ZSSC416x - Data Sheet

Data Sheet
Rev. 1.00 / September 2015
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
Multi-Market Sensing Platforms
Precise and Deliberate
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
Contents
1
2
3
4
5
6
Brief Description ............................................................................................................................................... 3
Electrical Characteristics .................................................................................................................................. 4
2.1. Absolute Maximum Ratings ....................................................................................................................... 4
2.2. Operating Conditions ................................................................................................................................. 5
2.3. Electrical Parameters ................................................................................................................................ 6
2.3.1. Supply Current and System Operation Conditions ............................................................................. 6
2.3.2. Analog Front-End Characteristics ....................................................................................................... 6
2.3.3. Temperature Measurement ................................................................................................................ 6
2.3.4. Sensor Diagnostics ............................................................................................................................. 7
2.3.5. A2D Conversion .................................................................................................................................. 7
2.3.6. DAC and Analog Output (AOUT Pin) .................................................................................................. 7
2.3.7. System Response ............................................................................................................................... 8
2.4. Interface Characteristics and Nonvolatile Memory .................................................................................... 9
2 TM
2.4.1. I C Interface ..................................................................................................................................... 9
2.4.2. ZACwire™ One-Wire Interface (OWI at AOUT pin)............................................................................ 9
2.4.3. Nonvolatile Memory (NVM) ............................................................................................................... 10
ESD Protection and EMC Specification ......................................................................................................... 11
3.1. ESD Protection ........................................................................................................................................ 11
3.2. Latch-Up Immunity .................................................................................................................................. 11
3.3. Electromagnetic Emission ....................................................................................................................... 11
3.4. Conducted Susceptibility (DPI) ................................................................................................................ 11
Reliability and RoHS Conformity .................................................................................................................... 12
Glossary ......................................................................................................................................................... 12
Document Revision History ............................................................................................................................ 13
List of Figures
Figure 1.1
ZSSC4151 Block Diagram .................................................................................................................. 3
List of Tables
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 3.1
Absolute Maximum Ratings ................................................................................................................ 4
Operating Conditions .......................................................................................................................... 5
Electrical Parameters .......................................................................................................................... 6
Interface Characteristics and Nonvolatile Memory ............................................................................. 9
Conducted Susceptibility (DPI) Tests ............................................................................................... 11
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
2 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
1
Brief Description
The ZSSC4151 sensor signal conditioner (SSC) is a CMOS integrated circuit for highly accurate amplification and
sensor-specific correction of bridge sensor signals. Digital compensation of sensor offset, sensitivity, temperature
drift, and non-linearity is accomplished via an internal 16-bit RISC microcontroller running a correction algorithm
with calibration coefficients stored in an EEPROM.
The ZSSC4151 is adjustable to nearly all bridge sensor types. Measured values are provided at the analog
2
voltage output and at the digital I C™* or ZACwire™ interface, also referred to as the One-Wire Interface (OWI).
The digital interfaces can be used for a simple PC-controlled calibration procedure in order to program a set of
calibration coefficients into an on-chip EEPROM. The specific sensor and the ZSSC4151 can be quickly
calibrated together. The ZSSC4151 and the calibration equipment communicate digitally, so the noise sensitivity
is greatly reduced. Digital calibration helps keep assembly cost low as no trimming by external devices or lasers is
needed.
The ZSSC4151 is optimized for automotive environments by overvoltage and reverse-polarity protection circuitry,
excellent electromagnetic compatibility, full automotive temperature range, and multiple diagnostic features.
Figure 1.1 provides a block diagram of the ZSSC4151. Refer to section 5 for definitions of abbreviations.
Figure 1.1 ZSSC4151 Block Diagram
ZSSC4151
SCL
I2CTM
TS1
External PN
Temp Sensor
Power
Management
TOP
Mode
Sensor
Bridge
BRP
NVM
Input
Select
MUX
Gain
Select
PGA
ADC
Mode
RAM
ZACwireTM
CMC
DAC /
BAMP
OWI
BRN
Analog
Front-End
(AFE)
Interfaces
ROM
BOT
Digital Core
Alternate External
Temperature
Sensor 2
VSSA
AOUT
ADC
SCCM
Temp
Sensor
SDA
VDDA
Overvoltage
Protection
VDDE
VSSE
TS2
* I2C™ is a trademark of NXP.
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
3 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
2
Electrical Characteristics
Important note: The absolute maximum ratings given in section 2.1 are stress ratings only. The ZSSC4151 might
not function or be operable above the recommended operating conditions. Stresses exceeding the absolute
maximum ratings might also damage the device. In addition, extended exposure to stresses above the
recommended operating conditions might affect device reliability. ZMDI does not recommend designing to the
specifications given under “Absolute Maximum Ratings.”
Important note: The operating conditions given in section 2.2 set the conditions over which ZMDI specifies
device operation. These are the conditions that the application circuit should provide to the device for it to function
as intended. Unless otherwise noted, the limits for parameters that appear in the operating conditions section are
used as test conditions for the limits given in the electrical characteristics (section 2.3), operating conditions, and
interface characteristics and nonvolatile memory sections.
2.1.
Absolute Maximum Ratings
Table 2.1
No.
Absolute Maximum Ratings
Parameter
Symbol
Conditions
Min
Max
Unit
2.1.1
Supply voltage
VDDE
-40
40
VDC
2.1.2
Voltage at AOUT pin
VAOUT
-40
40
VDC
2.1.3
Analog supply voltage
VDDA
-0.3
6.5
VDC
2.1.4
Digital supply voltage
VDD
-0.3
1.98
VDC
2.1.5
Voltage at all other pins
VPIN
-0.3
VDDA +0.3
V
2.1.6
Storage temperature
TSTG
-55
160
C
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
4 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
2.2.
Operating Conditions
All voltages in this section are relative to VSSA.
Table 2.2
Operating Conditions
Note: See important notes at the end of the table.
No.
2.2.1
2.2.2
2.2.3
Parameter
Symbol
Supply voltage
Junction temperature
Bridge resistance
1), 2)
Conditions
Min
Typical
Max
Unit
4.5
5
5.5
V
(VDDE – 0.1)
VDDE
V
Extended Temperature
Range (TQE)
-40
150
C
TAMB_TQA
Advanced-Performance
Temperature Range (TQA)
-40
125
C
TAMB_TQI
Best-Performance
Temperature Range (TQI)
-25
85
C
2
10
k
1
15
k
VDDE
To VSSE
VDDA
To VSSA
VDDE minus drop through
protection switch
TTQE
RBR
RBR_10-90
Output range 10-90%
1)
No measurement in mass production; parameter is guaranteed by design and/or quality observation.
2)
RBR greater than the maximum limit results in higher noise.
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
5 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
2.3.
Electrical Parameters
All parameter values in this section are valid under the operating conditions specified in section 2.2. All voltages
referenced to VSSA.
st
Note: All parameters measured/validated for rADC = 14-bit; segmentation of 1 and 2
fOSC = 8MHz; analog gain = ~100; TAMB_TQE (see specification 2.2.2).
Table 2.3
nd
ADC stage = 8/6;
Electrical Parameters
Note: See important table notes at the end of the table (page 8).
No.
2.3.1.
Parameter
Symbol
1)
Supply current
2.3.1.2
Sensor bridge supply
voltage
2.3.1.3
Oscillator frequency
2.3.1.4
Oscillator frequency
temperature coefficient
IS
VSENS
2)
Oscillator adjusted
(typical fOSC = 8MHz).
VSENS = VTOP - VBOT
at RBR ≥ 2k
Typ
Max
Unit
5.5
7
mA
1
VDDA
8.8
MHz
0.9
fOSC
7.2
TCOSC
-200
200
ppm/K
8
1
800
mV/V
0.25
0.75
VSENS
0
12
nF
-15
15
nA
Analog Front-End Characteristics
2.3.2.1
Input span
2.3.2.2
Common mode input range
VIN_CM
Depends on gain adjustment
2.3.2.3
External capacitance at
input
CIN_EXT
Capacitance at pins BR1P
and BR1N to VSSA
2.3.2.4
Input leakage current
2.3.3.
Min
Supply Current and System Operation Conditions
2.3.1.1
2.3.2.
Conditions
VIN_SPAN
3)
Analog gain = 1 to 200
IIN_leak
Temperature Measurement
2.3.3.1
PTAT internal temperature
sensitivity
STTSI
2.3.3.2
External temperature diode
channel gain
2.3.3.3
2.3.3.4
20
LSB14
/K
ATSE_D
10
LSB14
/mV
External temperature diode
bias current
ITSE_D
10
External temperature diode
3)
input range
VTSE_D
Data Sheet
September 13, 2015
Raw values, without
conditioning calculation
Analog gain setting= 6
Relative to VTOP
20
-1
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
40
A
-0.2
V
6 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
No.
Parameter
Symbol
2.3.3.5
External RTD channel gain
ATSE_RTD
2.3.3.6
External RTD input range
3)
VTSE_RTD
2.3.4.
Conditions
Min
Typ
Max
10
Relative to VDDA
Unit
LSB
/mV
-2
-0.2
V
Sensor Diagnostics
2.3.4.1
Sensor connection loss
threshold
2.3.4.2
Sensor short threshold to
BOT or TOP pin
RSCC_SH_BT
50

2.3.4.3
Sensor short threshold
between inputs
RSCC_SH_IN
150

18
Bit
0.95
LSB
2.3.5.
RSCC_open
100
k
A2D Conversion
2.3.5.1
ADC resolution
3)
3)
rADC
Selection: 12, 14, 16 or 18 bit
DNLADC
Best fit; overall AFE;
VADC_IN according to 2.3.6.4.
12
2.3.5.2
DNL
2.3.5.3
INL TQA temperature range
3)
(specified in 2.2.2)
INLADC_TQA
Best fit
4
LSB
2.3.5.4
INL TQE temperature range
(specified in 2.2.2)
INLADC_TQE
At 14-bit resolution
8
LSB
2.3.5.5
ADC input range
0.9
VSENS
2.3.6.
VADC_IN
0.1
DAC and Analog Output (AOUT Pin)
2.3.6.1
DAC resolution
rDAC
Analog output
2.3.6.2
Output current sink/source
IOUT
VAOUT: 5-95%, RLOAD ≥ 5k
2.5
mA
VAOUT: 10-90%, RLOAD ≥ 1k
5
mA
-25
25
mA
0.01
0.99
VDDE
150
nF
2.3.6.3
Short-circuit current
(AOUT to VSSE or VDDE)
IOUT_max
2.3.6.4
Addressable output range
VR_OUT
2.3.6.5
Load capacitance
CLOAD
Defined for best EMC
performance
2.3.6.6
Output slew rate
SROUT
CLOAD < 50nF
2.3.6.7
Short to VSSE or VDDE
12
4
10
Bit
0.1
V/µs
LowLim
Configurable 8-bit value
stored in NVM
0
25
%VDDE
UppLim
Configurable 8-bit value
stored in NVM
75
100
%VDDE
0.1
%VDDE
80

Clipping levels
2.3.6.8
Clipping adjustment step
2.3.6.9
Output resistance in
Diagnostic Mode
Data Sheet
September 13, 2015
ROUT_DIA
Diagnostic Range:
4% to 96%, RLOAD ≥ 5k
8% to 92%, RLOAD ≥ 1k
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
7 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
No.
Parameter
Symbol
2.3.6.10
DNL
DNLOUT
rDAC =12 bit
2.3.6.11
INL TQA temperature range
3)
(specified in 2.2.2)
INLOUT
2.3.6.12
INL TQE temperature range
(specified in 2.2.2)
INLOUT
2.3.6.13
Output leakage current
at 150°C
2.3.7.
Conditions
Min
Typ
Max
Unit
-1.5
1.5
LSB
Best fit, rDAC =12-Bit
-5
5
LSB
Best fit, rDAC =12-Bit
-8
8
LSB
ILEAK_OUT
In the event of power or
ground loss
-10
10
µA
tSTARTUP
fOSC = 8MHz;
nd
ADC: 14-bit and 2 order
conversion
5
ms
1.1
ms
System Response
3)
2.3.7.1
Startup time
(time to first valid output
after power-on)
2.3.7.2
Response time
2.3.7.3
Bandwidth
2.3.7.4
Analog output noise
3)
peak-to-peak
VNOISE,PP
DAC and output buffer only;
bandwidth  10kHz
10
mV
2.3.7.5
Analog output noise
3)
RMS
VNOISE,RMS
DAC and output buffer only;
bandwidth  10kHz
3
mV
2.3.7.6
Ratiometricity error
REOUT_5
Maximum error of
VDDE range = 4.5V to 5.5V
1000
ppm
2.3.7.7
Overall error
3)
tRESPONSE
3)
100% input step,
excluding transmission time
In comparison to analog
signal conditioners;
66% jump
3)
4)
FALL
TQA temperature range
(specified in 2.2.2)
0.5
TQE temperature range
(specified in 2.2.2)
1.0
1)
Excluding bridge supply current and excluding output current at AOUT pin.
2)
Oscillator frequency can be trimmed via a setting in nonvolatile memory (NVM).
3)
No measurement in mass production; parameter is guaranteed by design and/or quality observation.
4)
FSO: full-scale output. No sensor-caused effects included in overall error.
Data Sheet
September 13, 2015
1
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
kHz
% FSO
8 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
2.4.
Interface Characteristics and Nonvolatile Memory
Table 2.4
Interface Characteristics and Nonvolatile Memory
Note: See important table notes at the end of the table.
No.
2.4.1.
Parameter
2
TM
IC
Symbol
I C™ voltage level HIGH
2
2.4.1.2
I C™ voltage level LOW
2.4.1.3
Slave output level LOW
2.4.1.4
SDA load capacitance
2.4.1.5
SCL clock frequency
2.4.1.6
2.4.2.
Min
Typ
Max
Unit
Interface
2
2.4.1.1
Conditions
1)
1)
1)
1)
1)
Internal pull-up resistor
1)
VI2C_HIGH
0.5
VDDA
VI2C_LOW
0.2
VDDA
0.1
VDDA
CI2C_SDA
400
pF
fI2C
400
kHz
100
k
VI2C_LOW_OUT
Open drain, IOL < 4mA
RI2C_PULLUP
25
ZACwire™ One-Wire Interface (OWI at AOUT pin)
2.4.2.1
2.4.2.2
2.4.2.3
1)
OWI voltage level HIGH
VOWI_IN_H
Master to slave
OWI voltage level LOW
1)
VOWI_IN_L
Master to slave
0.2
VDDE
Slave output level LOW
1)
VOWI_OUT_L
Open drain, IOL ≤ 2mA
0.1
VDDE
300
ms
1)
2.4.2.4
Start window
2.4.2.5
Bus free time
2.4.2.6
Hold time start condition
2.4.2.7
Bit time
tOWI_STARTWIN
tOWI_IDLE
tOWI_START
tOWI_BIT
0.75
VDDE
100
Between stop and next
start
25
µs
Valid minimum fclk
25
µs
Maximum range
20
8000
µs
Typical operating range
40
4000
µs
2.4.2.8
Duty ratio bit ‘0’
tOWI_0
0.125
0.25
0.375
tOWI_BIT
2.4.2.9
Duty ratio bit ‘1’
tOWI_1
0.625
0.75
0.875
tOWI_BIT
2.4.2.10
Hold time stop condition
2.4.2.11
Bit period deviation
Data Sheet
September 13, 2015
tOWI_STOP
tOWI_BIT_DEV
tOWI_BIT_L is the bit time
of the last valid bit
2
0.55
tOWI_BIT_L
1.0
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
1.5
tOWI_BIT
9 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
No.
2.4.3.
Parameter
Symbol
Conditions
Min
Typ
Max
Unit
150
C
Nonvolatile Memory (NVM)
2.4.3.1
Junction temperature for
2)
NVM programming
2.4.3.2
Re-write cycles
2.4.3.3
Re-write cycles at 150°C
2.4.3.4
Data retention
1)
1)
TAMB_NVM
-40
NNVM_TQA
For TTQA (see range in
specification 2.2.2)
100
NNVM_TQE
For TTQE (see range in
specification 2.2.2)
10
Temperature profile:
15
tNVM_RET
Year
22h bake at 250C
2.4.3.5
Programming time
1)
tNVM_WRI
Per written word
1)
No measurement in mass production; parameter is guaranteed by design and/or quality observation.
2)
Valid for dice. Note: Additional package and temperature range cause restrictions.
Data Sheet
September 13, 2015
2.2
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
5
ms
10 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
3
3.1.
ESD Protection and EMC Specification
ESD Protection
All pins have an ESD protection of ≥ 2000V according to the Human Body Model (HBM, based on MIL883,
Method 3015.7). The VDDE, VSSE, and AOUT pins have an additional ESD protection of ≥ 4000V (HBM).
In addition, Charged Device Model (CDM) tests are processed with protection levels of ≥ 750V for corner pins and
≥ 500V for all other pins.
The level of ESD protection has been tested with devices in QFN24 4X4mm packages during the product
qualification.
3.2.
Latch-Up Immunity
All pins pass ±100mA latch-up test based on testing that conforms to the standard EIA/JESD 78.
3.3.
Electromagnetic Emission
The wired emission of externally connected pins of the device is measured according to the following standard:
IEC 61967_4:2002 + A1:2006.
Measurements must be performed with the application circuits described in the ZSSC4151 Application Description.
For the off-board pins, the spectral power measured with the 150Ω method must not exceed the limits according
to IEC 61967_4k, Annex B.4 code H10kN. For the VSSE pin, the spectral power measured with the 1Ω method
must not exceed the limits according to IEC 61967_4k, Annex B.4 code 15KmO.
3.4.
Conducted Susceptibility (DPI)
The conducted susceptibility of externally connected pins of the device is measured according to the IEC 62132-4
standard, which describes the direct power injection (DPI) test method.
Measurements must be performed with the application circuit described in the ZSSC4151 Application Description.
t. Measurements are performed with an internal reference capacitor and internal temperature sensor. The sensing
element is replaced by a resistive divider. Calibration is parameterized so that ~50% VDDA is output.
Table 3.1 gives the specifications for the DPI tests. RES refers to the coupling impedance.
Table 3.1
Conducted Susceptibility (DPI) Tests
Test
Frequency Range
Target
(dBm)
Load Pins
Protocol
Error
Band
Comment
DPI, direct
coupled
1MHz to 300MHz
26
VDDE, AOUT
Analog out
± 1%
LOAD RES = 5kΩ
LOAD CAP = 10nF
DPI, direct
coupled
300MHz to
1000MHz
32
VDDE, AOUT
Analog out
± 1%
LOAD RES = 5kΩ
LOAD CAP = 10nF
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
11 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
4
Reliability and RoHS Conformity
The ZSSC4151 will be qualified according to the AEC-Q100 standard, operating temperature grade 0. The
qualification is extended to 1000h for the High Temperature Operating Life (HTOL) Test for one lot. Two
manufacturing lots of extended HTOL qualification data (minimum of 1000h test time) for the ZSSC4151 or other
products using identical technology (metallization), the same package supplier, the same package style, and the
same die size within a specific tolerance are used to prove the package and bond reliability in the range of 1000h
HTOL.
A FIT rate ≤ 10 FIT (temperature = 55°C, confidence level = 60%) is guaranteed. A typical FIT rate of TSMC’s
CV018BCD technology, which is used for the ZSSC4151, is 1 FIT.
The ZSSC4151 complies with the RoHS directive and does not contain hazardous substances. The complete
RoHS declaration update can be downloaded at www.zmdi.com/ehs.
5
Glossary
Term
Description
ADC
Analog-to-Digital Converter
AEC
Automotive Electronics Council
AFE
Analog Front-End
BAMP
Buffer Amplifier
BR
Bridge Sensor
CDM
Charged Device Model
CM
Command Mode
CMC
Calibration Microcontroller
DAC
Digital-to-Analog Converter
DNL
Differential Nonlinearity
DPI
Direct Power Injection
EMC
Electromagnetic Compatibility
ESD
Electrostatic Discharge
FIT
Failures in Time
FSO
Full Scale Output
HBM
Human Body Model
HTOL
High Temperature Operating Life
I²C
TM
Inter-Integrated Circuit—serial two-wire data bus, trademark of NXP
INL
Integral Nonlinearity
LSB
Least Significant Bit
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
12 of 13
ZSSC4151
Automotive Sensor Signal Conditioner with Analog Output
Term
Description
MUX
Multiplexer
NVM
Nonvolatile Memory
OWI
One-Wire Interface
PGA
Programmable Gain Amplifier
PTAT
Proportional-to-Absolute Temperature
PTC
Thermistor – Positive Temperature Coefficient Resistor
PWR
Power Management and Protection Unit
QFN
Quad-Flat No-Leads – IC package
RAM
Random Access Memory
RISC
Reduced Instruction Set Computing
ROM
Read-Only Memory
RMS
Root-Mean-Square
RTD
Resistance Temperature Device
SCCM
Sensor Check and Common Mode Adjustment Unit
SCL
Serial Clock
SDA
Serial Data
SSC
Sensor Short Check (diagnostic feature) or Sensor Signal Conditioner
TQA, TQE, TQI
ZACwire
6
TM
Temperature range identifier. See specification 2.2.2 for definition.
ZMDI-specific One-Wire Interface
Document Revision History
Revision
Date
Description
1.00
September 13, 2015
First release.
Data Sheet
September 13, 2015
© 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the
prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
13 of 13