V23990-P580-*4*-PM Maximum Ratings

V23990-P580-*4*-PM
flow PIM 1
1200V/35A
Features
flow 1 housing
● 3~rectifier, optional BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT! / EmCon4 technology for low saturation losses
and improved EMC behaviour
12mm housing
Solder pins
17mm housing
Solder pins
17mm housing
Pressfit pins
Target Applications
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P580-A41-PM
● V23990-P580-A41Y-PM With pressfit pins
● V23990-P580-A418-PM
● V23990-P580-C41-PM
● V23990-P580-C41Y-PM With pressfit pins
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
47
A
250
A
310
A2s
37
60
W
Tjmax
150
°C
VCE
1200
V
32
42
A
tp limited by Tjmax
105
A
VCE ≤ 1200V, Tj ≤ Top max
105
A
79
120
W
±20
V
10
800
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
50Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2.1
V23990-P580-*4*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
34
44
A
70
A
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
61
W
93
Tjmax
175
°C
VCE
1200
V
25
31
A
75
A
50
A
62
94
W
±20
V
10
µs
Brake Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
800
V
Tjmax
175
°C
VRRM
1200
V
14
19
A
20
A
29
44
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2.1
V23990-P580-*4*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
20
2
1,89
mΩ
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,0012
35
1200
0
20
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
5
5,8
6,5
1,6
1,95
2,39
2,3
0,5
300
Rgoff=16 Ω
Rgon=16 Ω
Input capacitance
Cies
Output capacitance
Coss
Gate charge
QGate
Vcc=960V
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
600
±15
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
92
92
18
23
213
274
75
105
1,62
2,49
1,81
2,82
ns
mWs
1950
f=1MHz
25
0
Tj=25°C
pF
155
35
±15
Tj=25°C
270
nC
1,20
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Rgon=16 Ω
1200
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Copyright by Vincotech
35
Thermal grease
thickness≤50um
λ = 1 W/mK
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,83
1,80
69
79
150
277
3,93
7,47
4100
2080
1,69
3,31
1,55
3
2,2
V
A
ns
µC
A/µs
mWs
K/W
Revision: 2.1
V23990-P580-*4*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,6
1,86
2,31
2,2
Brake Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00085
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
25
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,005
200
-
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=32 Ω
Rgon=32 Ω
±15
1200
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
127
129
36
42
232
276
74
112
1,81
2,42
1,37
2,19
ns
mWs
1430
f=1MHz
0
25
15
960
Tj=25°C
115
Tj=25°C
120
nC
1,53
K/W
pF
85
25
Thermal grease
thickness≤50um
λ = 1 W/mK
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
10
Rgon=32 Ω
Rgon=32 Ω
±15
600
di(rec)max
/dt
Erec
RthJH
25
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,85
1,76
2,05
2,7
10
12
396
624
1,55
3,03
36
32
0,63
1,30
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,28
K/W
22000
Ω
Thermistor
Rated resistance
R
T=25°C
Deviation of R25
∆R/R
T=25°C
Power dissipation
P
T=25°C
200
mW
T=25°C
2
mW/K
T=25°C
3950
K
T=25°C
3998
K
Power dissipation constant
B-value
B(25/50)
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
Copyright by Vincotech
-5
5
%
B
4
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
60
IC (A)
35
V CE (V)
4
30
50
25
40
20
30
15
Tj = Tjmax-25°C
20
Tj = Tjmax-25°C
10
Tj = 25°C
10
5
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0,0
At
tp =
5
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V)
3,0
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter IGBT
5
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
Eoff High T
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Eon High T
Eon High T
7
4
6
Eon Low T
Eoff Low T
5
3
4
Eon Low T
Eoff High T
2
3
Eoff Low T
2
1
1
0
0
0
10
20
30
40
50
60
0
I C (A) 70
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
4,5
4,5
Erec
E (mWs)
E (mWs)
10
4
Tj = Tjmax -25°C
4
3,5
3,5
3
3
2,5
2,5
Tj = Tjmax -25°C
Erec
Tj = 25°C
Erec
2
2
1,5
1,5
1
1
0,5
0,5
Tj = 25°C
Erec
0
0
0
10
20
30
40
50
60 I C (A)
70
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Copyright by Vincotech
10
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
6
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tdoff
tdon
tf
tf
0,10
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
50
60
I C (A) 70
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
10
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Tj = Tjmax -25°C
t rr( µs)
0,8
t rr( µs)
0,3
trr
trr
0,3
0,6
Tj = Tjmax -25°C
0,2
trr
Tj = 25°C
0,2
0,4
Tj = 25°C
trr
0,1
0,2
0,1
0,0
0,0
0
10
At
Tj =
VCE =
VGE =
Rgon =
25/150
600
±15
16
20
30
40
50
60 I C (A)
0
70
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
10
25/150
600
35
±15
20
30
40
50
60
R g on ( Ω )
70
°C
V
A
V
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr( µC)
Qrr( µC)
8,4
Qrr
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
7,2
8
6
6
4,8
Tj = 25°C
Tj = 25°C
Qrr
Qrr
3,6
4
2,4
2
1,2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
0
70
10
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/150
600
35
±15
20
30
40
60 R g on ( Ω) 70
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
50
150
IrrM (A)
IrrM (A)
IRRM
Tj = Tjmax -25°C
IRRM
125
80
IRRM
Tj = 25°C
IRRM
100
60
75
40
50
Tj = Tjmax - 25°C
Tj = 25°C
20
25
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
50
60
I C (A)
70
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
10
25/150
600
35
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
4500
9000
dI0/dt
dIrec/dt
4000
direc / dt (A/ µs)
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
3500
dI0/dt
dIrec/dt
8000
7000
3000
6000
2500
5000
2000
4000
1500
3000
1000
2000
500
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
16
20
30
40
60 I C (A)
50
0
70
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/150
600
35
±15
20
30
40
50
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
Zth-JH (K/W)
ZthJH (K/W)
101
60 R ( Ω ) 70
gon
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10110
10-5
At
D=
RthJH =
tp / T
1,20
Thermal grease
R (C/W)
0,09
0,42
0,48
0,16
0,05
10-3
K/W
RthJH =
1,01
K/W
IGBT thermal model values
Phase change interface
Tau (s)
2,9E+00
3,4E-01
9,0E-02
1,1E-02
6,6E-04
Copyright by Vincotech
R (C/W)
2,46
0,29
0,08
0,01
0,00
10-4
R (C/W)
0,04
0,22
0,77
0,33
0,11
0,08
9
10-2
10-1
100
t p (s)
10110
tp / T
1,55
Thermal grease
Tau (s)
2,9E+00
3,4E-01
9,0E-02
1,1E-02
6,6E-04
10-3
K/W
RthJH =
1,31
K/W
FWD thermal model values
Phase change interface
Tau (s)
9,7E+00
8,1E-01
1,4E-01
2,1E-02
3,0E-03
3,4E-04
R (C/W)
8,15
0,68
0,12
0,02
0,00
0,00
Tau (s)
9,7E+00
8,1E-01
1,4E-01
2,1E-02
3,0E-03
3,4E-04
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
Ptot (W)
IC (A)
150
50
125
40
100
30
75
20
50
10
25
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
60
Ptot (W)
IF (A)
125
150
50
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2.1
V23990-P580-*4*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
16
14
10
3
10uS
100uS
12
1mS
10
240V
10
2
10mS
960V
8
100mS
10
1
6
DC
4
10
0
2
0
10-1
10
At
D=
Th =
VGE =
0
10
1
10
V CE (V)
2
0
103
At
IC =
Output inverter IGBT
Figure 27
80
120
160
200
240
Q g (nC)
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
40
35
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
50
180
160
40
140
120
30
100
80
20
60
40
10
20
0
0
10
12
14
16
18
V GE (V)
20
10
11
12
At
VCE =
1200
V
At
VCE ≤
1200
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
11
13
14
15
16
17
V GE (V)
18
Revision: 2.1
V23990-P580-*4*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
80
IC MAX
70
60
Ic
40
Ic CHIP
MODULE
50
30
VCE MAX
20
10
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
12
Revision: 2.1
V23990-P580-*4*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
40
IC (A)
IC (A)
40
35
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
151
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
35
IC (A)
IF (A)
25
V CE (V)
30
20
25
15
20
Tj = Tjmax-25°C
15
10
Tj = 25°C
10
Tj = Tjmax-25°C
5
5
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V) 10
0
At
tp =
µs
V
Copyright by Vincotech
13
0,5
250
1
1,5
2
2,5
3
V F (V) 3,5
µs
Revision: 2.1
V23990-P580-*4*-PM
Brake
Brake IGBT
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
5,0
7,00
Tj = Tjmax -25°C
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Eon
4,0
6,00
5,00
Eoff
Eon
3,0
4,00
Tj = Tjmax -25°C
Eon
Eoff
3,00
2,0
Eoff
2,00
1,0
Eoff
1,00
Tj = 25°C
Tj = 25°C
0,00
0,0
0
10
20
30
40
I C (A)
0
50
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
25
50
75
125
RG (Ω
)
100
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1,6
E (mWs)
1,6
E (mWs)
Erec
Tj = Tjmax - 25°C
1,4
1,4
Tj = Tjmax -25°C
1,2
1,2
1,0
1,0
Erec
Erec
0,8
0,8
Tj = 25°C
0,6
0,6
Tj = 25°C
Erec
0,4
0,4
0,2
0,2
0,0
0,0
0
10
20
30
40
I C (A)
0
50
With an inductive load at
25/150
Tj =
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Copyright by Vincotech
25
50
75
100
125
R G ( Ω ) 150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
14
Revision: 2.1
V23990-P580-*4*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdon
tdoff
tdon
tf
tf
0,10
0,10
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
I C (A)
40
50
0
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
25
50
75
100
R G ( Ω ) 150
125
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Brake IGBT
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
At
Thermal grease
RthJH =
1,526
10-3
D=
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
101 10
10-5
tp / T
Phase change interface
RthJH =
1,29
K/W
15
10-4
10-3
At
Thermal grease
RthJH =
3,28
D=
K/W
10-2
10-1
100
t p (s)
101 10
tp / T
Phase change interface
RthJH =
2,76
K/W
Revision: 2.1
V23990-P580-*4*-PM
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
125
100
30
75
20
50
10
25
0
0
0
50
At
Tj =
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
T h ( o C)
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 2.1
V23990-P580-*4*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
120
1
IF (A)
ZthJC (K/W)
10
100
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = Tjmax-25°C
20
Tj = 25°C
0
0,0
At
tp =
0,3
250
0,5
0,8
1,0
1,3
1,5
10-2
V F (V) 1,8
10-5
At
D=
RthJH =
µs
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
t p (s)
10110
tp / T
1,89
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
90
100
75
50
60
40
45
30
30
20
15
10
0
0
0
At
Tj =
25
150
50
75
100
125
T h ( o C) 150
0
At
Tj =
ºC
Copyright by Vincotech
17
25
150
50
75
100
o
125 T h ( C)
150
ºC
Revision: 2.1
V23990-P580-*4*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R/Ω
Thermistor
Figure 2
Typical NTC resistance values
R(T ) = R25 ⋅ e
22000
[Ω]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
Copyright by Vincotech
65
85
105
T (°C)
125
18
Revision: 2.1
V23990-P580-*4*-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 16 Ω
Rgoff
= 16 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
350
%
%
120
tdoff
100
VGE 90%
IC
300
VCE
250
VCE 90%
80
200
60
IC
150
40
tEoff
VGE
tdon
IC 1%
0
VCE
100
20
50
IC10%
VGE
-20
VCE 3%
VGE10%
0
tEon
-40
-0,4
-50
-0,2
0
0,2
0,4
0,6
0,8
2,9
3
3,1
3,2
3,3
3,4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
35
0,27
0,55
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,5
time(us)
time (us)
-15
15
600
35
0,09
0,31
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
140
325
Ic
%
%
120
fitted
IC
275
VCE
100
225
IC 90%
80
175
IC 60%
60
125
40
IC 40%
IC90%
tr
75
20
IC10%
0
25
IC10%
tf
-20
0,1
0,2
0,3
0,4
0,5
VCE
-25
0,6
3
3,1
3,2
VC (100%) =
IC (100%) =
tf =
600
35
0,11
Copyright by Vincotech
3,3
3,4
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
600
35
0,02
V
A
µs
Revision: 2.1
V23990-P580-*4*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
225
120
%
%
Eoff
100
Poff
Pon
175
80
125
60
Eon
40
75
20
VGE 90%
25
VCE 3%
VGE 10%
0
tEoff
tEon
IC 1%
-25
-20
-0,1
0,1
0,3
0,5
3
0,7
3,1
3,2
Poff (100%) =
Eoff (100%) =
tEoff =
21,01
2,82
0,55
3,3
3,4
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
21,01
2,49
0,31
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
fitted
-80
-120
-160
IRRM90%
-200
IRRM100%
-240
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
3,1
3,2
600
35
-79
0,28
Copyright by Vincotech
3,3
3,4
3,5
time(us)
3,6
V
A
A
µs
20
Revision: 2.1
V23990-P580-*4*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Id
%
Erec
%
Qrr
100
100
tQrr
50
80
tErec
0
60
-50
40
-100
20
-150
Prec
0
-200
-250
-20
3
3,2
3,4
3,6
3,8
4
4,2
3
3,5
4
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
35
7,47
1,00
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
21,01
3,31
1,00
4,5
time(us)
5
kW
mJ
µs
Revision: 2.1
V23990-P580-*4*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Ordering Code
V23990-P589-A41-PM
V23990-P589-A418-PM
V23990-P589-C41-PM
Version
without thermal paste 17mm housing
without thermal paste 12mm housing
without thermal paste 17mm housing
in DataMatrix as
P589-A41
P589-A418
P589-C41
in packaging barcode as
P589-A41
P589-A418
P589-C41
Features
A version
C version
3-leg
3-leg
Rectifier
Break IGBT
w/o pin
1,31,32
Break FWD
Inverter IGBT
Inverter FWD
Outline
Pin table
X
Pin
Y
1
52,55
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
47,7
44,8
37,8
37,8
35
35
28
25,2
22,4
19,6
16,8
14
11,2
8,4
5,6
2,8
0
0
0
0
0
2,8
0
2,8
0
0
0
0
0
0
0
0
0
0
0
19
20
0
2,8
28,5
28,5
21
7,5
28,5
25
29
28,5
29
52,55
25
22
23
24
14,5
17,3
22
28,5
28,5
28,5
26
27
28
31,8
36,5
43,5
28,5
28,5
28,5
30
31
32
52,55
52,55
52,55
16,9
8,6
2,8
Pin
Pin table
X
Y
Pin
Pin table
X
Y
Pinout
Copyright by Vincotech
22
Revision: 2.1
V23990-P580-*4*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 2.1