V23990-K428-A60-PM MiniSKiiP® 3 PIM 1200V/50A MiniSKiiP® 3 housing Features ● Solderless interconnection ● Mitsubishi Generation 6.1 technology Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K428-A60-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 71 80 A 490 A 1200 A2s D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=150°C Tj=Tjmax Th=80°C 77 Tc=80°C 117 W Tjmax 150 °C VCE 1200 V 55 70 A tp limited by Tjmax 100 A VCE ≤ 1200V, Tj ≤ Top max 100 A T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 127 193 W 20 V 10 850 µs V 175 °C Revision: 1.1 V23990-K428-A60-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 47 55 A 100 A 102 154 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6,D7 Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1.1 V23990-K428-A60-PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 1,09 1,02 0,90 0,74 4,00 6,00 1,8 D8,D9,D10,D11,D12,D13 Forward voltage VF 50 Threshold voltage (for power loss calc. only) Vto 50 Slope resistance (for power loss calc. only) rt 50 Reverse current Ir Thermal resistance chip to heatsink per chip 1600 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=°C Tj=25°C Tj=145°C V V mΩ 1,1 0,90 mA K/W T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time 1200 20 0 td(off) Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5,4 6 6,6 1 1,79 2,12 2,3 0,25 500 Rgoff=16 Ω Rgon=16 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 50 td(on) tf Fall time 0,005 106 104 28 31 157 205 58 89 2,61 4,39 2,49 4,09 ns mWs 5000 f=1MHz 0 1000 Tj=25°C 10 pF 80 ±15 600 50 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 117 nC 0,75 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 50 Rgon=16 Ω ±15 600 di(rec)max /dt Erec RthJH 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 Thermal grease thickness≤50um λ = 1 W/mK 2,73 2,18 33 45 388 727 4,01 10,81 1018 295 1,84 5,14 3,4 V A ns µC A/µs mWs 0,93 K/W 1000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1670 Ω T=100°C T=100°C Power dissipation constant 3 B-value B(25/50) T=25°C B(25/100) T=25°C Vincotech NTC Reference % Ω 1670 mW/K T=25°C B-value Copyright by Vincotech -3 7,635*10 -3 1/K 1,731*10 -5 1/K² E 3 Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 Typical output characteristics IC = f(VCE) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Typical output characteristics IC = f(VCE) 120 IC (A) IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 µs 151 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) D1,D2,D3,D4,D5,D6,D7 FWD 100 IF (A) IC (A) 50 40 80 30 60 20 40 10 20 0 0 0 At Tj = tp = VCE = 2 25/151 25/150 250 10 4 6 8 10 V GE (V) 0 12 At Tj = tp = °C µs V Copyright by Vincotech 4 1 25/151 25/150 250 2 3 4 V F (V) 5 °C µs Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 12 T1,T2,T3,T4,T5,T6,T7 IGBT E (mWs) E (mWs) 12 Eon High T 10 Eon High T 9 8 Eon Low T 6 6 Eon Low T 4 Eoff High T Eoff High T Eoff Low T 3 Eoff Low T 2 0 0 0 25 50 75 I C (A) 0 100 With an inductive load at Tj = °C 25/151 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 RG(Ω) 80 With an inductive load at Tj = °C 25/151 25/150 VCE = 600 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 8 Erec 6 D1,D2,D3,D4,D5,D6,D7 FWD 8 6 Erec 4 4 Erec 2 2 Erec 0 0 0 25 50 75 I C (A) 100 0 With an inductive load at Tj = 25/151 °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 16 Ω Copyright by Vincotech 16 32 48 64 RG(Ω) 80 With an inductive load at Tj = 25/151 °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A 5 Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tdon 0,10 0,10 tf tf tr tdon 0,01 0,01 tr 0,00 0,00 0 25 50 75 0 100 I C (A) With an inductive load at Tj = 151 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 16 32 48 64 RG(Ω ) 80 With an inductive load at Tj = 151 °C VCE = 600 V VGE = ±15 V IC = 50 A D1,D2,D3,D4,D5,D6,D7 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1,5 t rr( µs) t rr( µs) 1,5 D1,D2,D3,D4,D5,D6,D7 FWD 1,2 1,2 trr trr 0,9 0,9 0,6 0,6 trr 0,3 trr 0,3 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 25 25/151 25/150 600 ±15 16 50 75 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 6 16 25/151 25/150 600 50 ±15 32 48 64 R gon ( Ω ) 80 °C V A V Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr( µC) 15 Qrr( µC) 18 D1,D2,D3,D4,D5,D6,D7 FWD Qrr 15 12 Qrr 12 9 9 6 6 Qrr Qrr 3 3 0 0 0 25 At At Tj = VCE = VGE = Rgon = 25/151 25/150 600 ±15 16 50 75 I C (A) 100 °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) D1,D2,D3,D4,D5,D6,D7 FWD 0 16 At Tj = VR = IF = VGE = 25/151 25/150 600 50 ±15 32 64 R gon ( Ω) 80 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 125 48 D1,D2,D3,D4,D5,D6,D7 FWD IrrM (A) IrrM (A) 125 100 100 75 75 50 50 IRRM IRRM 25 25 IRRM IRRM 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/151 25/150 600 ±15 16 50 75 I C (A) 100 °C V V Ω Copyright by Vincotech 7 0 16 At Tj = VR = IF = VGE = 25/151 25/150 600 50 ±15 32 48 64 R gon ( Ω ) 80 °C V A V Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 direc / dt (A/ µs) direc / dt (A/µ s) 10000 dI0/dt dIrec/dt 8000 dI0/dt dIrec/dt 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/151 25/150 600 ±15 16 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 25/151 25/150 600 50 ±15 20 30 40 50 60 R ( Ω ) 70 gon °C V A V D1,D2,D3,D4,D5,D6,D7 FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 D1,D2,D3,D4,D5,D6,D7 FWD 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10 1 1010 -2 10-5 At D= RthJH = tp / T 0,75 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-2 10-1 100 t p (s) 10110 tp / T 0,93 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,03 0,09 0,29 0,24 0,09 R (C/W) 0,05 0,10 0,37 0,25 0,13 0,04 Tau (s) 1,6E+01 1,2E+00 2,1E-01 7,1E-02 1,5E-02 Copyright by Vincotech 10-3 8 Tau (s) 3,4E+00 5,9E-01 1,2E-01 3,7E-02 8,1E-03 9,0E-04 Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1,T2,T3,T4,T5,T6,T7 IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 250 200 60 150 40 100 20 50 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = °C 175 D1,D2,D3,D4,D5,D6,D7 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V D1,D2,D3,D4,D5,D6,D7 FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 200 150 45 100 30 50 15 0 0 0 At Tj = 50 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 °C Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 VGE (V) 20 IC (A) 10 10 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 26 Gate voltage vs Gate charge 18 2 16 100uS 240V 14 960V 10 12 1 1mS 10 8 100 10mS 6 100mS 10 4 DC -1 2 0 0 101 100 At D= Th = VGE = 102 103 At IC = T1,T2,T3,T4,T5,T6,T7 IGBT Figure 27 40 60 80 100 120 140 160 Q g (nC) single pulse 80 ºC ±15 V Tjmax ºC Tj = 20 V CE (V) 50 A T1,T2,T3,T4,T5,T6,T7 IGBT Figure 28 Short circuit safe operating area (SCSOA) Typical short circuit collector current as a function of gate-emitter voltage Ic = f(VCE) x7 IC (Normalized) [A] Ic(normalized) [A] x11 x10 x9 x8 x6 x5 x7 x4 x6 x 5 x3 x4 x 2 x3 x2 x1 x1 x 0 x0 0 200 400 600 800 1000 1200 At VCE ≤ 850 V VGE= ±15 V Tj ≤ 150 ºC tSC ≤ 10 µS Copyright by Vincotech 1400 13 V GE (V) VCE= Tj = 10 14 800 150 15 16 V GE (V) 17 V ºC Revision: 1.1 V23990-K428-A60-PM T1,T2,T3,T4,T5,T6,T7 IGBT Figure 28 Reverse bias safe operating area IC = f(VCE) IC (A) 120 IC MAX Ic CHIP 100 80 MODULE 60 Ic 40 VCE MAX 20 0 0 200 400 600 At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech 800 1000 1200 1400 V CE (V) 11 Revision: 1.1 V23990-K428-A60-PM D8,D9,D10,D11,D12,D13 D8,D9,D10,D11,D12,D13 diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 1 ZthJC (K/W) IF (A) 10 D8,D9,D10,D11,D12,D13 diode 120 100 90 60 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 30 0 0,0 0,5 1,0 1,5 V F (V) 2,0 10-2 t p (s) 10-5 At Tj = tp = 25/151 25/125 250 10-4 At D= RthJH = °C µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) D8,D9,D10,D11,D12,D13 diode 10-3 10-2 100 1 1010 tp / T 0,90 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D8,D9,D10,D11,D12,D13 diode 100 IF (A) Ptot (W) 180 10-1 150 80 120 60 90 40 60 20 30 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 0 150 At Tj = ºC Copyright by Vincotech 12 30 150 60 90 120 T h ( o C) 150 ºC Revision: 1.1 V23990-K428-A60-PM Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 45 65 Copyright by Vincotech 85 105 T (°C) 125 13 Revision: 1.1 V23990-K428-A60-PM Switching Definitions Output Inverter General conditions Tj = 150 °C Rgon = 16 Ω Rgoff = 16 Ω T1,T2,T3,T4,T5,T6,T7 IGBT Figure 1 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 tdoff % % VCE 100 150 VCE 90% VGE 90% IC 75 VCE IC 100 50 VGE tdon tEoff 50 25 IC 1% VGE VGE 10% VCE 3% IC 10% 0 0 tEon -25 -0,2 -50 0 0,2 0,4 0,6 0,8 2,7 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 50 0,205 0,715 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs T1,T2,T3,T4,T5,T6,T7 IGBT Figure 3 -15 15 600 50 0,104 0,366 3,5 time(us) 3,7 V V V A µs µs T1,T2,T3,T4,T5,T6,T7 IGBT 200 VCE % IC 100 3,3 Turn-on Switching Waveforms & definition of tr fitted % 3,1 Figure 4 Turn-off Switching Waveforms & definition of tf 120 2,9 Ic 150 IC 90% 80 VCE 100 60 IC 90% IC 60% tr 40 IC 40% 50 20 IC 10% IC 10% 0 0 tf -20 -0,05 0,05 0,15 0,25 0,35 -50 0,45 2,9 3 3,1 3,2 VC (100%) = IC (100%) = tf = 600 50 0,09 Copyright by Vincotech 3,3 3,4 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 14 600 50 0,03 V A µs Revision: 1.1 V23990-K428-A60-PM Switching Definitions Output Inverter T1,T2,T3,T4,T5,T6,T7 IGBT Figure 5 T1,T2,T3,T4,T5,T6,T7 IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 200 % Eoff Poff % 100 Pon 160 80 120 Eon 60 80 40 40 20 VGE 90% VGE 10% IC 1% VCE 3% 0 0 tEoff -20 -0,3 tEon -40 -0,1 0,1 0,3 0,5 0,7 2,9 0,9 3 3,1 3,2 3,3 3,4 3,5 time(us) time (us) Poff (100%) = Eoff (100%) = tEoff = 30,14 4,09 0,72 Pon (100%) = Eon (100%) = tEon = kW mJ µs 30,14 4,39 0,37 kW mJ µs D1,D2,D3,D4,D5,D6,D7 FWD Figure 7 Turn-off Switching Waveforms & definition of trr 120 Id % 80 trr 40 Vd 0 IRRM10% -40 fitted IRRM 90% -80 IRRM 100% -120 2,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = Copyright by Vincotech 15 3,1 3,3 600 50 -45 0,73 3,5 3,7 3,9 4,1 time(us) 4,3 V A A µs Revision: 1.1 V23990-K428-A60-PM Switching Definitions Output Inverter D1,D2,D3,D4,D5,D6,D7 FWD Figure 8 D1,D2,D3,D4,D5,D6,D7 FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % Erec % Id Qrr 100 100 tQrr 80 tErec 50 60 0 40 -50 20 Prec -100 0 -20 -150 2,8 3,1 3,4 3,7 4 4,3 4,6 4,9 5,2 2,8 5,5 3,1 3,4 3,7 4,0 4,3 Id (100%) = Qrr (100%) = tQrr = 50 10,81 2,00 Copyright by Vincotech 4,6 4,9 5,2 5,5 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 16 30,14 5,14 2,00 kW mJ µs Revision: 1.1 V23990-K428-A60-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K32-T-PM) with std lid (black V23990-K32-T-PM) and P12 with thin lid (white V23990-K33-T-PM) with thin lid (white V23990-K33-T-PM) and P12 Ordering Code in DataMatrix as V23990-K428-A60-/0A/-PM V23990-K428-A60-/1A/-PM V23990-K428-A60-/0B/-PM V23990-K428-A60-/1B/-PM K428A60 K428A60 K428A60 K428A60 in packaging barcode as K428A60-/0A/ K428A60-/1A/ K428A60-/0B/ K428A60-/1B/ Outline Pinout Copyright by Vincotech 17 Revision: 1.1 V23990-K428-A60-PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 Revision: 1.1