V23990-P580-*4*-PM flow PIM 1 1200V/35A Features flow 1 housing ● 3~rectifier, optional BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT! / EmCon4 technology for low saturation losses and improved EMC behaviour 12mm housing Solder pins 17mm housing Solder pins 17mm housing Pressfit pins Target Applications Schematic ● Industrial drives ● Embedded drives Types ● V23990-P580-A41-PM ● V23990-P580-A41Y-PM With pressfit pins ● V23990-P580-A418-PM ● V23990-P580-C41-PM ● V23990-P580-C41Y-PM With pressfit pins Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 47 A 250 A 310 A2s 37 60 W Tjmax 150 °C VCE 1200 V 32 42 A tp limited by Tjmax 105 A VCE ≤ 1200V, Tj ≤ Top max 105 A 79 120 W ±20 V 10 800 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms 50Hz half sine wave Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2.1 V23990-P580-*4*-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 34 44 A 70 A Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 61 W 93 Tjmax 175 °C VCE 1200 V 25 31 A 75 A 50 A 62 94 W ±20 V 10 µs Brake Transistor Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V 800 V Tjmax 175 °C VRRM 1200 V 14 19 A 20 A 29 44 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Brake Diode Peak Repetitive Reverse Voltage DC forward current IF Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2.1 V23990-P580-*4*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V 20 2 1,89 mΩ mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,0012 35 1200 0 20 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff 5 5,8 6,5 1,6 1,95 2,39 2,3 0,5 300 Rgoff=16 Ω Rgon=16 Ω Input capacitance Cies Output capacitance Coss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK 600 ±15 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω - td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 92 92 18 23 213 274 75 105 1,62 2,49 1,81 2,82 ns mWs 1950 f=1MHz 25 0 Tj=25°C pF 155 35 ±15 Tj=25°C 270 nC 1,20 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Rgon=16 Ω 1200 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Copyright by Vincotech 35 Thermal grease thickness≤50um λ = 1 W/mK 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,83 1,80 69 79 150 277 3,93 7,47 4100 2080 1,69 3,31 1,55 3 2,2 V A ns µC A/µs mWs K/W Revision: 2.1 V23990-P580-*4*-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,6 1,86 2,31 2,2 Brake Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,00085 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 25 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,005 200 - tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=32 Ω Rgon=32 Ω ±15 1200 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 127 129 36 42 232 276 74 112 1,81 2,42 1,37 2,19 ns mWs 1430 f=1MHz 0 25 15 960 Tj=25°C 115 Tj=25°C 120 nC 1,53 K/W pF 85 25 Thermal grease thickness≤50um λ = 1 W/mK Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 10 Rgon=32 Ω Rgon=32 Ω ±15 600 di(rec)max /dt Erec RthJH 25 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,85 1,76 2,05 2,7 10 12 396 624 1,55 3,03 36 32 0,63 1,30 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 3,28 K/W 22000 Ω Thermistor Rated resistance R T=25°C Deviation of R25 ∆R/R T=25°C Power dissipation P T=25°C 200 mW T=25°C 2 mW/K T=25°C 3950 K T=25°C 3998 K Power dissipation constant B-value B(25/50) B-value B(25/100) Tol. ±3% Vincotech NTC Reference Copyright by Vincotech -5 5 % B 4 Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 60 IC (A) 35 V CE (V) 4 30 50 25 40 20 30 15 Tj = Tjmax-25°C 20 Tj = Tjmax-25°C 10 Tj = 25°C 10 5 Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V Copyright by Vincotech 6 8 10 V GE (V) 12 0,0 At tp = 5 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter IGBT 5 Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 Eoff High T E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Eon High T Eon High T 7 4 6 Eon Low T Eoff Low T 5 3 4 Eon Low T Eoff High T 2 3 Eoff Low T 2 1 1 0 0 0 10 20 30 40 50 60 0 I C (A) 70 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = °C 25/150 VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 4,5 4,5 Erec E (mWs) E (mWs) 10 4 Tj = Tjmax -25°C 4 3,5 3,5 3 3 2,5 2,5 Tj = Tjmax -25°C Erec Tj = 25°C Erec 2 2 1,5 1,5 1 1 0,5 0,5 Tj = 25°C Erec 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 6 Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tdon tf tf 0,10 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Tj = Tjmax -25°C t rr( µs) 0,8 t rr( µs) 0,3 trr trr 0,3 0,6 Tj = Tjmax -25°C 0,2 trr Tj = 25°C 0,2 0,4 Tj = 25°C trr 0,1 0,2 0,1 0,0 0,0 0 10 At Tj = VCE = VGE = Rgon = 25/150 600 ±15 16 20 30 40 50 60 I C (A) 0 70 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 10 25/150 600 35 ±15 20 30 40 50 60 R g on ( Ω ) 70 °C V A V Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr( µC) Qrr( µC) 8,4 Qrr Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 7,2 8 6 6 4,8 Tj = 25°C Tj = 25°C Qrr Qrr 3,6 4 2,4 2 1,2 0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 0 70 10 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/150 600 35 ±15 20 30 40 60 R g on ( Ω) 70 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 100 50 150 IrrM (A) IrrM (A) IRRM Tj = Tjmax -25°C IRRM 125 80 IRRM Tj = 25°C IRRM 100 60 75 40 50 Tj = Tjmax - 25°C Tj = 25°C 20 25 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 50 60 I C (A) 70 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 10 25/150 600 35 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 4500 9000 dI0/dt dIrec/dt 4000 direc / dt (A/ µs) direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3500 dI0/dt dIrec/dt 8000 7000 3000 6000 2500 5000 2000 4000 1500 3000 1000 2000 500 1000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 600 ±15 16 20 30 40 60 I C (A) 50 0 70 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/150 600 35 ±15 20 30 40 50 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 Zth-JH (K/W) ZthJH (K/W) 101 60 R ( Ω ) 70 gon 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10110 10-5 At D= RthJH = tp / T 1,20 Thermal grease R (C/W) 0,09 0,42 0,48 0,16 0,05 10-3 K/W RthJH = 1,01 K/W IGBT thermal model values Phase change interface Tau (s) 2,9E+00 3,4E-01 9,0E-02 1,1E-02 6,6E-04 Copyright by Vincotech R (C/W) 2,46 0,29 0,08 0,01 0,00 10-4 R (C/W) 0,04 0,22 0,77 0,33 0,11 0,08 9 10-2 10-1 100 t p (s) 10110 tp / T 1,55 Thermal grease Tau (s) 2,9E+00 3,4E-01 9,0E-02 1,1E-02 6,6E-04 10-3 K/W RthJH = 1,31 K/W FWD thermal model values Phase change interface Tau (s) 9,7E+00 8,1E-01 1,4E-01 2,1E-02 3,0E-03 3,4E-04 R (C/W) 8,15 0,68 0,12 0,02 0,00 0,00 Tau (s) 9,7E+00 8,1E-01 1,4E-01 2,1E-02 3,0E-03 3,4E-04 Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) Ptot (W) IC (A) 150 50 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 125 150 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 2.1 V23990-P580-*4*-PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 16 14 10 3 10uS 100uS 12 1mS 10 240V 10 2 10mS 960V 8 100mS 10 1 6 DC 4 10 0 2 0 10-1 10 At D= Th = VGE = 0 10 1 10 V CE (V) 2 0 103 At IC = Output inverter IGBT Figure 27 80 120 160 200 240 Q g (nC) single pulse 80 ºC ±15 V Tjmax ºC Tj = 40 35 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 50 180 160 40 140 120 30 100 80 20 60 40 10 20 0 0 10 12 14 16 18 V GE (V) 20 10 11 12 At VCE = 1200 V At VCE ≤ 1200 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 11 13 14 15 16 17 V GE (V) 18 Revision: 2.1 V23990-P580-*4*-PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 80 IC MAX 70 60 Ic 40 Ic CHIP MODULE 50 30 VCE MAX 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 12 Revision: 2.1 V23990-P580-*4*-PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 40 IC (A) IC (A) 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 151 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 IC (A) IF (A) 25 V CE (V) 30 20 25 15 20 Tj = Tjmax-25°C 15 10 Tj = 25°C 10 Tj = Tjmax-25°C 5 5 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = µs V Copyright by Vincotech 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 2.1 V23990-P580-*4*-PM Brake Brake IGBT Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 5,0 7,00 Tj = Tjmax -25°C E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Eon 4,0 6,00 5,00 Eoff Eon 3,0 4,00 Tj = Tjmax -25°C Eon Eoff 3,00 2,0 Eoff 2,00 1,0 Eoff 1,00 Tj = 25°C Tj = 25°C 0,00 0,0 0 10 20 30 40 I C (A) 0 50 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 25 50 75 125 RG (Ω ) 100 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1,6 E (mWs) 1,6 E (mWs) Erec Tj = Tjmax - 25°C 1,4 1,4 Tj = Tjmax -25°C 1,2 1,2 1,0 1,0 Erec Erec 0,8 0,8 Tj = 25°C 0,6 0,6 Tj = 25°C Erec 0,4 0,4 0,2 0,2 0,0 0,0 0 10 20 30 40 I C (A) 0 50 With an inductive load at 25/150 Tj = °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Copyright by Vincotech 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A 14 Revision: 2.1 V23990-P580-*4*-PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( µs) t ( µs) 1,00 tdon tdoff tdon tf tf 0,10 0,10 tr tr 0,01 0,01 0,00 0,00 0 10 20 30 I C (A) 40 50 0 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 32 Ω Rgoff = 32 Ω 25 50 75 100 R G ( Ω ) 150 125 With an inductive load at Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 25 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At Thermal grease RthJH = 1,526 10-3 D= K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 101 10 10-5 tp / T Phase change interface RthJH = 1,29 K/W 15 10-4 10-3 At Thermal grease RthJH = 3,28 D= K/W 10-2 10-1 100 t p (s) 101 10 tp / T Phase change interface RthJH = 2,76 K/W Revision: 2.1 V23990-P580-*4*-PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 40 IC (A) Ptot (W) 125 100 30 75 20 50 10 25 0 0 0 50 At Tj = 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 60 T h ( o C) 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 175 100 150 Th ( o C) 200 ºC Revision: 2.1 V23990-P580-*4*-PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 120 1 IF (A) ZthJC (K/W) 10 100 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = Tjmax-25°C 20 Tj = 25°C 0 0,0 At tp = 0,3 250 0,5 0,8 1,0 1,3 1,5 10-2 V F (V) 1,8 10-5 At D= RthJH = µs Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 t p (s) 10110 tp / T 1,89 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 90 100 75 50 60 40 45 30 30 20 15 10 0 0 0 At Tj = 25 150 50 75 100 125 T h ( o C) 150 0 At Tj = ºC Copyright by Vincotech 17 25 150 50 75 100 o 125 T h ( C) 150 ºC Revision: 2.1 V23990-P580-*4*-PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R/Ω Thermistor Figure 2 Typical NTC resistance values R(T ) = R25 ⋅ e 22000 [Ω] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 Copyright by Vincotech 65 85 105 T (°C) 125 18 Revision: 2.1 V23990-P580-*4*-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 16 Ω Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 350 % % 120 tdoff 100 VGE 90% IC 300 VCE 250 VCE 90% 80 200 60 IC 150 40 tEoff VGE tdon IC 1% 0 VCE 100 20 50 IC10% VGE -20 VCE 3% VGE10% 0 tEon -40 -0,4 -50 -0,2 0 0,2 0,4 0,6 0,8 2,9 3 3,1 3,2 3,3 3,4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 35 0,27 0,55 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,5 time(us) time (us) -15 15 600 35 0,09 0,31 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 140 325 Ic % % 120 fitted IC 275 VCE 100 225 IC 90% 80 175 IC 60% 60 125 40 IC 40% IC90% tr 75 20 IC10% 0 25 IC10% tf -20 0,1 0,2 0,3 0,4 0,5 VCE -25 0,6 3 3,1 3,2 VC (100%) = IC (100%) = tf = 600 35 0,11 Copyright by Vincotech 3,3 3,4 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 19 600 35 0,02 V A µs Revision: 2.1 V23990-P580-*4*-PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 225 120 % % Eoff 100 Poff Pon 175 80 125 60 Eon 40 75 20 VGE 90% 25 VCE 3% VGE 10% 0 tEoff tEon IC 1% -25 -20 -0,1 0,1 0,3 0,5 3 0,7 3,1 3,2 Poff (100%) = Eoff (100%) = tEoff = 21,01 2,82 0,55 3,3 3,4 time(us) time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs 21,01 2,49 0,31 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 fitted -80 -120 -160 IRRM90% -200 IRRM100% -240 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = 3,1 3,2 600 35 -79 0,28 Copyright by Vincotech 3,3 3,4 3,5 time(us) 3,6 V A A µs 20 Revision: 2.1 V23990-P580-*4*-PM Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Id % Erec % Qrr 100 100 tQrr 50 80 tErec 0 60 -50 40 -100 20 -150 Prec 0 -200 -250 -20 3 3,2 3,4 3,6 3,8 4 4,2 3 3,5 4 time(us) Id (100%) = Qrr (100%) = tQrr = 35 7,47 1,00 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 21 21,01 3,31 1,00 4,5 time(us) 5 kW mJ µs Revision: 2.1 V23990-P580-*4*-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Ordering Code V23990-P589-A41-PM V23990-P589-A418-PM V23990-P589-C41-PM Version without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing in DataMatrix as P589-A41 P589-A418 P589-C41 in packaging barcode as P589-A41 P589-A418 P589-C41 Features A version C version 3-leg 3-leg Rectifier Break IGBT w/o pin 1,31,32 Break FWD Inverter IGBT Inverter FWD Outline Pin table X Pin Y 1 52,55 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 47,7 44,8 37,8 37,8 35 35 28 25,2 22,4 19,6 16,8 14 11,2 8,4 5,6 2,8 0 0 0 0 0 2,8 0 2,8 0 0 0 0 0 0 0 0 0 0 0 19 20 0 2,8 28,5 28,5 21 7,5 28,5 25 29 28,5 29 52,55 25 22 23 24 14,5 17,3 22 28,5 28,5 28,5 26 27 28 31,8 36,5 43,5 28,5 28,5 28,5 30 31 32 52,55 52,55 52,55 16,9 8,6 2,8 Pin Pin table X Y Pin Pin table X Y Pinout Copyright by Vincotech 22 Revision: 2.1 V23990-P580-*4*-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 2.1