Data Sheet Rev. 1.00 / September 2015 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output Multi-Market Sensing Platforms Precise and Deliberate ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output Contents 1 2 3 4 5 6 Brief Description ............................................................................................................................................... 3 Electrical Characteristics .................................................................................................................................. 4 2.1. Absolute Maximum Ratings ....................................................................................................................... 4 2.2. Operating Conditions ................................................................................................................................. 5 2.3. Electrical Parameters ................................................................................................................................ 6 2.3.1. Supply Current and System Operation Conditions ............................................................................. 6 2.3.2. Analog Front-End Characteristics ....................................................................................................... 6 2.3.3. Temperature Measurement ................................................................................................................ 6 2.3.4. Sensor Diagnostics ............................................................................................................................. 7 2.3.5. A2D Conversion .................................................................................................................................. 7 2.3.6. DAC and Analog Output (AOUT Pin) .................................................................................................. 7 2.3.7. System Response ............................................................................................................................... 8 2.4. Interface Characteristics and Nonvolatile Memory .................................................................................... 9 2 TM 2.4.1. I C Interface ..................................................................................................................................... 9 2.4.2. ZACwire™ One-Wire Interface (OWI at AOUT pin)............................................................................ 9 2.4.3. Nonvolatile Memory (NVM) ............................................................................................................... 10 ESD Protection and EMC Specification ......................................................................................................... 11 3.1. ESD Protection ........................................................................................................................................ 11 3.2. Latch-Up Immunity .................................................................................................................................. 11 3.3. Electromagnetic Emission ....................................................................................................................... 11 3.4. Conducted Susceptibility (DPI) ................................................................................................................ 11 Reliability and RoHS Conformity .................................................................................................................... 12 Glossary ......................................................................................................................................................... 12 Document Revision History ............................................................................................................................ 13 List of Figures Figure 1.1 ZSSC4151 Block Diagram .................................................................................................................. 3 List of Tables Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 3.1 Absolute Maximum Ratings ................................................................................................................ 4 Operating Conditions .......................................................................................................................... 5 Electrical Parameters .......................................................................................................................... 6 Interface Characteristics and Nonvolatile Memory ............................................................................. 9 Conducted Susceptibility (DPI) Tests ............................................................................................... 11 Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 2 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 1 Brief Description The ZSSC4151 sensor signal conditioner (SSC) is a CMOS integrated circuit for highly accurate amplification and sensor-specific correction of bridge sensor signals. Digital compensation of sensor offset, sensitivity, temperature drift, and non-linearity is accomplished via an internal 16-bit RISC microcontroller running a correction algorithm with calibration coefficients stored in an EEPROM. The ZSSC4151 is adjustable to nearly all bridge sensor types. Measured values are provided at the analog 2 voltage output and at the digital I C™* or ZACwire™ interface, also referred to as the One-Wire Interface (OWI). The digital interfaces can be used for a simple PC-controlled calibration procedure in order to program a set of calibration coefficients into an on-chip EEPROM. The specific sensor and the ZSSC4151 can be quickly calibrated together. The ZSSC4151 and the calibration equipment communicate digitally, so the noise sensitivity is greatly reduced. Digital calibration helps keep assembly cost low as no trimming by external devices or lasers is needed. The ZSSC4151 is optimized for automotive environments by overvoltage and reverse-polarity protection circuitry, excellent electromagnetic compatibility, full automotive temperature range, and multiple diagnostic features. Figure 1.1 provides a block diagram of the ZSSC4151. Refer to section 5 for definitions of abbreviations. Figure 1.1 ZSSC4151 Block Diagram ZSSC4151 SCL I2CTM TS1 External PN Temp Sensor Power Management TOP Mode Sensor Bridge BRP NVM Input Select MUX Gain Select PGA ADC Mode RAM ZACwireTM CMC DAC / BAMP OWI BRN Analog Front-End (AFE) Interfaces ROM BOT Digital Core Alternate External Temperature Sensor 2 VSSA AOUT ADC SCCM Temp Sensor SDA VDDA Overvoltage Protection VDDE VSSE TS2 * I2C™ is a trademark of NXP. Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 3 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 2 Electrical Characteristics Important note: The absolute maximum ratings given in section 2.1 are stress ratings only. The ZSSC4151 might not function or be operable above the recommended operating conditions. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses above the recommended operating conditions might affect device reliability. ZMDI does not recommend designing to the specifications given under “Absolute Maximum Ratings.” Important note: The operating conditions given in section 2.2 set the conditions over which ZMDI specifies device operation. These are the conditions that the application circuit should provide to the device for it to function as intended. Unless otherwise noted, the limits for parameters that appear in the operating conditions section are used as test conditions for the limits given in the electrical characteristics (section 2.3), operating conditions, and interface characteristics and nonvolatile memory sections. 2.1. Absolute Maximum Ratings Table 2.1 No. Absolute Maximum Ratings Parameter Symbol Conditions Min Max Unit 2.1.1 Supply voltage VDDE -40 40 VDC 2.1.2 Voltage at AOUT pin VAOUT -40 40 VDC 2.1.3 Analog supply voltage VDDA -0.3 6.5 VDC 2.1.4 Digital supply voltage VDD -0.3 1.98 VDC 2.1.5 Voltage at all other pins VPIN -0.3 VDDA +0.3 V 2.1.6 Storage temperature TSTG -55 160 C Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 4 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 2.2. Operating Conditions All voltages in this section are relative to VSSA. Table 2.2 Operating Conditions Note: See important notes at the end of the table. No. 2.2.1 2.2.2 2.2.3 Parameter Symbol Supply voltage Junction temperature Bridge resistance 1), 2) Conditions Min Typical Max Unit 4.5 5 5.5 V (VDDE – 0.1) VDDE V Extended Temperature Range (TQE) -40 150 C TAMB_TQA Advanced-Performance Temperature Range (TQA) -40 125 C TAMB_TQI Best-Performance Temperature Range (TQI) -25 85 C 2 10 k 1 15 k VDDE To VSSE VDDA To VSSA VDDE minus drop through protection switch TTQE RBR RBR_10-90 Output range 10-90% 1) No measurement in mass production; parameter is guaranteed by design and/or quality observation. 2) RBR greater than the maximum limit results in higher noise. Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 5 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 2.3. Electrical Parameters All parameter values in this section are valid under the operating conditions specified in section 2.2. All voltages referenced to VSSA. st Note: All parameters measured/validated for rADC = 14-bit; segmentation of 1 and 2 fOSC = 8MHz; analog gain = ~100; TAMB_TQE (see specification 2.2.2). Table 2.3 nd ADC stage = 8/6; Electrical Parameters Note: See important table notes at the end of the table (page 8). No. 2.3.1. Parameter Symbol 1) Supply current 2.3.1.2 Sensor bridge supply voltage 2.3.1.3 Oscillator frequency 2.3.1.4 Oscillator frequency temperature coefficient IS VSENS 2) Oscillator adjusted (typical fOSC = 8MHz). VSENS = VTOP - VBOT at RBR ≥ 2k Typ Max Unit 5.5 7 mA 1 VDDA 8.8 MHz 0.9 fOSC 7.2 TCOSC -200 200 ppm/K 8 1 800 mV/V 0.25 0.75 VSENS 0 12 nF -15 15 nA Analog Front-End Characteristics 2.3.2.1 Input span 2.3.2.2 Common mode input range VIN_CM Depends on gain adjustment 2.3.2.3 External capacitance at input CIN_EXT Capacitance at pins BR1P and BR1N to VSSA 2.3.2.4 Input leakage current 2.3.3. Min Supply Current and System Operation Conditions 2.3.1.1 2.3.2. Conditions VIN_SPAN 3) Analog gain = 1 to 200 IIN_leak Temperature Measurement 2.3.3.1 PTAT internal temperature sensitivity STTSI 2.3.3.2 External temperature diode channel gain 2.3.3.3 2.3.3.4 20 LSB14 /K ATSE_D 10 LSB14 /mV External temperature diode bias current ITSE_D 10 External temperature diode 3) input range VTSE_D Data Sheet September 13, 2015 Raw values, without conditioning calculation Analog gain setting= 6 Relative to VTOP 20 -1 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 40 A -0.2 V 6 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output No. Parameter Symbol 2.3.3.5 External RTD channel gain ATSE_RTD 2.3.3.6 External RTD input range 3) VTSE_RTD 2.3.4. Conditions Min Typ Max 10 Relative to VDDA Unit LSB /mV -2 -0.2 V Sensor Diagnostics 2.3.4.1 Sensor connection loss threshold 2.3.4.2 Sensor short threshold to BOT or TOP pin RSCC_SH_BT 50 2.3.4.3 Sensor short threshold between inputs RSCC_SH_IN 150 18 Bit 0.95 LSB 2.3.5. RSCC_open 100 k A2D Conversion 2.3.5.1 ADC resolution 3) 3) rADC Selection: 12, 14, 16 or 18 bit DNLADC Best fit; overall AFE; VADC_IN according to 2.3.6.4. 12 2.3.5.2 DNL 2.3.5.3 INL TQA temperature range 3) (specified in 2.2.2) INLADC_TQA Best fit 4 LSB 2.3.5.4 INL TQE temperature range (specified in 2.2.2) INLADC_TQE At 14-bit resolution 8 LSB 2.3.5.5 ADC input range 0.9 VSENS 2.3.6. VADC_IN 0.1 DAC and Analog Output (AOUT Pin) 2.3.6.1 DAC resolution rDAC Analog output 2.3.6.2 Output current sink/source IOUT VAOUT: 5-95%, RLOAD ≥ 5k 2.5 mA VAOUT: 10-90%, RLOAD ≥ 1k 5 mA -25 25 mA 0.01 0.99 VDDE 150 nF 2.3.6.3 Short-circuit current (AOUT to VSSE or VDDE) IOUT_max 2.3.6.4 Addressable output range VR_OUT 2.3.6.5 Load capacitance CLOAD Defined for best EMC performance 2.3.6.6 Output slew rate SROUT CLOAD < 50nF 2.3.6.7 Short to VSSE or VDDE 12 4 10 Bit 0.1 V/µs LowLim Configurable 8-bit value stored in NVM 0 25 %VDDE UppLim Configurable 8-bit value stored in NVM 75 100 %VDDE 0.1 %VDDE 80 Clipping levels 2.3.6.8 Clipping adjustment step 2.3.6.9 Output resistance in Diagnostic Mode Data Sheet September 13, 2015 ROUT_DIA Diagnostic Range: 4% to 96%, RLOAD ≥ 5k 8% to 92%, RLOAD ≥ 1k © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 7 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output No. Parameter Symbol 2.3.6.10 DNL DNLOUT rDAC =12 bit 2.3.6.11 INL TQA temperature range 3) (specified in 2.2.2) INLOUT 2.3.6.12 INL TQE temperature range (specified in 2.2.2) INLOUT 2.3.6.13 Output leakage current at 150°C 2.3.7. Conditions Min Typ Max Unit -1.5 1.5 LSB Best fit, rDAC =12-Bit -5 5 LSB Best fit, rDAC =12-Bit -8 8 LSB ILEAK_OUT In the event of power or ground loss -10 10 µA tSTARTUP fOSC = 8MHz; nd ADC: 14-bit and 2 order conversion 5 ms 1.1 ms System Response 3) 2.3.7.1 Startup time (time to first valid output after power-on) 2.3.7.2 Response time 2.3.7.3 Bandwidth 2.3.7.4 Analog output noise 3) peak-to-peak VNOISE,PP DAC and output buffer only; bandwidth 10kHz 10 mV 2.3.7.5 Analog output noise 3) RMS VNOISE,RMS DAC and output buffer only; bandwidth 10kHz 3 mV 2.3.7.6 Ratiometricity error REOUT_5 Maximum error of VDDE range = 4.5V to 5.5V 1000 ppm 2.3.7.7 Overall error 3) tRESPONSE 3) 100% input step, excluding transmission time In comparison to analog signal conditioners; 66% jump 3) 4) FALL TQA temperature range (specified in 2.2.2) 0.5 TQE temperature range (specified in 2.2.2) 1.0 1) Excluding bridge supply current and excluding output current at AOUT pin. 2) Oscillator frequency can be trimmed via a setting in nonvolatile memory (NVM). 3) No measurement in mass production; parameter is guaranteed by design and/or quality observation. 4) FSO: full-scale output. No sensor-caused effects included in overall error. Data Sheet September 13, 2015 1 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. kHz % FSO 8 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 2.4. Interface Characteristics and Nonvolatile Memory Table 2.4 Interface Characteristics and Nonvolatile Memory Note: See important table notes at the end of the table. No. 2.4.1. Parameter 2 TM IC Symbol I C™ voltage level HIGH 2 2.4.1.2 I C™ voltage level LOW 2.4.1.3 Slave output level LOW 2.4.1.4 SDA load capacitance 2.4.1.5 SCL clock frequency 2.4.1.6 2.4.2. Min Typ Max Unit Interface 2 2.4.1.1 Conditions 1) 1) 1) 1) 1) Internal pull-up resistor 1) VI2C_HIGH 0.5 VDDA VI2C_LOW 0.2 VDDA 0.1 VDDA CI2C_SDA 400 pF fI2C 400 kHz 100 k VI2C_LOW_OUT Open drain, IOL < 4mA RI2C_PULLUP 25 ZACwire™ One-Wire Interface (OWI at AOUT pin) 2.4.2.1 2.4.2.2 2.4.2.3 1) OWI voltage level HIGH VOWI_IN_H Master to slave OWI voltage level LOW 1) VOWI_IN_L Master to slave 0.2 VDDE Slave output level LOW 1) VOWI_OUT_L Open drain, IOL ≤ 2mA 0.1 VDDE 300 ms 1) 2.4.2.4 Start window 2.4.2.5 Bus free time 2.4.2.6 Hold time start condition 2.4.2.7 Bit time tOWI_STARTWIN tOWI_IDLE tOWI_START tOWI_BIT 0.75 VDDE 100 Between stop and next start 25 µs Valid minimum fclk 25 µs Maximum range 20 8000 µs Typical operating range 40 4000 µs 2.4.2.8 Duty ratio bit ‘0’ tOWI_0 0.125 0.25 0.375 tOWI_BIT 2.4.2.9 Duty ratio bit ‘1’ tOWI_1 0.625 0.75 0.875 tOWI_BIT 2.4.2.10 Hold time stop condition 2.4.2.11 Bit period deviation Data Sheet September 13, 2015 tOWI_STOP tOWI_BIT_DEV tOWI_BIT_L is the bit time of the last valid bit 2 0.55 tOWI_BIT_L 1.0 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 1.5 tOWI_BIT 9 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output No. 2.4.3. Parameter Symbol Conditions Min Typ Max Unit 150 C Nonvolatile Memory (NVM) 2.4.3.1 Junction temperature for 2) NVM programming 2.4.3.2 Re-write cycles 2.4.3.3 Re-write cycles at 150°C 2.4.3.4 Data retention 1) 1) TAMB_NVM -40 NNVM_TQA For TTQA (see range in specification 2.2.2) 100 NNVM_TQE For TTQE (see range in specification 2.2.2) 10 Temperature profile: 15 tNVM_RET Year 22h bake at 250C 2.4.3.5 Programming time 1) tNVM_WRI Per written word 1) No measurement in mass production; parameter is guaranteed by design and/or quality observation. 2) Valid for dice. Note: Additional package and temperature range cause restrictions. Data Sheet September 13, 2015 2.2 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 5 ms 10 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 3 3.1. ESD Protection and EMC Specification ESD Protection All pins have an ESD protection of ≥ 2000V according to the Human Body Model (HBM, based on MIL883, Method 3015.7). The VDDE, VSSE, and AOUT pins have an additional ESD protection of ≥ 4000V (HBM). In addition, Charged Device Model (CDM) tests are processed with protection levels of ≥ 750V for corner pins and ≥ 500V for all other pins. The level of ESD protection has been tested with devices in QFN24 4X4mm packages during the product qualification. 3.2. Latch-Up Immunity All pins pass ±100mA latch-up test based on testing that conforms to the standard EIA/JESD 78. 3.3. Electromagnetic Emission The wired emission of externally connected pins of the device is measured according to the following standard: IEC 61967_4:2002 + A1:2006. Measurements must be performed with the application circuits described in the ZSSC4151 Application Description. For the off-board pins, the spectral power measured with the 150Ω method must not exceed the limits according to IEC 61967_4k, Annex B.4 code H10kN. For the VSSE pin, the spectral power measured with the 1Ω method must not exceed the limits according to IEC 61967_4k, Annex B.4 code 15KmO. 3.4. Conducted Susceptibility (DPI) The conducted susceptibility of externally connected pins of the device is measured according to the IEC 62132-4 standard, which describes the direct power injection (DPI) test method. Measurements must be performed with the application circuit described in the ZSSC4151 Application Description. t. Measurements are performed with an internal reference capacitor and internal temperature sensor. The sensing element is replaced by a resistive divider. Calibration is parameterized so that ~50% VDDA is output. Table 3.1 gives the specifications for the DPI tests. RES refers to the coupling impedance. Table 3.1 Conducted Susceptibility (DPI) Tests Test Frequency Range Target (dBm) Load Pins Protocol Error Band Comment DPI, direct coupled 1MHz to 300MHz 26 VDDE, AOUT Analog out ± 1% LOAD RES = 5kΩ LOAD CAP = 10nF DPI, direct coupled 300MHz to 1000MHz 32 VDDE, AOUT Analog out ± 1% LOAD RES = 5kΩ LOAD CAP = 10nF Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 11 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output 4 Reliability and RoHS Conformity The ZSSC4151 will be qualified according to the AEC-Q100 standard, operating temperature grade 0. The qualification is extended to 1000h for the High Temperature Operating Life (HTOL) Test for one lot. Two manufacturing lots of extended HTOL qualification data (minimum of 1000h test time) for the ZSSC4151 or other products using identical technology (metallization), the same package supplier, the same package style, and the same die size within a specific tolerance are used to prove the package and bond reliability in the range of 1000h HTOL. A FIT rate ≤ 10 FIT (temperature = 55°C, confidence level = 60%) is guaranteed. A typical FIT rate of TSMC’s CV018BCD technology, which is used for the ZSSC4151, is 1 FIT. The ZSSC4151 complies with the RoHS directive and does not contain hazardous substances. The complete RoHS declaration update can be downloaded at www.zmdi.com/ehs. 5 Glossary Term Description ADC Analog-to-Digital Converter AEC Automotive Electronics Council AFE Analog Front-End BAMP Buffer Amplifier BR Bridge Sensor CDM Charged Device Model CM Command Mode CMC Calibration Microcontroller DAC Digital-to-Analog Converter DNL Differential Nonlinearity DPI Direct Power Injection EMC Electromagnetic Compatibility ESD Electrostatic Discharge FIT Failures in Time FSO Full Scale Output HBM Human Body Model HTOL High Temperature Operating Life I²C TM Inter-Integrated Circuit—serial two-wire data bus, trademark of NXP INL Integral Nonlinearity LSB Least Significant Bit Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 12 of 13 ZSSC4151 Automotive Sensor Signal Conditioner with Analog Output Term Description MUX Multiplexer NVM Nonvolatile Memory OWI One-Wire Interface PGA Programmable Gain Amplifier PTAT Proportional-to-Absolute Temperature PTC Thermistor – Positive Temperature Coefficient Resistor PWR Power Management and Protection Unit QFN Quad-Flat No-Leads – IC package RAM Random Access Memory RISC Reduced Instruction Set Computing ROM Read-Only Memory RMS Root-Mean-Square RTD Resistance Temperature Device SCCM Sensor Check and Common Mode Adjustment Unit SCL Serial Clock SDA Serial Data SSC Sensor Short Check (diagnostic feature) or Sensor Signal Conditioner TQA, TQE, TQI ZACwire 6 TM Temperature range identifier. See specification 2.2.2 for definition. ZMDI-specific One-Wire Interface Document Revision History Revision Date Description 1.00 September 13, 2015 First release. Data Sheet September 13, 2015 © 2015 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice. 13 of 13