon Low T 6 Eoff High T 3 Eoff Low T 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 E (mWs) E (mWs) 8 Erec 6 6 Erec 4 4 Erec 2 2 Erec 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A 8 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter IGBT Output inverter IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdon tdoff tdoff tr 0,10 tf 0,10 tdon tr 0,01 tf 0,01 0,00 0,00 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 RG( Ω ) 60 75 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) 1,2 Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,2 trr t rr( µs) t rr( µs) trr 1 1 0,8 0,8 0,6 trr 0,6 trr 0,4 0,4 0,2 0,2 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 16 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 9 15 25/150 600 50 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 16 Qrr( µC) Qrr( µC) 16 Qrr 12 12 Qrr 8 8 Qrr 4 4 Qrr 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 16 40 60 80 I C (A) 100 0 15 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/150 600 50 ±15 30 45 R gon ( Ω) 75 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 IrrM (A) IrrM (A) 100 60 80 80 60 60 40 40 IRRM IRRM IRRM 20 20 IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 16 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 10 15 25/150 600 50 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) direc / dt (A/ µs) direc / dt (A/µ s) 2000 dI0/dt dIo/dtLow T Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt 10000 dI0/dt dIrec/dt 8000 1500 6000 dIrec/dtLow T 1000 4000 di0/dtHigh T 500 2000 dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 600 ±15 16 40 60 I C (A) 80 0 100 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 15 25/150 600 50 ±15 30 45 60 75 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) Zth-JH (K/W) 100 R gon ( Ω ) 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 0,61 K/W RthJH = 0,60 K/W 10-5 10-4 At D= RthJH = 0,75 10-3 K/W FWD thermal model values R (K/W) 0,04 0,05 0,13 0,26 0,08 0,03 0,02 R (K/W) 0,04 0,07 0,21 0,31 0,07 0,05 copyright Vincotech 11 10-1 100 t p (s) 10110 tp / T IGBT thermal model values Tau (s) 4,0E+00 7,8E-01 1,5E-01 4,5E-02 1,3E-02 1,4E-03 3,8E-04 10-2 RthJH = 0,73 K/W Tau (s) 3,7E+00 5,6E-01 9,7E-02 2,9E-02 6,0E-03 6,6E-04 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 90 IC (A) Ptot (W) 350 300 75 250 60 200 45 150 30 100 15 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 240 180 60 120 40 60 20 0 0 0 At Tj = 50 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 12 50 175 100 150 T h ( o C) 200 °C 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 20 3 IC (A) VGE (V) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 102 18 16 10uS 600V 14 12 101 100uS 10 1mS 8 10mS 6 100mS 4 100 DC 10-1 2 0 100 At D= Th = VGE = Tj = 102 101 103 0 V CE (V) single pulse 80 ºC ±15 V Tjmax ºC Output inverter IGBT Figure 27 50 100 At IC = 50 A Tj = 25 ºC 150 200 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Q g (nC) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc)/ICN 22,5 20 10 9 8 17,5 7 15 6 12,5 5 10 4 7,5 3 5 2 2,5 1 0 0 12 13 14 15 16 17 18 19 V GE (V) 12 20 13 14 15 At VCE = 1200 V At VCE ≤ 800 V Tj ≤ 175 ºC Tj = 150 ºC copyright Vincotech 13 16 17 18 19 V GE (V) 20 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 120 IC MAX MODULE 100 Ic CHIP Ic 80 60 VCE MAX 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Rgon = Rgoff = 150 °C 16 Ω 17 Ω copyright Vincotech 14 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 150 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IF (A) IC (A) 35 5 30 60 25 45 20 15 30 10 15 5 0 0 0 At Tj = tp = VCE = 2 4 6 8 10 V GE (V) 12 0 0,8 1,6 2,4 3,2 4 V F (V) 4,8 At 25/150 250 10 copyright Vincotech °C µs V tp = 15 250 µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 10,5 E (mWs) 9 E (mWs) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 7,5 Eon 9 7,5 6 Eoff 6 Eon 4,5 Eoff Eon 4,5 3 Eoff 3 Eoff 1,5 1,5 0 0 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3 5 E (mWs) E (mWs) 16 Erec Erec 2,5 4 2 3 1,5 Erec 2 1 1 Erec 0,5 0 0 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 15 30 45 60 RG (Ω ) 75 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 16 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdoff tdon tf 0,1 tr 0,1 tdon tf tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 32 48 RG (Ω ) 64 80 Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 10 16 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A 0 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At Psx7p RthJH = 10-4 10-3 D= 0,630 copyright Vincotech 10-2 10-1 100 t p (s) 10110 10-5 tp / T At Psx7p RthJH = K/W 17 10-4 10-3 D= 1,10 10-2 10-1 100 t p (s) 101 10 tp / T K/W 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Brake Brake IGBT Brake IGBT 300 70 IC (A) Figure 14 Collector current as a function of heatsink temperature IC = f(Th) Ptot (W) Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) 60 250 50 200 40 150 30 100 20 50 10 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 140 T h ( o C) 120 30 100 80 20 60 40 10 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Brake Inverse Diode Brake inverse diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 IF (A) ZthJC (K/W) 30 25 20 10 0 10 -1 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 5 0 10-2 0 0,8 At Tj = tp = 1,6 25/150 250 2,4 3,2 V F (V) 4 10-5 10-4 At Psx7p RthJH = °C µs Brake inverse diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 D= 1,38 10-1 t p (s) 10110 tp / T K/W Brake inverse diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 20 Ptot (W) IF (A) 140 100 120 15 100 80 10 60 40 5 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 19 50 150 100 150 T h ( o C)200 ºC 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 IF (A) ZthJC (K/W) 150 125 100 100 75 50 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 25 0 0 At Tj = tp = 0,4 25/125 250 0,8 1,2 10-2 V F (V) 1,6 °C µs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = 0,74 10-3 10-2 10-1 t p (s) 10110 tp / T K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 90 Ptot (W) IF (A) 240 100 80 200 70 160 60 50 120 40 80 30 20 40 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = ºC 20 30 150 60 90 o 120 T h ( C) 150 ºC 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R (Ω) R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Output Inverter General conditions = 150 °C Tj Rgon = 16 Ω Rgoff = 17 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 120 200 IC % % VCE tdoff 100 VGE 90% 150 VCE 90% 80 VCE 100 60 VGE IC tdon 40 50 tEoff 20 VGE10% IC 1% VCE 3% IC10% 0 0 VGE tEon -20 -0,2 -50 0 0,2 0,4 0,6 0,8 2,9 3,1 3,3 3,5 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 50 0,21 0,70 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 -15 15 600 50 0,10 0,38 3,7 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 140 200 % % fitted Ic 120 VCE IC 150 100 IC 90% 80 VCE 100 IC 60% 60 IC90% tr 40 50 IC 40% 20 IC10% IC10% 0 tf 0 -20 0 0,08 0,16 0,24 0,32 -50 0,4 3 3,1 3,2 VC (100%) = IC (100%) = tf = copyright Vincotech 600 50 0,09 3,3 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 22 600 50 0,03 V A µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 120 % Eoff Poff % Pon 100 150 80 Eon 100 60 40 50 20 VCE 3% VGE 10% VGE 90% 0 tEon 0 tEoff -20 -0,2 0 0,2 IC 1% 0,4 0,6 -50 2,95 0,8 3,05 3,15 3,25 time (us) Poff (100%) = Eoff (100%) = tEoff = 30,14 4,09 0,70 3,35 3,45 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 30,14 4,39 0,38 kW mJ µs Output inverter FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted 0 Vd IRRM10% -50 IRRM90% IRRM100% -100 -150 -200 2,9 3,1 3,3 3,5 3,7 3,9 4,1 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 600 50 -45 0,73 V A A µs 23 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 % Qrr Id Erec % 100 100 tQrr 80 tErec 50 60 0 40 -50 20 Prec -100 0 -150 -20 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 2,9 3,1 3,3 3,5 3,7 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 50 10,81 2,00 Prec (100%) = Erec (100%) = tErec = A µC µs 24 30,14 5,14 2,00 3,9 4,1 time(us) 4,3 kW mJ µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Brake General conditions = 150 °C Tj Rgon = 16 Ω Rgoff = 16 Ω IGBT Figure 1 IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 250 % % 120 tdoff IC 200 100 VGE 90% VCE 90% 150 80 VCE IC 100 60 tEoff 40 VGE tdon 50 20 VGE10% IC 1% VCE VCE3% IC10% 0 0 tEon VGE -50 -20 -0,2 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 -15 15 600 35 0,27 0,61 0,3 0,4 0,5 0,6 2,8 0,7 2,9 3 3,1 3,2 3,3 3,4 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs IGBT Figure 3 3,5 time(us) -15 15 600 35 0,09 0,33 V V V A µs µs IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 250 fitted % % 100 Ic 200 IC Ic 90% 80 VCE 150 Ic 60% 60 VCE 100 40 IC90% Ic 40% tr 50 20 IC10% Ic10% 0 0 tf -20 0 0,1 0,2 0,3 -50 0,4 0,5 2,8 0,6 2,9 3 3,1 3,2 VC (100%) = IC (100%) = tf = copyright Vincotech 600 35 0,13 3,3 3,4 3,5 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 25 600 35 0,03 V A µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Brake IGBT Figure 5 IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 200 % Poff Pon % Eoff 100 150 80 Eon 100 60 40 50 20 U ge10% U ge90% Uce 3% 0 0 tEoff -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 20,96 3,18 0,61 Ic 1% 0,4 0,6 tEon time (us) -50 2,85 0,8 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,95 3,05 20,9586 2,92 0,33 3,15 3,25 3,35 3,45 time(us) kW mJ µs FWD Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id fitted 100 trr 50 Ud 0 IRRM10% -50 IRRM90% -100 IRRM100% -150 3 3,1 3,2 3,3 3,4 3,5 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 600 35 -39 0,42 V A A µs 26 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Switching Definitions Brake FWD Figure 8 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 tQint 50 75 0 50 -50 25 tErec Prec -100 0 -150 -25 2,8 3 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 3,2 3,4 35 4,84 1,00 3,6 3,8 4 4,2 4,4 time(us) 2,8 3 Prec (100%) = Erec (100%) = tErec = A µC µs 27 3,2 3,4 20,96 1,98 1,00 3,6 3,8 4 4,2 4,4 time(us) kW mJ µs 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code V23990-P768-A60-PM in DataMatrix as P768-A60 in packaging barcode as P768-A60 Outline Pinout copyright Vincotech 28 19 Dec 2014 / Revision 2 V23990-P768-A60-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 29 19 Dec 2014 / Revision 2