V23990-P768-A60-PM Maximum Ratings

V23990-P768-A60-PM
datasheet
flow PIM 2
1200 V / 50 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● Mitsubishi IGBT and FWD
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P768-A60-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
79
A
490
A
1200
A2s
95
W
Tjmax
150
°C
VCE
1200
V
54
A
tp limited by Tjmax
100
A
VCE ≤ 1200V, Tj ≤ Top max
100
A
155
W
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Tj=Tjmax
tp=10ms
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
Th=80°C
Tj=150°C
Tj=Tjmax
Th=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
±20
V
tSC
Tj≤150°C
10
µs
VCC
VGE=15V
850
V
175
°C
Tjmax
1
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
49
A
100
A
126
W
Tjmax
175
°C
VCE
1200
V
45
A
tp limited by Tjmax
135
A
VCE ≤ 1200V, Tj ≤ Top max
70
A
137
W
±20
V
10
800
µs
V
Tjmax
175
°C
VRRM
1200
V
16
A
20
A
69
W
175
°C
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Th=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Turn off safe operating area
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Th=80°C
Tjmax
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
1200
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
2
Th=80°C
Th=80°C
V
28
A
100
A
86
W
175
°C
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
1,1
1,05
0,89
0,78
4
5
1,8
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
50
Slope resistance (for power loss calc. only)
rt
50
Reverse current
Ir
Thermal resistance chip to heatsink
50
1500
RthJH
Phase-Change
Material
ʎ=3,4W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mΩ
0,1
mA
K/W
0,74
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,005
50
1200
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5,4
6
6,6
1,2
1,79
2,12
2,2
150
500
Rgoff=16 Ω
Rgon=16 Ω
600
±15
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink
10
106
106
28
46
157
200
58
89
2,61
5,1
2,49
4,08
ns
mWs
3100
f=1MHz
0
Tj=25°C
10
340
pF
37
15
600
50
Tj=25°C
Phase-Change
Material
ʎ=3,4W/mK
105
nC
0,61
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
50
Rgon=16 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
Phase-Change
Material
ʎ=3,4W/mK
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,73
2,18
33
35
388
489
4,01
10,39
1018
121
1,84
4,97
0,75
4
3,3
V
A
ns
µC
A/µs
mWs
K/W
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,5
1,92
2,37
2,3
Brake Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0012
35
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
250
120
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=16 Ω
Rgon=16 Ω
±15
600
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
µA
nA
Ω
83
89
27
27
191
269
54
125
2,00
2,92
1,74
3,18
ns
mWs
1950
f=1MHz
0
Tj=25°C
25
pF
155
115
15
960
35
Tj=25°C
Phase-Change
Material
ʎ=3,4W/mK
160
nC
0,69
K/W
Brake Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
RthJH
10
Tj=25°C
Tj=150°C
1,2
Phase-Change
Material
ʎ=3,4W/mK
1,80
1,76
2,2
1,38
V
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Rgon=16 Ω
Rgon=16 Ω
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
copyright Vincotech
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
25
Phase-Change
Material
ʎ=3,4W/mK
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
2,24
2,36
60
30,8
39,2
146,4
423,1
2,321
4,84
1749
917
0,9089
1,982
1,1
5
2,9
V
µA
A
ns
µC
A/µs
mWs
K/W
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=25°C
T=25°C
Power dissipation constant
Ω
21511
-4,5
+4,5
%
210
mW
T=25°C
3,5
mW/K
B-value
B(25/50)
T=25°C
3884
K
B-value
B(25/100)
T=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
6
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
125
125
100
100
75
75
50
50
25
25
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
50
4
125
40
100
30
75
20
50
10
25
0
0
0
At
Tj =
tp =
VCE =
2
4
6
8
10
V GE (V) 12
0
0,5
1
1,5
2
2,5
3
3,5 V F (V) 4
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
7
250
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
15
E (mWs)
E (mWs)
15
Eon High T
12
12
9
9
Eon High T
Eon Low T
6
Eoff High T
Eoff Low T
3
Eon Low T
6
Eoff High T
3
Eoff Low T
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
E (mWs)
E (mWs)
8
Erec
6
6
Erec
4
4
Erec
2
2
Erec
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
8
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter IGBT
Output inverter IGBT
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
tdon
tdoff
tdoff
tr
0,10
tf
0,10
tdon
tr
0,01
tf
0,01
0,00
0,00
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
RG( Ω )
60
75
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
1,2
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1,2
trr
t rr( µs)
t rr( µs)
trr
1
1
0,8
0,8
0,6
trr
0,6
trr
0,4
0,4
0,2
0,2
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
16
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
15
25/150
600
50
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
16
Qrr( µC)
Qrr( µC)
16
Qrr
12
12
Qrr
8
8
Qrr
4
4
Qrr
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
16
40
60
80
I C (A)
100
0
15
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/150
600
50
±15
30
45
R gon ( Ω)
75
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
IrrM (A)
IrrM (A)
100
60
80
80
60
60
40
40
IRRM
IRRM
IRRM
20
20
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
16
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
10
15
25/150
600
50
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
direc / dt (A/ µs)
direc / dt (A/µ s)
2000
dI0/dt
dIo/dtLow T
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
10000
dI0/dt
dIrec/dt
8000
1500
6000
dIrec/dtLow T
1000
4000
di0/dtHigh T
500
2000
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
600
±15
16
40
60
I C (A)
80
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
15
25/150
600
50
±15
30
45
60
75
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
Zth-JH (K/W)
100
R gon ( Ω )
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp / T
0,61
K/W
RthJH =
0,60
K/W
10-5
10-4
At
D=
RthJH =
0,75
10-3
K/W
FWD thermal model values
R (K/W)
0,04
0,05
0,13
0,26
0,08
0,03
0,02
R (K/W)
0,04
0,07
0,21
0,31
0,07
0,05
copyright Vincotech
11
10-1
100
t p (s)
10110
tp / T
IGBT thermal model values
Tau (s)
4,0E+00
7,8E-01
1,5E-01
4,5E-02
1,3E-02
1,4E-03
3,8E-04
10-2
RthJH =
0,73
K/W
Tau (s)
3,7E+00
5,6E-01
9,7E-02
2,9E-02
6,0E-03
6,6E-04
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
90
IC (A)
Ptot (W)
350
300
75
250
60
200
45
150
30
100
15
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Ptot (W)
IF (A)
240
180
60
120
40
60
20
0
0
0
At
Tj =
50
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
12
50
175
100
150
T h ( o C)
200
°C
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
20
3
IC (A)
VGE (V)
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
102
18
16
10uS
600V
14
12
101
100uS
10
1mS
8
10mS
6
100mS
4
100
DC
10-1
2
0
100
At
D=
Th =
VGE =
Tj =
102
101
103
0
V CE (V)
single pulse
80
ºC
±15
V
Tjmax
ºC
Output inverter IGBT
Figure 27
50
100
At
IC =
50
A
Tj =
25
ºC
150
200
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)/ICN
22,5
20
10
9
8
17,5
7
15
6
12,5
5
10
4
7,5
3
5
2
2,5
1
0
0
12
13
14
15
16
17
18
19
V GE (V)
12
20
13
14
15
At
VCE =
1200
V
At
VCE ≤
800
V
Tj ≤
175
ºC
Tj =
150
ºC
copyright Vincotech
13
16
17
18
19
V GE (V)
20
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
120
IC MAX
MODULE
100
Ic CHIP
Ic
80
60
VCE MAX
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Rgon =
Rgoff =
150 °C
16 Ω
17 Ω
copyright Vincotech
14
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
150
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IF (A)
IC (A)
35
5
30
60
25
45
20
15
30
10
15
5
0
0
0
At
Tj =
tp =
VCE =
2
4
6
8
10
V GE (V) 12
0
0,8
1,6
2,4
3,2
4
V F (V)
4,8
At
25/150
250
10
copyright Vincotech
°C
µs
V
tp =
15
250
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
10,5
E (mWs)
9
E (mWs)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon
7,5
Eon
9
7,5
6
Eoff
6
Eon
4,5
Eoff
Eon
4,5
3
Eoff
3
Eoff
1,5
1,5
0
0
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3
5
E (mWs)
E (mWs)
16
Erec
Erec
2,5
4
2
3
1,5
Erec
2
1
1
Erec
0,5
0
0
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
15
30
45
60
RG (Ω )
75
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
16
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tr
0,1
tdon
tf
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
I C (A)
70
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
32
48
RG (Ω )
64
80
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
10
16
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
0
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
Psx7p
RthJH =
10-4
10-3
D=
0,630
copyright Vincotech
10-2
10-1
100
t p (s)
10110
10-5
tp / T
At
Psx7p
RthJH =
K/W
17
10-4
10-3
D=
1,10
10-2
10-1
100
t p (s)
101 10
tp / T
K/W
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Brake
Brake IGBT
Brake IGBT
300
70
IC (A)
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
Ptot (W)
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
60
250
50
200
40
150
30
100
20
50
10
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
140
T h ( o C)
120
30
100
80
20
60
40
10
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Brake Inverse Diode
Brake inverse diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
IF (A)
ZthJC (K/W)
30
25
20
10
0
10
-1
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
5
0
10-2
0
0,8
At
Tj =
tp =
1,6
25/150
250
2,4
3,2
V F (V)
4
10-5
10-4
At
Psx7p
RthJH =
°C
µs
Brake inverse diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
D=
1,38
10-1
t p (s)
10110
tp / T
K/W
Brake inverse diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
140
100
120
15
100
80
10
60
40
5
20
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
19
50
150
100
150
T h ( o C)200
ºC
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
IF (A)
ZthJC (K/W)
150
125
100
100
75
50
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
25
0
0
At
Tj =
tp =
0,4
25/125
250
0,8
1,2
10-2
V F (V) 1,6
°C
µs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
0,74
10-3
10-2
10-1
t p (s)
10110
tp / T
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
90
Ptot (W)
IF (A)
240
100
80
200
70
160
60
50
120
40
80
30
20
40
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
20
30
150
60
90
o
120 T h ( C)
150
ºC
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25



NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R (Ω)
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
Rgon
= 16 Ω
Rgoff
= 17 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
120
200
IC
%
%
VCE
tdoff
100
VGE 90%
150
VCE 90%
80
VCE
100
60
VGE
IC
tdon
40
50
tEoff
20
VGE10%
IC 1%
VCE 3%
IC10%
0
0
VGE
tEon
-20
-0,2
-50
0
0,2
0,4
0,6
0,8
2,9
3,1
3,3
3,5
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
50
0,21
0,70
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
-15
15
600
50
0,10
0,38
3,7
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
140
200
%
%
fitted
Ic
120
VCE
IC
150
100
IC 90%
80
VCE
100
IC 60%
60
IC90%
tr
40
50
IC 40%
20
IC10%
IC10%
0
tf
0
-20
0
0,08
0,16
0,24
0,32
-50
0,4
3
3,1
3,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
50
0,09
3,3
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
600
50
0,03
V
A
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
120
%
Eoff
Poff
%
Pon
100
150
80
Eon
100
60
40
50
20
VCE 3%
VGE 10%
VGE 90%
0
tEon
0
tEoff
-20
-0,2
0
0,2
IC 1%
0,4
0,6
-50
2,95
0,8
3,05
3,15
3,25
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
30,14
4,09
0,70
3,35
3,45
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
30,14
4,39
0,38
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
0
Vd
IRRM10%
-50
IRRM90%
IRRM100%
-100
-150
-200
2,9
3,1
3,3
3,5
3,7
3,9
4,1
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
50
-45
0,73
V
A
A
µs
23
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
Qrr
Id
Erec
%
100
100
tQrr
80
tErec
50
60
0
40
-50
20
Prec
-100
0
-150
-20
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
2,9
3,1
3,3
3,5
3,7
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
50
10,81
2,00
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
24
30,14
5,14
2,00
3,9
4,1
time(us)
4,3
kW
mJ
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Brake
General conditions
= 150 °C
Tj
Rgon
= 16 Ω
Rgoff
= 16 Ω
IGBT
Figure 1
IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
250
%
%
120
tdoff
IC
200
100
VGE 90%
VCE 90%
150
80
VCE
IC
100
60
tEoff
40
VGE
tdon
50
20
VGE10%
IC 1%
VCE
VCE3%
IC10%
0
0
tEon
VGE
-50
-20
-0,2
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
-15
15
600
35
0,27
0,61
0,3
0,4
0,5
0,6
2,8
0,7
2,9
3
3,1
3,2
3,3
3,4
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
IGBT
Figure 3
3,5
time(us)
-15
15
600
35
0,09
0,33
V
V
V
A
µs
µs
IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
250
fitted
%
%
100
Ic
200
IC
Ic 90%
80
VCE
150
Ic 60%
60
VCE
100
40
IC90%
Ic 40%
tr
50
20
IC10%
Ic10%
0
0
tf
-20
0
0,1
0,2
0,3
-50
0,4
0,5
2,8
0,6
2,9
3
3,1
3,2
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
35
0,13
3,3
3,4
3,5
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
25
600
35
0,03
V
A
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Brake
IGBT
Figure 5
IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
200
%
Poff
Pon
%
Eoff
100
150
80
Eon
100
60
40
50
20
U ge10%
U ge90%
Uce 3%
0
0
tEoff
-20
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
20,96
3,18
0,61
Ic 1%
0,4
0,6
tEon
time (us)
-50
2,85
0,8
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,95
3,05
20,9586
2,92
0,33
3,15
3,25
3,35
3,45
time(us)
kW
mJ
µs
FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
fitted
100
trr
50
Ud
0
IRRM10%
-50
IRRM90%
-100
IRRM100%
-150
3
3,1
3,2
3,3
3,4
3,5
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
600
35
-39
0,42
V
A
A
µs
26
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Switching Definitions Brake
FWD
Figure 8
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
tQint
50
75
0
50
-50
25
tErec
Prec
-100
0
-150
-25
2,8
3
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
3,2
3,4
35
4,84
1,00
3,6
3,8
4
4,2
4,4
time(us)
2,8
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
27
3,2
3,4
20,96
1,98
1,00
3,6
3,8
4
4,2
4,4
time(us)
kW
mJ
µs
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
V23990-P768-A60-PM
in DataMatrix as
P768-A60
in packaging barcode as
P768-A60
Outline
Pinout
copyright Vincotech
28
19 Dec 2014 / Revision 2
V23990-P768-A60-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
29
19 Dec 2014 / Revision 2