STM32F358xC ARM®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+ 48KB SRAM, 4 ADCs, 2 DAC ch., 7 comp., 4 PGA, timers, 1.8 V Datasheet - production data Features • Core: ARM® Cortex®-M4 32-bit CPU with FPU (72 MHz max), single-cycle multiplication and HW division, 90 DMIPS (from CCM), DSP instruction and MPU (memory protection unit). • Operating conditions: – VDD: 1.8V +/- 8% – VDDA voltage range: 1.65 to 3.6 V • Memories – 256 Kbytes of Flash memory – Up to 40 Kbytes of SRAM, with HW parity check implemented on the first 16 Kbytes. – Routine bootster: 8 Kbytes of SRAM on instruction and data bus, with HW parity check (CCM: Core Coupled Memory) • CRC calculation unit • Reset and supply management – Low-power modes: Sleep, and Stop – VBAT supply for RTC and backup registers • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option – Internal 40 kHz oscillator • Up to 86 fast I/Os – All mappable on external interrupt vectors – Several 5 V-tolerant • Interconnect matrix • 12-channel DMA controller • Up to four ADC 0.20 µS (up to 38 channels) with selectable resolution of 12/10/8/6 bits, 0 to 3.6 V conversion range, separate analog supply from 1.8 to 3.6 V • Up to two 12-bit DAC channels with analog supply from 2.4 to 3.6 V LQFP48 (7 × 7 mm) LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) • Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors • Up to 13 timers – One 32-bit timer and two 16-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – Up to two 16-bit 6-channel advancedcontrol timers, with up to 6 PWM channels, deadtime generation and emergency stop – One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation and emergency stop – Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop – 2 watchdog timers (independent, window) – SysTick timer: 24-bit downcounter – Up to two 16-bit basic timers to drive the DAC • Calendar RTC with Alarm, periodic wakeup from Stop • Communication interfaces – CAN interface (2.0B Active) – Two I2C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP – Up to five USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control) – Up to three SPIs, two with multiplexed I2S interface, 4 to 16 programmable bit frames – Infrared Transmitter • Cortex®-M4 with FPU ETM, Serial wire debug, JTAG • 96-bit unique ID • Seven fast rail-to-rail analog comparators with analog supply from 1.65 to 3.6 V • Up to four operational amplifiers that can be used in PGA mode, all terminal accessible with analog supply from 2.4 to 3.6 V April 2015 This is information on a product in full production. Table 1. Device summary Reference STM32F358xC DocID025540 Rev 4 Part number STM32F358CC, STM32F358RC, STM32F358VC 1/134 www.st.com Contents STM32F358xC Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . 12 3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.3 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.12.1 3.13 2/134 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 18 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13.4 OPAMP reference voltage (VOPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.15 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.16 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 22 DocID025540 Rev 4 STM32F358xC Contents 3.17.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 25 3.21 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 25 3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 25 3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.24 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.25 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.26 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.26.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.26.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 57 6.3.3 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DocID025540 Rev 4 3/134 4 Contents 7 STM32F358xC 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.15 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 129 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4/134 DocID025540 Rev 4 STM32F358xC List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F358xC family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . 10 External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM32F358xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F358xC I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F358xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Capacitive sensing GPIOs available on STM32F358xC devices . . . . . . . . . . . . . . . . . . . . 28 No. of capacitive sensing channels available on STM32F358xC devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32F358xC pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F358xC memory map and peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Typical and maximum current consumption from VDD supply at VDD = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 60 Typical and maximum VDD consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Typical and maximum VDDA consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 61 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 64 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID025540 Rev 4 5/134 6 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. 6/134 STM32F358xC Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 NPOR pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 91 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 ADC accuracy - limited test conditions 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . 102 ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ADC accuracy - limited test conditions 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 106 ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 119 LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 122 LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 125 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 DocID025540 Rev 4 STM32F358xC List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. STM32F358xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F358xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F358xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 STM32F358xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STM32F358xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 62 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 76 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Maximum VREFINT scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . 114 OPAMP Voltage Noise versus Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 119 LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 120 LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 121 LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 122 LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 123 LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 124 LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 125 LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 126 LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 127 DocID025540 Rev 4 7/134 7 Introduction 1 STM32F358xC Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F358xC microcontrollers. This STM32F358xC datasheet should be read in conjunction with the STM32F303xx, STM32F358xC and STM32F328x4/6/8 (RM0316) reference manual. The reference manual is available from the STMicroelectronics website www.st.com. For information on the Cortex®-M4 core with FPU please refer to: 8/134 • Cortex®-M4 with FPU Technical Reference Manual, available from ARM website www.arm.com. • STM32F3xxx and STM32F4xxx Cortex®-M4 programming manual (PM0214) available from our website www.st.com. DocID025540 Rev 4 STM32F358xC 2 Description Description The STM32F358xC family is based on the high-performance ARM® Cortex®-M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 48 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four operational amplifiers, up to two DAC channels, a low-power RTC, up to five generalpurpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I2Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on STM32F358xC devices), three USARTs, up to two UARTs, and CAN. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL. The STM32F358xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F358xC family offers devices in three packages ranging from 48 pins to 100 pins. The set of included peripherals changes with the device chosen. DocID025540 Rev 4 9/134 51 Description STM32F358xC Table 2. STM32F358xC family device features and peripheral counts STM32F 358Cx STM32F 358Rx STM32F 358Vx Flash (Kbytes) 256 256 256 SRAM (Kbytes) on data bus 40 40 40 Peripheral CCM (Core Coupled Memory) RAM (Kbytes) Timers PWM channels 8 Advanced control 2 (16-bit) General purpose 5 (16-bit) 1 (32-bit) Basic 2 (16-bit) (all)(1) PWM channels (except complementary) 31 33 22 24 SPI(I2S)(2) Comm. interfaces GPIOs 3(2) I2C 2 USART 3 UART 2 CAN 1 Normal I/Os (TC, TTa) 19 26 44 5 volts Tolerant I/Os (FT, FTf) 17 25 42 DMA channels 12 12-bit ADCs 4 Number of channels 14 21 12-bit DAC channels 2 Analog comparator 7 Operational amplifiers 4 CPU frequency 72 MHz Operating voltage VDD = 1.8 V +/- 8%, VDDA = 1.65 V to 3.6 V Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C Operating temperature Packages LQFP48 LQFP64 1. This total number considers also the PWMs generated on the complementary output channels. 2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode. 10/134 38 DocID025540 Rev 4 LQFP100 STM32F358xC Description Figure 1. STM32F358xC block diagram 73,8 (70 6:-7$* 7UDFH7ULJ 2%/ 038)38 ,EXV &RUWH[0&38 )ODVK LQWHUIDFH 9'' 3RZHU 6\VWHP 19,& 9'',2 966 #9'',2 )/$6+.% ELWV 15(6(7 9''$ 966$ 1325 'EXV )PD[0+] &&05$0 .% %XV0DWUL[ 75$'(&/. 75$&('>@ DV$) -7567 -7', -7&.6:&/. -7066:'$7 -7'2 $V$) 5HVHW 65$0 .% 6XSSO\ 6XSHUYLVLRQ #9''$ #9''$ *3'0$ FKDQQHOV 5&+60+] *3'0$ FKDQQHOV 3// #9'',2 5&/6 ;7$/26& 0+] 26&B,1 26&B287 ,QG:'*. $+%3&/. 7HPSVHQVRU ELW$'& ELW$'& 5HVHW FORFN FRQWURO $+% 95() 95() $3%3&/. ,) ELW$'& ELW$'& ,) 9'' $3%3&/. +&/. )&/. #96: ;7$/N+] %DFNXS 57& 5HJ $:8 %\WH %DFNXS LQWHUIDFH 86$57&/. ,&&/. $'&6$5 &/. 26&B,1 26&B287 $17,7$03 7,0(5 ELW3:0 &KDQQHOV(75DV$) *3,23257% 7,0(5 &KDQQHOV(75DV$) 3&>@ *3,23257& 7,0(5 &KDQQHOV(75DV$) 3'>@ *3,23257' 63,,6 026,6'0,62H[WB6' 6&.&.166:60&/.DV$) 3(>@ *3,23257( 63,,6 3)>@ *3,23257) 026,6'0,62H[WB6' 6&.&.166:60&/.DV$) 86$57 5;7;&76576DV$) 86$57 5;7;&76576DV$) 3%>@ ;;*URXSVRI FKDQQHOVDV$) &5& $3%)PD[ 0+] *3,23257$ $+% 3$>@ 7RXFK6HQVLQJ &RQWUROOHU $+% $3% $+% $3% :LQ:$7&+'2* (;7,7 :.83 7,0(5 &KDQQHO&RPS &KDQQHO%5.DV$) 7,0(5 &KDQQHO&RPS &KDQQHO%5.DV$) 7,0(5 &KDQQHOV &RPSFKDQQHOV (75%5.DV$) &KDQQHOV &RPSFKDQQHOV (75%5.DV$) 7,0(53:0 7,0(5 6<6&)*&7/ 63, 5;7;&76576 6PDUW&DUGDV$) 86$57 5;7;DV$) ,& 6&/6'$60%$DV$) ,& 6&/6'$60%$DV$) '$&B&+DV$) ;[,QV287VDV$) '$&B&+DV$) 2S$PS ,1[[287[[ 2S$PS ,1[[287[[ 2S$PS ,1[[287[[ 2S$PS ,1[[287[[ #9''$ *3&RPSDUDWRU S *3&RPSDUDWRU *3&RPSDUDWRU &$17;&$15; ,) ELW'$& #9''$ 7,0(53:0 026,0,62 6&.166DV$) 8$57 7,0(5 ,17(5)$&( &KDQQHOV&RPS &KDQQHO%5.DV$) 5;7;DV$) E[&$1 %65$0 $3%IPD[ 0+] ;;$) 8$57 #9''$ 06Y9 1. AF: alternate function on I/O pins. DocID025540 Rev 4 11/134 51 Functional overview STM32F358xC 3 Functional overview 3.1 ARM® Cortex®-M4 core with FPU with embedded Flash and SRAM The ARM® Cortex®-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM® Cortex®-M4 32-bit RISC processor with FPU features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation. With its embedded ARM core, the STM32F358xC family is compatible with all ARM tools and software. Figure 1 shows the general block diagram of the STM32F358xC family devices. 3.2 Memory protection unit (MPU) The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.3 Embedded Flash memory All STM32F358xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above). 3.4 Embedded SRAM STM32F358xC devices feature up to 48 Kbytes of embedded SRAM with hardware parity 12/134 DocID025540 Rev 4 STM32F358xC Functional overview check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from the CCM (Core Coupled Memory) RAM). • 8 Kbytes of CCM RAM on STM32F303xx devices mapped on both instruction and data bus, used to execute critical routines or to access data (parity check on all of CCM RAM). • 3.5 40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM). Boot modes At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10) or USART2 (PD5/PD6) or I2C1 (PB6/PB7). 3.6 Cyclic redundancy check (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. DocID025540 Rev 4 13/134 51 Functional overview STM32F358xC 3.7 Power management 3.7.1 Power supply schemes • VSS, VDD = 1.8 V+/- 8%: external power supply for I/Os and core. It is provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to VDDA differs from one analog peripheral to another. Table 3 provides the summary of the VDDA ranges for analog peripherals. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. • VBAT= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch which is guaranteed in the full range of VDD) when VDD is not present. Table 3. External analog supply values for analog peripherals 3.7.2 Analog peripheral Minimum VDDA supply Maximum VDDA supply ADC 1.8 V 3.6 V COMP 1.65 V 3.6 V DAC / OPAMP 2.4 V 3.6V Power supply supervision The device power on reset is controlled through the external NPOR pin. The device remains in reset state when NPOR pin is held low. To guarantee a proper power-on reset, the NPOR pin must be held low when VDDA is applied. Then, when VDD is stable, the reset state can be exited by: 3.7.3 • either putting the NPOR pin in high impedance. NPOR pin has an internal pull up. • or forcing the pin to high level by connecting it to VDDA. Low-power modes The STM32F358xC devices support two low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the RTC alarm, COMPx, I2Cx or U(S)ARTx. Note: 14/134 The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop mode. DocID025540 Rev 4 STM32F358xC 3.8 Functional overview Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Table 4. STM32F358xC peripheral interconnect matrix Interconnect source Interconnect action TIMx Timers synchronization or chaining ADCx DAC1 Conversion triggers DMA Memory to memory transfer trigger Compx Comparator output blanking COMPx TIMx Timer input: OCREF_CLR input, input capture ADCx TIMx Timer triggered by analog watchdog GPIO RTCCLK HSE/32 MC0 TIM16 Clock source used as input channel for HSI and LSI calibration CSS CPU (hard fault) COMPx PVD GPIO TIM1, TIM8, TIM15, 16, 17 Timer break TIMx External trigger, timer break GPIO ADCx DAC1 Conversion external trigger DAC1 COMPx Comparator inverting input TIMx Note: Interconnect destination For more details about the interconnect actions, please refer to the corresponding sections in the reference manual RM0316. DocID025540 Rev 4 15/134 51 Functional overview 3.9 STM32F358xC Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz. 16/134 DocID025540 Rev 4 STM32F358xC Functional overview Figure 2. Clock tree &>/d&>< ƚŽ&ůĂƐŚƉƌŽŐƌĂŵŵŝŶŐŝŶƚĞƌĨĂĐĞ ,^/ ƚŽ/Ϯdž;džсϭ͕ϮͿ ^z^>< /Ϯ^^Z ^z^>< ƚŽ/Ϯ^dž;džсϮ͕ϯͿ džƚ͘ĐůŽĐŬ /Ϯ^ͺ</E h^ h^>< ƚŽh^ŝŶƚĞƌĨĂĐĞ ƉƌĞƐĐĂůĞƌ ϴD,nj ,^/ ͬϭ͕ϭ͘ϱ ,^/Z ͬϮ ƚŽ,ďƵƐ͕ĐŽƌĞ͕ ŵĞŵŽƌLJĂŶĚD ,>< W>>^Z ,^/ W>> W>>>< džϮ͕džϯ͕͘͘ džϭϲ ,^ , , ƉƌĞƐĐĂůĞƌ ƉƌĞƐĐĂůĞƌ ͬϭ͕Ϯ͕͘͘ϱϭϮ ͬϭ͕Ϯ͕ϰ͕ϴ͕ϭϲ Wϭ W><ϭ ^z^>< /Ĩ;WϭƉƌĞƐĐĂůĞƌ сϭͿdžϭĞůƐĞdžϮ ^^ ͬϮ͕ͬϯ͕͘͘͘ ƚŽĐŽƌƚĞdž^LJƐƚĞŵƚŝŵĞƌ &,><ŽƌƚĞdžĨƌĞĞ ƌƵŶŶŝŶŐĐůŽĐŬ ƚŽWϭƉĞƌŝƉŚĞƌĂůƐ ͬϴ ^t W>>Dh> ͬϭϲ WR7,0 W><ϭ K^ͺKhd K^ͺ/E K^ϯϮͺ/E K^ϯϮͺKhd ^z^>< ϰͲϯϮD,nj ,^/ ,^K^ >^ WϮ ƉƌĞƐĐĂůĞƌ ͬϭ͕Ϯ͕ϰ͕ϴ͕ϭϲ ͬϯϮ Zd>< >^K^ ϯϮ͘ϳϲϴŬ,nj WR86$57[[ W><Ϯ WR$3%SHULSKHUDOV ƚŽZd /Ĩ;WϮƉƌĞƐĐĂůĞƌ >^ сϭͿdžϭĞůƐĞdžϮ Zd^>ϭ͗Ϭ WR7,0 W><Ϯ >^/Z >^/ /t'>< ƚŽ/t' ϰϬŬ,nj ^z^>< ,^/ WR86$57 >^ ͬϮ DK DĂŝŶĐůŽĐŬ ŽƵƚƉƵƚ DK W>>>< ,^/ >^/ >^ ,^ ^z^>< džϮ WƌĞƐĐĂůĞƌ ͬϭ͕Ϯ͕ϰ d/Dϭͬϴ ƚŽdžLJ ;džLJсϭϮ͕ϯϰͿ WƌĞƐĐĂůĞƌ ͬϭ͕Ϯ͕ϰ͕ϲ͕ϴ͕ϭϬ͕ϭϮ͕ϭϲ͕ ϯϮ͕ϲϰ͕ϭϮϴ͕Ϯϱϲ 069 DocID025540 Rev 4 17/134 51 Functional overview 3.10 STM32F358xC General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allows I/O toggling up to 36 MHz. 3.11 Direct memory access (DMA) The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC. 3.12 Interrupts and events 3.12.1 Nested vectored interrupt controller (NVIC) The STM32F358xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels. The NVIC benefits are the following: • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 18/134 DocID025540 Rev 4 STM32F358xC 3.13 Functional overview Fast analog-to-digital converter (ADC) Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F358xC family devices. The ADCs have up to 38 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 4 ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold • Single-shunt phase current reading techniques. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers and the advanced-control timers can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers. 3.13.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. 3.13.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN18 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. DocID025540 Rev 4 19/134 51 Functional overview 3.13.3 STM32F358xC VBAT battery voltage monitoring This embedded hardware feature allows the application to measure the VBAT battery voltage using the internal ADC channel ADC_IN17. As the VBAT voltage may be higher than VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the VBAT voltage. 3.13.4 OPAMP reference voltage (VOPAMP) Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4 channel 17. 3.14 Digital-to-analog converter (DAC) Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. This digital interface supports the following features: 3.15 • Up to two DAC output channels on STM32F358xC devices • 8-bit or 10-bit monotonic output • Left or right data alignment in 12-bit mode • Synchronized update capability on STM32F358xC devices • Noise-wave generation • Triangular-wave generation • Dual DAC channel independent or simultaneous conversions on STM32F358xC devices • DMA capability (for each channel on STM32F358xC devices) • External triggers for conversion Operational amplifier (OPAMP) The STM32F358xC devices embed up to four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement. The operational amplifier features: 20/134 • 8.2 MHz bandwidth • 0.5 mA output capability • Rail-to-rail input/output • In PGA mode, the gain can be programmed to be 2, 4, 8 or 16. DocID025540 Rev 4 STM32F358xC 3.16 Functional overview Fast comparators (COMP) The STM32F358xC devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity. The reference voltage can be one of the following: • External I/O • DAC output pin • Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 26: Embedded internal reference voltage on page 57 for the value and precision of the internal reference voltage. All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator 3.17 Timers and watchdogs The STM32F358xC devices include up to two advanced control timers, up to 6 generalpurpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced TIM1, TIM8 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 Yes Generalpurpose TIM2 32-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM3, TIM4 16-bit Up, Down, Up/Down Any integer between 1 and 65536 Yes 4 No Generalpurpose TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 1 Generalpurpose TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 1 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No Note: Capture/ Complementary compare outputs Channels TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz. DocID025540 Rev 4 21/134 51 Functional overview 3.17.1 STM32F358xC Advanced timers (TIM1, TIM8) The advanced-control timers (TIM1 on all devices and TIM8 on STM32F358xC devices) can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) with full modulation capability (0100%) • One-pulse mode output In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs. Many features are shared with those of the general-purpose TIM timers (described in Section 3.17.2 using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. 3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) There are up to six synchronizable general-purpose timers embedded in the STM32F358xC devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. • TIM2, 3, and TIM4 These are full-featured general-purpose timers: – TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler – TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers. These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. • TIM15, 16 and 17 These three timers general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has 2 channels and 1 complementary channel – TIM16 and TIM17 have 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.17.3 Basic timers (TIM6, TIM7) These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. 22/134 DocID025540 Rev 4 STM32F358xC 3.17.4 Functional overview Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.17.5 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.18 • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0. • Programmable clock source Real-time clock (RTC) and backup registers The RTC and the 16 backup registers are supplied through VDD a switch that takes power from either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit registers used to store 64 bytes of user application data when VDD power is not present. They are not reset by a system or power reset. The RTC is an independent BCD timer/counter. It supports the following features: • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Automatic correction for 28, 29 (leap year), 30 and 31 days of the month. • Two programmable alarms with wake up from Stop mode capability. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. • Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection. DocID025540 Rev 4 23/134 51 Functional overview • STM32F358xC 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP capability. The RTC clock sources can be: 3.19 • A 32.768 kHz external crystal • A resonator or oscillator • The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32. Inter-integrated circuit interface (I2C) Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match. The I2C interfaces can be served by the DMA controller. Refer to Table 7 for the features available in I2C1 and I2C2. Table 7. STM32F358xC I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X Independent clock X X SMBus X X Wakeup from STOP X X 1. X = supported. 24/134 DocID025540 Rev 4 STM32F358xC 3.20 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The STM32F358xC devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3). The USART interfaces are able to communicate at speeds of up to 9 Mbits/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. 3.21 Universal asynchronous receiver transmitter (UART) The STM32F358xC devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller. Refer to Table 8 for the features available in all U(S)ARTs interfaces. Table 8. USART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5 Hardware flow control for modem X X X - - Continuous communication using DMA X X X X - Multiprocessor communication X X X X X Synchronous mode X X X - - Smartcard mode X X X - - Single-wire half-duplex communication X X X X X IrDA SIR ENDEC block X X X X X LIN mode X X X X X Dual clock domain and wakeup from Stop mode X X X X X Receiver timeout interrupt X X X X X Modbus communication X X X X X Auto baud rate detection X X X - - Driver Enable X X X - - 1. X = supported. 3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. DocID025540 Rev 4 25/134 51 Functional overview STM32F358xC Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency. Refer to Table 9 for the features available in SPI1, SPI2 and SPI3. Table 9. STM32F358xC SPI/I2S implementation SPI features(1) SPI1 SPI2 SPI3 Hardware CRC calculation X X X Rx/Tx FIFO X X X NSS pulse mode X X X I2S mode - X X TI mode X X X 1. X = supported. 3.23 Controller area network (CAN) The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks. 3.24 Infrared Transmitter The STM32F358xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below. TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13. To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels. 26/134 DocID025540 Rev 4 STM32F358xC Functional overview Figure 3. Infrared transmitter 7,0(5 2& IRUHQYHORS 7,0(5 3%3$ 2& IRUFDUULHU 069 3.25 Touch sensing controller (TSC) The STM32F358xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application. DocID025540 Rev 4 27/134 51 Functional overview STM32F358xC Table 10. Capacitive sensing GPIOs available on STM32F358xC devices Group 1 2 3 4 Capacitive sensing signal name Pin name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PE2 TSC_G3_IO2 PB0 TSC_G7_IO2 PE3 TSC_G3_IO3 PB1 TSC_G7_IO3 PE4 TSC_G4_IO1 PA9 TSC_G7_IO4 PE5 TSC_G4_IO2 PA10 TSC_G8_IO1 PD12 TSC_G4_IO3 PA13 TSC_G8_IO2 PD13 TSC_G4_IO4 PA14 TSC_G8_IO3 PD14 TSC_G8_IO4 PD15 Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G1_IO2 PA1 TSC_G1_IO3 PA2 TSC_G1_IO4 Group 5 6 7 8 Table 11. No. of capacitive sensing channels available on STM32F358xC devices Number of capacitive sensing channels Analog I/O group 28/134 STM32F358xVx STM32F358xRx STM32F358xCx G1 3 3 3 G2 3 3 3 G3 2 2 1 G4 3 3 3 G5 3 3 3 G6 3 3 3 G7 3 0 0 G8 3 0 0 Number of capacitive sensing channels 23 17 16 DocID025540 Rev 4 STM32F358xC Functional overview 3.26 Development support 3.26.1 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.26.2 Embedded trace macrocell™ The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F358xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools. DocID025540 Rev 4 29/134 51 Pinouts and pin description 4 STM32F358xC Pinouts and pin description 9''B 966B 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 4. STM32F358xC LQFP48 pinout ,1&0 3$ 3$ 3$ 3$ 3$ 3% 3% 1325 3% 3% 966B 9''B 9%$7 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 966$95() 9''$95() 3$ 3$ 3$ 30/134 DocID025540 Rev 4 9''B 966B 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% .47 STM32F358xC Pinouts and pin description 9''B 966B 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 5. STM32F358xC LQFP64 pinout ,1&0 9''B 966B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 3) 9''B 3$ 3$ 3$ 3$ 3& 3& 3% 3% 1325 3% 3% 966B 9''B 9%$7 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 3& 3& 3& 3& 966$95() 9''$95() 3$ 3$ 3$ -36 DocID025540 Rev 4 31/134 51 Pinouts and pin description STM32F358xC 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 6. STM32F358xC LQFP100 pinout ,1&0 6$$? 633? 0& 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 0& 6$$? 0! 0! 0! 0! 0# 0# 0" 0" .0/2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 0" 633? 6$$? 0% 0% 0% 0% 0% 6"!4 0# 0#/3#?). 0#/3#?/54 0& 0& 0&/3#?). 0&/3#?/54 .234 0# 0# 0# 0# 0& 633!62%& 62%& 6$$! 0! 0! 0! -36 32/134 DocID025540 Rev 4 STM32F358xC Pinouts and pin description Table 12. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Notes Pin functions Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor POR External power on reset pin with embedded weak pull-up resistor, powered from VDDA Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID025540 Rev 4 33/134 51 Pinouts and pin description STM32F358xC Table 13. STM32F358xC pin definitions LQFP64 LQFP48 Pin type I/O structure Notes Pin functions LQFP100 Pin number 1 - - PE2 I/O FT (1) TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT - 2 - - PE3 I/O FT (1) TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT - 3 - - PE4 I/O FT (1) TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT - 4 - - PE5 I/O FT (1) TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT - 5 - - PE6 I/O FT (1) TRACED3, EVENTOUT 6 1 1 VBAT S - - 7 2 2 PC13(2) I/O TC - 8 3 3 PC14(2) OSC32_IN I/O (PC14) TC - - OSC32_IN - OSC32_OUT Pin name (function after reset) Alternate functions Additional functions WKUP3, RTC_TAMP3 Backup power supply WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT TIM1_CH1N 9 4 4 PC15(2) OSC32_ OUT (PC15) 10 - - PF9 I/O FT (1) TIM15_CH1, SPI2_SCK, EVENTOUT - 11 - - PF10 I/O FT (1) TIM15_CH2, SPI2_SCK, EVENTOUT - 12 5 5 PF0OSC_IN (PF0) I/O FTf - TIM1_CH3N, I2C2_SDA, OSC_IN 13 6 6 PF1OSC_OUT I/O (PF1) FTf - I2C2_SCL OSC_OUT 14 7 7 15 16 8 9 - NRST PC0 PC1 I/O TC - I/O I/O I/O RST - TTa (1) Device reset input / internal reset output (active low) EVENTOUT ADC12_IN6, COMP7_INM TTa (1) EVENTOUT ADC12_IN7, COMP7_INP 17 10 - PC2 I/O TTa (1) COMP7_OUT, EVENTOUT ADC12_IN8 18 11 - PC3 I/O TTa (1) TIM1_BKIN2, EVENTOUT ADC12_IN9 EVENTOUT ADC12_IN10 19 - - PF2 I/O TTa (1) 20 12 8 VSSA/ VREF- S - - 34/134 Analog ground/Negative reference voltage DocID025540 Rev 4 STM32F358xC Pinouts and pin description Table 13. STM32F358xC pin definitions (continued) - 22 - - 13 23 14 9 10 Notes - I/O structure LQFP48 21 Pin name (function after reset) Pin type LQFP64 Pin functions LQFP100 Pin number VREF+ S - - Positive reference voltage VDDA S - - Analog power supply VDDA/ VREF+ S - - Analog power supply/Positive reference voltage PA0 I/O TTa Alternate functions Additional functions - USART2_CTS, TIM2_CH1_ETR, TIM8_BKIN, TIM8_ETR, TSC_G1_IO1, COMP1_OUT, EVENTOUT ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP ADC1_IN2, COMP1_INP, OPAMP1_VINP, OPAMP3_VINP 24 15 11 PA1 I/O TTa - USART2_RTS_DE, TIM2_CH2, TSC_G1_IO2, TIM15_CH1N, RTC_REFIN, EVENTOUT 25 16 12 PA2 I/O TTa (3) USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3, COMP2_OUT, EVENTOUT ADC1_IN3, COMP2_INM, OPAMP1_VOUT 26 17 13 PA3 I/O TTa - USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4, EVENTOUT ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM 27 18 - PF4 I/O TTa (1) COMP1_OUT, EVENTOUT ADC1_IN5 28 19 - VDD_4 S - - 29 30 31 20 21 22 14 15 16 PA4 PA5 PA6 I/O I/O I/O TTa (3) - - SPI1_NSS, SPI3_NSS, I2S3_WS, USART2_CK, TSC_G2_IO1, TIM3_CH2, EVENTOUT ADC2_IN1, DAC1_OUT1, OPAMP4_VINP, COMP1_INM, COMP2_INM, COMP3_INM, COMP4_INM, COMP5_INM, COMP6_INM,COMP7_INM TTa (3) SPI1_SCK, TIM2_CH1_ETR, TSC_G2_IO2, EVENTOUT ADC2_IN2, DAC1_OUT2 OPAMP1_VINP, OPAMP2_VINM, OPAMP3_VINP, COMP1_INM, COMP2_INM, COMP3_INM, COMP4_INM,COMP5_INM, COMP6_INM, COMP7_INM TTa (3) SPI1_MISO, TIM3_CH1, TIM8_BKIN, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT ADC2_IN3, OPAMP2_VOUT DocID025540 Rev 4 35/134 51 Pinouts and pin description STM32F358xC Table 13. STM32F358xC pin definitions (continued) Notes I/O structure Pin name (function after reset) Pin type Pin functions LQFP48 LQFP64 LQFP100 Pin number Alternate functions Additional functions SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N, TIM8_CH1N, TSC_G2_IO4, COMP2_OUT, EVENTOUT ADC2_IN4, COMP2_INP, OPAMP2_VINP, OPAMP1_VINP 32 23 17 PA7 I/O TTa - 33 24 - PC4 I/O TTa (1) USART1_TX, EVENTOUT ADC2_IN5 34 25 - PC5 I/O TTa (1) USART1_RX, TSC_G3_IO1, EVENTOUT ADC2_IN11, OPAMP2_VINM, OPAMP1_VINM 35 26 18 PB0 I/O TTa - TIM3_CH3, TIM1_CH2N, TIM8_CH2N, TSC_G3_IO2, EVENTOUT ADC3_IN12, COMP4_INP, OPAMP3_VINP, OPAMP2_VINP 36 27 19 PB1 I/O TTa (3) TIM3_CH4, TIM1_CH3N, TIM8_CH3N, COMP4_OUT, TSC_G3_IO3, EVENTOUT ADC3_IN1, OPAMP3_VOUT 37 28 20 NPOR I POR (4) Device power-on reset input 38 - - PE7 I/O TTa (1) TIM1_ETR, EVENTOUT ADC3_IN13, COMP4_INP 39 - - PE8 I/O TTa (1) TIM1_CH1N, EVENTOUT COMP4_INM, ADC34_IN6 40 - - PE9 I/O TTa (1) TIM1_CH1, EVENTOUT ADC3_IN2 TTa (1) TIM1_CH2N, EVENTOUT ADC3_IN14 41 - - PE10 I/O PE11 I/O TTa (1) TIM1_CH2, EVENTOUT ADC3_IN15 PE12 I/O TTa (1) TIM1_CH3N, EVENTOUT ADC3_IN16 - PE13 I/O TTa (1) TIM1_CH3, EVENTOUT ADC3_IN3 - - PE14 I/O TTa (1) TIM1_CH4, TIM1_BKIN2, EVENTOUT ADC4_IN1 46 - - PE15 I/O TTa (1) USART3_RX, TIM1_BKIN, EVENTOUT ADC4_IN2 47 29 21 PB10 I/O TTa - USART3_TX, TIM2_CH3, TSC_SYNC, EVENTOUT COMP5_INM, OPAMP4_VINM, OPAMP3_VINM 48 30 22 PB11 I/O TTa - USART3_RX, TIM2_CH4, TSC_G6_IO1, EVENTOUT COMP6_INP, OPAMP4_VINP - - Digital ground - - Digital power supply TTa (3) 42 - 43 - 44 - 45 - 49 31 23 VSS_2 S 50 32 24 VDD_2 S 51 36/134 33 25 PB12 I/O SPI2_NSS, I2S2_WS, I2C2_SMBA, USART3_CK, TIM1_BKIN, TSC_G6_IO2, EVENTOUT DocID025540 Rev 4 ADC4_IN3, COMP3_INM, OPAMP4_VOUT, STM32F358xC Pinouts and pin description Table 13. STM32F358xC pin definitions (continued) 26 53 35 27 PB13 I/O PB14 I/O Notes 34 I/O structure LQFP48 52 Pin name (function after reset) Pin type LQFP64 Pin functions LQFP100 Pin number TTa - SPI2_SCK, I2S2_CK, USART3_CTS, TIM1_CH1N, TSC_G6_IO3, EVENTOUT ADC3_IN5, COMP5_INP, OPAMP4_VINP, OPAMP3_VINP - SPI2_MISO, I2S2ext_SD, USART3_RTS_DE, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4, EVENTOUT COMP3_INP, ADC4_IN4, OPAMP2_VINP SPI2_MOSI, I2S2_SD, TIM1_CH3N, RTC_REFIN, TIM15_CH1N, TIM15_CH2, EVENTOUT ADC4_IN5, COMP6_INM TTa Alternate functions Additional functions 54 36 28 PB15 I/O TTa - 55 - - PD8 I/O TTa (1) USART3_TX, EVENTOUT ADC4_IN12, OPAMP4_VINM TTa (1) USART3_RX, EVENTOUT ADC4_IN13 USART3_CK, EVENTOUT ADC34_IN7, COMP6_INM 56 - - PD9 I/O 57 - - PD10 I/O TTa (1) 58 - - PD11 I/O TTa (1) USART3_CTS, EVENTOUT ADC34_IN8, COMP6_INP, OPAMP4_VINP 59 - - PD12 I/O TTa (1) USART3_RTS_DE, TIM4_CH1, TSC_G8_IO1, EVENTOUT ADC34_IN9, COMP5_INP 60 - - PD13 I/O TTa (1) TIM4_CH2, TSC_G8_IO2, EVENTOUT ADC34_IN10, COMP5_INM 61 - - PD14 I/O TTa (1) TIM4_CH3, TSC_G8_IO3, EVENTOUT COMP3_INP, ADC34_IN11, OPAMP2_VINP 62 - - PD15 I/O TTa (1) SPI2_NSS, TIM4_CH4, TSC_G8_IO4, EVENTOUT COMP3_INM 63 37 - PC6 I/O FT (1) I2S2_MCK, COMP6_OUT, TIM8_CH1, TIM3_CH1, EVENTOUT - 64 38 - PC7 I/O FT (1) I2S3_MCK, TIM8_CH2, TIM3_CH2, COMP5_OUT, EVENTOUT - 65 39 - PC8 I/O FT (1) TIM8_CH3, TIM3_CH3, COMP3_OUT, EVENTOUT - 66 40 - PC9 I/O FT (1) TIM8_CH4, TIM8_BKIN2, TIM3_CH4, I2S_CKIN, EVENTOUT - DocID025540 Rev 4 37/134 51 Pinouts and pin description STM32F358xC Table 13. STM32F358xC pin definitions (continued) 67 68 69 70 71 41 42 43 44 45 29 30 31 32 33 PA8 PA9 PA10 PA11 PA12 I/O I/O I/O I/O I/O FT FTf FTf FT FT Notes I/O structure Pin name (function after reset) Pin type Pin functions LQFP48 LQFP64 LQFP100 Pin number Alternate functions Additional functions - I2C2_SMBA, I2S2_MCK, USART1_CK, TIM1_CH1, TIM4_ETR, MCO, COMP3_OUT, EVENTOUT - - I2C2_SCL, I2S3_MCK, USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, COMP5_OUT, EVENTOUT - - I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM8_BKIN, TIM17_BKIN, TSC_G4_IO2, COMP6_OUT, EVENTOUT - - USART1_CTS, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT, EVENTOUT - - USART1_RTS_DE, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT, EVENTOUT - USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDIO-JTMS, EVENTOUT - I2C2_SCL, USART3_RTS_DE, TIM4_CH4, EVENTOUT - 72 46 34 PA13 I/O FT - 73 - - PF6 I/O FTf (1) 74 47 35 VSS_3 S - - Ground 75 48 36 VDD_3 S - - Digital power supply 76 77 38/134 49 50 37 38 PA14 PA15 I/O I/O FTf FTf - I2C1_SDA, USART2_TX, TIM8_CH2, TIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK, EVENTOUT - - I2C1_SCL, SPI1_NSS, SPI3_NSS, I2S3_WS, JTDI, USART2_RX, TIM1_BKIN, TIM2_CH1_ETR, TIM8_CH1, EVENTOUT - DocID025540 Rev 4 STM32F358xC Pinouts and pin description Table 13. STM32F358xC pin definitions (continued) LQFP64 LQFP48 Pin type I/O structure Notes Pin functions LQFP100 Pin number 78 51 - PC10 I/O FT (1) SPI3_SCK, I2S3_CK, USART3_TX, UART4_TX, TIM8_CH1N, EVENTOUT - 79 52 - PC11 I/O FT (1) SPI3_MISO, I2S3ext_SD, USART3_RX, UART4_RX, TIM8_CH2N, EVENTOUT - 80 53 - PC12 I/O FT (1) SPI3_MOSI, I2S3_SD, USART3_CK, UART5_TX, TIM8_CH3N, EVENTOUT - 81 - - PD0 I/O FT (1) CAN_RX, EVENTOUT - 82 - - PD1 I/O FT (1) CAN_TX, TIM8_CH4, TIM8_BKIN2, EVENTOUT - 83 54 - PD2 I/O FT (1) UART5_RX, TIM3_ETR, TIM8_BKIN, EVENTOUT - 84 - - PD3 I/O FT (1) USART2_CTS, TIM2_CH1_ETR, EVENTOUT - 85 - - PD4 I/O FT (1) USART2_RTS_DE, TIM2_CH2, EVENTOUT - 86 - - PD5 I/O FT (1) USART2_TX, EVENTOUT - Pin name (function after reset) Alternate functions Additional functions 87 - - PD6 I/O FT (1) USART2_RX, TIM2_CH4, EVENTOUT 88 - - PD7 I/O FT (1) USART2_CK, TIM2_CH3, EVENTOUT - - SPI3_SCK, I2S3_CK, SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM8_CH1N, TSC_G5_IO1, JTDOTRACESWO, EVENTOUT - - SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N, TSC_G5_IO2, NJTRST, EVENTOUT - - SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N, TIM17_CH1, EVENTOUT - 89 90 91 55 56 57 39 40 41 PB3 PB4 PB5 I/O I/O I/O FT FT FT DocID025540 Rev 4 39/134 51 Pinouts and pin description STM32F358xC Table 13. STM32F358xC pin definitions (continued) 92 58 42 PB6 I/O FTf Notes I/O structure Pin name (function after reset) Pin type Pin functions LQFP48 LQFP64 LQFP100 Pin number - - I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN, TSC_G5_IO4, EVENTOUT - 59 43 PB7 I/O FTf - 94 60 44 BOOT0 I B - 61 45 PB8 I/O FTf Additional functions I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TIM8_CH1, TSC_G5_IO3, TIM8_ETR, TIM8_BKIN2, EVENTOUT 93 95 Alternate functions Boot memory selection - I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3, TIM8_CH2, TIM1_BKIN, TSC_SYNC, COMP1_OUT, EVENTOUT - I2C1_SDA, CAN_TX, TIM17_CH1, TIM4_CH4, TIM8_CH3, IR_OUT, COMP2_OUT, EVENTOUT - 96 62 46 PB9 I/O FTf - 97 - - PE0 I/O FT (1) USART1_TX, TIM4_ETR, TIM16_CH1, EVENTOUT - 98 - - PE1 I/O FT (1) USART1_RX, TIM17_CH1, EVENTOUT - 99 63 47 VSS_1 S - - Ground 100 64 48 VDD_1 S - - Digital power supply 1. Function availability depends on the chosen device. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode. 2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the reference manual. 3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O 4. This pin is powered by VDDA. 40/134 DocID025540 Rev 4 Port & Pin Name AF0 PA0 - PA1 RTC_ REFIN AF1 AF2 AF3 AF4 AF5 AF6 TIM2_ CH1_ ETR - TSC_ G1_IO1 - - TIM2_ CH2 - TSC_ G1_IO2 - AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15 - USART2_ COMP1 TIM8_ CTS _OUT BKIN TIM8_ ETR - - - EVENT OUT - - USART2_ RTS_DE TIM15_ CH1N - - - - EVENT OUT - DocID025540 Rev 4 - TIM2_ CH3 - TSC_ G1_IO3 - - - USART2_ COMP2 TIM15_ TX _OUT CH1 - - - - EVENT OUT PA3 - TIM2_ CH4 - TSC_ G1_IO4 - - - USART2_ RX - - - - - EVENT OUT PA4 - TIM3_ TSC_ CH2 G2_IO1 - SPI1_ NSS USART2_ CK - - - - - - EVENT OUT PA5 - TIM2_ CH1_ ETR TSC_ G2_IO2 - SPI1_ SCK - - - - - - - - EVENT OUT PA6 - TIM16_ TIM3_ TSC_ TIM8_ CH1 CH1 G2_IO3 BKIN SPI1_ MISO TIM1_BKIN - COMP1 _OUT - - - - - EVENT OUT PA7 - TIM17_ TIM3_ TSC_ TIM8_ CH1 CH2 G2_IO4 CH1N SPI1_ MOSI TIM1_CH1N - COMP2 _OUT - - - - - EVENT OUT I2C2_ SMBA I2S2_ MCK TIM1_CH1 USART1_ COMP3 CK _OUT - TIM4_ ETR - - - EVENT OUT PA8 MCO - - - - SPI3_NSS, I2S3_WS TIM15_ CH2 PA9 - - - I2C2_ TSC_ G4_IO1 SCL I2S3_ MCK TIM1_CH2 USART1_ COMP5 TIM15_ TX _OUT BKIN TIM2_ CH3 - - - EVENT OUT PA10 - TIM17_ BKIN - TSC_ I2C2_ G4_IO2 SDA - TIM1_CH3 USART1_ COMP6 RX _OUT TIM2_ CH4 TIM8_ BKIN - - EVENT OUT PA11 - - - - TIM1_CH1N USART1_ COMP1 TIM4_ CAN_RX CTS _OUT CH1 TIM1_ BKIN2 - EVENT OUT - - - TIM1_CH4 41/134 Pinouts and pin description PA2 STM32F358xC Table 14. Alternate functions for port A Port & Pin Name AF0 AF1 AF2 AF3 AF4 AF5 AF6 PA12 - TIM16_ CH1 - - - - TIM1_CH2N PA13 SWDIO TIM16_ -JTMS CH1N - TSC_ G4_IO3 - PA14 SWCLK -JTCK - TSC_ I2C1_ G4_IO4 SDA PA15 JTDI TIM2_ CH1_ ETR TIM8_ CH1 - I2C1_ SCL IR_ OUT AF7 AF8 AF9 AF10 USART1_ COMP2 TIM4_ CAN_TX RTS_DE _OUT CH2 AF11 AF12 AF14 AF15 TIM1_ETR - - EVENT OUT USART3_ CTS - - TIM4_ CH3 - - - EVENT OUT TIM8_ TIM1_BKIN CH2 USART2_ TX - - - - - - EVENT OUT SPI1_ NSS USART2_ RX - - - - - EVENT OUT - SPI3_NSS, I2S3_WS TIM1_ BKIN Pinouts and pin description 42/134 Table 14. Alternate functions for port A (continued) DocID025540 Rev 4 STM32F358xC Port & Pin Name AF0 AF1 PB0 - - TIM3_ CH3 TSC_ G3_IO2 PB1 - - TIM3_ CH4 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15 TIM8_ CH2N - TIM1_CH2N - - - - - EVENT OUT TSC_ G3_IO3 TIM8_ CH3N - TIM1_CH3N - COMP4_ OUT - - - EVENT OUT TIM4_ ETR TSC_ G5_IO1 TIM8_ CH1N SPI1_ SCK SPI3_SCK, I2S3_CK USART2_ TX - - TIM3_ ETR - EVENT OUT DocID025540 Rev 4 JTDOTIM2_ TRACES CH2 WO PB4 NJTRST TIM16_ TIM3_ CH1 CH1 TSC_ G5_IO2 TIM8_ CH2N SPI1_ MISO SPI3_MISO, I2S3ext_SD USART2_ RX - - TIM17_ BKIN - EVENT OUT PB5 - TIM16_ TIM3_ BKIN CH2 TIM8_ CH3N I2C1_ SMBA SPI1_ MOSI SPI3_MOSI, I2S3_SD USART2_ CK - - TIM17_ CH1 - EVENT OUT PB6 - TIM16_ TIM4_ CH1 CH1N TSC_ G5_IO3 I2C1_SCL TIM8_CH1 TIM8_ ETR USART1_ TX - - TIM8_ BKIN2 - EVENT OUT PB7 - TIM17_ TIM4_ CH2 CH1N TSC_ G5_IO4 I2C1_ SDA TIM8_ BKIN - USART1_ RX - - TIM3_ CH4 - EVENT OUT PB8 - TIM16_ TIM4_ CH1 CH3 TSC_ SYNC I2C1_SCL - - - COMP1_ CAN_RX OUT TIM8_ CH2 PB9 - TIM17_ TIM4_ CH4 CH1 I2C1_ SDA - - COMP2_ CAN_TX OUT TIM8_ CH3 PB10 - TIM2_ CH3 - TSC_ SYNC - - - USART3_ TX - - PB11 - TIM2_ CH4 - TSC_ G6_IO1 - - - USART3_ RX - PB12 - - - TSC_ G6_IO2 I2C2_ SMBA SPI2_NSS, I2S2_WS TIM1_ BKIN USART3_ CK PB13 - - - TSC_ G6_IO3 - SPI2_SCK, I2S2_CK TIM1_ CH1N USART3_ CTS IR_OUT TIM1_ BKIN EVENT OUT - EVENT OUT - - EVENT OUT - - - EVENT OUT - - - - EVENT OUT - - - - EVENT OUT Pinouts and pin description 43/134 PB3 STM32F358xC Table 15. Alternate functions for port B Port & Pin Name AF0 AF1 AF2 AF3 AF4 PB14 - TIM15_ CH1 - TSC_ G6_IO4 - PB15 RTC_ REFIN TIM15_ TIM15_ CH2 CH1N - TIM1_ CH3N AF5 AF6 SPI2_MISO, TIM1_ I2S2ext_SD CH2N SPI2_MOSI, I2S2_SD - AF7 AF8 AF9 AF10 AF12 AF15 USART3_ RTS_DE - - - - EVENT OUT - - - - - EVENT OUT Pinouts and pin description 44/134 Table 15. Alternate functions for port B (continued) DocID025540 Rev 4 STM32F358xC Port & Pin Name AF1 AF2 AF3 AF4 AF5 AF6 AF7 DocID025540 Rev 4 PC0 EVENTOUT - - - - - - PC1 EVENTOUT - - - - - - PC2 EVENTOUT - - - - - PC3 EVENTOUT - - - - PC4 EVENTOUT - - - - - USART1_TX PC5 EVENTOUT - - - USART1_RX PC6 EVENTOUT TIM3_CH1 - TIM8_CH1 - I2S2_MCK COMP6_OUT PC7 EVENTOUT TIM3_CH2 - TIM8_CH2 - I2S3_MCK COMP5_OUT PC8 EVENTOUT TIM3_CH3 - TIM8_CH3 - PC9 EVENTOUT TIM3_CH4 - TIM8_CH4 I2S_CKIN TIM8_BKIN2 PC10 EVENTOUT - - TIM8_CH1N UART4_TX SPI3_SCK, I2S3_CK USART3_TX PC11 EVENTOUT - - TIM8_CH2N UART4_RX SPI3_MISO, I2S3ext_SD USART3_RX PC12 EVENTOUT - - TIM8_CH3N UART5_TX SPI3_MOSI, I2S3_SD USART3_CK TIM1_CH1N COMP7_OUT TSC_G3_IO1 - - - PC14 - - - PC15 - - - - - COMP3_OUT - - - - - - - - - - - - 45/134 Pinouts and pin description PC13 TIM1_BKIN2 STM32F358xC Table 16. Alternate functions for port C Port & Pin Name AF1 PD0 EVENTOUT PD1 EVENTOUT PD2 EVENTOUT PD3 AF2 AF3 AF4 AF5 AF6 - - - - - - CAN_RX DocID025540 Rev 4 - TIM8_CH4 TIM3_ETR - TIM8_BKIN EVENTOUT TIM2_CH1_ETR - - - - USART2_CTS PD4 EVENTOUT TIM2_CH2 - - - - USART2_RTS_DE PD5 EVENTOUT - - - - - USART2_TX PD6 EVENTOUT TIM2_CH4 - - - - USART2_RX PD7 EVENTOUT TIM2_CH3 - - - - USART2_CK PD8 EVENTOUT - - - - PD9 EVENTOUT - - - - - USART3_RX PD10 EVENTOUT - - - - - USART3_CK PD11 EVENTOUT - - - - - USART3_CTS PD12 EVENTOUT TIM4_CH1 TSC_G8_IO1 - - - USART3_RTS_DE PD13 EVENTOUT TIM4_CH2 TSC_G8_IO2 - - - - PD14 EVENTOUT TIM4_CH3 TSC_G8_IO3 - - - - PD15 EVENTOUT TIM4_CH4 TSC_G8_IO4 - - UART5_RX TIM8_BKIN2 AF7 - - Pinouts and pin description 46/134 Table 17. Alternate functions for port D USART3_TX SPI2_NSS - STM32F358xC Port & Pin Name AF0 PE0 - EVENTOUT TIM4_ETR - TIM16_CH1 - USART1_TX PE1 - EVENTOUT - - TIM17_CH1 - USART1_RX AF1 AF2 AF3 AF4 AF6 AF7 PE2 TRACECK EVENTOUT TIM3_CH1 TSC_G7_IO1 - - - PE3 TRACED0 EVENTOUT TIM3_CH2 TSC_G7_IO2 - - - PE4 TRACED1 EVENTOUT TIM3_CH3 TSC_G7_IO3 - - - PE5 TRACED2 EVENTOUT TIM3_CH4 TSC_G7_IO4 - - - PE6 TRACED3 EVENTOUT - - - - - DocID025540 Rev 4 PE7 - EVENTOUT TIM1_ETR - - - - PE8 - EVENTOUT TIM1_CH1N - - - - PE9 - EVENTOUT TIM1_CH1 - - - - PE10 - EVENTOUT TIM1_CH2N - - - - PE11 - EVENTOUT TIM1_CH2 - - - - PE12 - EVENTOUT TIM1_CH3N - - - - PE13 - EVENTOUT TIM1_CH3 - - - - PE14 - EVENTOUT TIM1_CH4 - - PE15 - EVENTOUT TIM1_BKIN - - TIM1_BKIN2 - STM32F358xC Table 18. Alternate functions for port E USART3_RX Pinouts and pin description 47/134 Port & Pin Name AF1 AF2 AF3 PF0 - - - I2C2_SDA - PF1 - - - I2C2_SCL - - - - - - - - - - - - - - - AF4 AF5 AF6 TIM1_CH3N AF7 - PF2 EVENTOUT PF4 EVENTOUT COMP1_OUT PF6 EVENTOUT TIM4_CH4 PF9 EVENTOUT - TIM15_CH1 - SPI2_SCK - - PF10 EVENTOUT - TIM15_CH2 - SPI2_SCK - - I2C2_SCL USART3_RTS_DE Pinouts and pin description 48/134 Table 19. Alternate functions for port F DocID025540 Rev 4 STM32F358xC STM32F358xC 5 Memory mapping Memory mapping Figure 7. STM32F358xC memory map [)) $+% [)))))))) &RUWH[0 ZLWK)38 ,QWHUQDO 3HULSKHUDOV [( [ 5HVHUYHG [ $+% [ 5HVHUYHG [)) $+% [& [ 5HVHUYHG [& $3% [$ [ 5HVHUYHG [$ $3% [ [ [))))))) 2SWLRQE\WHV [ [)))) 6\VWHPPHPRU\ [ [)))' 3HULSKHUDOV [ 5HVHUYHG &&05$0 [ [ [ 65$0 5HVHUYHG )ODVKPHPRU\ [ &2'( 5HVHUYHG [ [ 5HVHUYHG [ )ODVKV\VWHP PHPRU\RU65$0 GHSHQGLQJRQ%227 FRQILJXUDWLRQ 06Y9 DocID025540 Rev 4 49/134 51 Memory mapping STM32F358xC Table 20. STM32F358xC memory map and peripheral register boundary addresses Bus AHB3 AHB2 AHB1 APB2 50/134 Boundary address Size (bytes) Peripheral 0x5000 0400 - 0x5000 07FF 1K ADC3 - ADC4 0x5000 0000 - 0x5000 03FF 1K ADC1 - ADC2 0x4800 1800 - 0x4FFF FFFF ~132 M 0x4800 1400 - 0x4800 17FF 1K GPIOF 0x4800 1000 - 0x4800 13FF 1K GPIOE 0x4800 0C00 - 0x4800 0FFF 1K GPIOD 0x4800 0800 - 0x4800 0BFF 1K GPIOC 0x4800 0400 - 0x4800 07FF 1K GPIOB 0x4800 0000 - 0x4800 03FF 1K GPIOA 0x4002 4400 - 0x47FF FFFF ~128 M 0x4002 4000 - 0x4002 43FF 1K TSC 0x4002 3400 - 0x4002 3FFF 3K Reserved 0x4002 3000 - 0x4002 33FF 1K CRC 0x4002 2400 - 0x4002 2FFF 3K Reserved 0x4002 2000 - 0x4002 23FF 1K Flash interface 0x4002 1400 - 0x4002 1FFF 3K Reserved 0x4002 1000 - 0x4002 13FF 1K RCC 0x4002 0800 - 0x4002 0FFF 2K Reserved 0x4002 0400 - 0x4002 07FF 1K DMA2 0x4002 0000 - 0x4002 03FF 1K DMA1 0x4001 8000 - 0x4001 FFFF 32 K Reserved 0x4001 4C00 - 0x4001 7FFF 13 K Reserved 0x4001 4800 - 0x4001 4BFF 1K TIM17 0x4001 4400 - 0x4001 47FF 1K TIM16 0x4001 4000 - 0x4001 43FF 1K TIM15 0x4001 3C00 - 0x4001 3FFF 1K Reserved 0x4001 3800 - 0x4001 3BFF 1K USART1 0x4001 3400 - 0x4001 37FF 1K TIM8 0x4001 3000 - 0x4001 33FF 1K SPI1 0x4001 2C00 - 0x4001 2FFF 1K TIM1 0x4001 0800 - 0x4001 2BFF 9K Reserved 0x4001 0400 - 0x4001 07FF 1K EXTI 0x4001 0000 - 0x4001 03FF 1K SYSCFG + COMP + OPAMP DocID025540 Rev 4 Reserved Reserved STM32F358xC Memory mapping Table 20. STM32F358xC memory map and peripheral register boundary addresses (continued) Bus APB1 Boundary address Size (bytes) Peripheral 0x4000 8000 - 0x4000 FFFF 32 K Reserved 0x4000 7800 - 0x4000 7FFF 2K Reserved 0x4000 7400 - 0x4000 77FF 1K DAC (dual) 0x4000 7000 - 0x4000 73FF 1K PWR 0x4000 6C00 - 0x4000 6FFF 1K Reserved 0x4000 6800 - 0x4000 6BFF 1K Reserved 0x4000 6400 - 0x4000 67FF 1K bxCAN 0x4000 5C00 - 0x4000 63FF 2K Reserved 0x4000 5800 - 0x4000 5BFF 1K I2C2 0x4000 5400 - 0x4000 57FF 1K I2C1 0x4000 5000 - 0x4000 53FF 1K UART5 0x4000 4C00 - 0x4000 4FFF 1K UART4 0x4000 4800 - 0x4000 4BFF 1K USART3 0x4000 4400 - 0x4000 47FF 1K USART2 0x4000 4000 - 0x4000 43FF 1K I2S3ext 0x4000 3C00 - 0x4000 3FFF 1K SPI3/I2S3 0x4000 3800 - 0x4000 3BFF 1K SPI2/I2S2 0x4000 3400 - 0x4000 37FF 1K I2S2ext 0x4000 3000 - 0x4000 33FF 1K IWDG 0x4000 2C00 - 0x4000 2FFF 1K WWDG 0x4000 2800 - 0x4000 2BFF 1K RTC 0x4000 1800 - 0x4000 27FF 4K Reserved 0x4000 1400 - 0x4000 17FF 1K TIM7 0x4000 1000 - 0x4000 13FF 1K TIM6 0x4000 0C00 - 0x4000 0FFF 1K Reserved 0x4000 0800 - 0x4000 0BFF 1K TIM4 0x4000 0400 - 0x4000 07FF 1K TIM3 0x4000 0000 - 0x4000 03FF 1K TIM2 DocID025540 Rev 4 51/134 51 Electrical characteristics STM32F358xC 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 1.8 V, VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 52/134 DocID025540 Rev 4 069 STM32F358xC 6.1.6 Electrical characteristics Power supply scheme Figure 10. Power supply scheme 9%$7 %DFNXSFLUFXLWU\ /6(57& :DNHXSORJLF %DFNXSUHJLVWHUV 287 *3 ,2V ,1 /HYHOVKLIWHU 3R ZHUVZL WFK 9 9'' î 9'' îQ) î ) ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV 5HJXODWRU î 966 9''$ 9''$ 95() Q) ) 95() Q) ) 95() $'& '$& !NALOG2#S0,, COMPARATORS/0!-0 966$ 069 1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins. Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 6.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme )$$ 6$$ )$$! 6$$! -36 DocID025540 Rev 4 53/134 118 Electrical characteristics 6.2 STM32F358xC Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics, Table 22: Current characteristics, and Table 23: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 21. Voltage characteristics(1) Symbol Ratings Min Max VDD– VSS External digital supply voltage (including VDD and VBAT) -0.3 1.95 VDDA– VSS External analog supply voltage -0.3 4.0 VDD– VDDA Allowed voltage difference for VDD > VDDA - 0.4 Allowed voltage difference for VREF+ > VDDA - 0.4 Input voltage on FT and FTf pins VSS − 0.3 VDD + 4.0 Input voltage on TTa pins VSS − 0.3 4.0 Input voltage on any other pin VSS − 0.3 4.0 Input voltage on POR pin VSS − 0.3 VDDA + 4.0 Input Voltage on B Pin 0 9 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 VREF+–VDDA(2) VIN(3) |ΔVDDx| |VSSX − VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.11: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between VDDA and VDD: VDDA must power on before or at the same time as VDD in the power up sequence. VDDA must be greater than or equal to VDD. 2. VREF+ must be always lower or equal than VDDA (VREF+ ≤ VDDA). If unused then it must be connected to VDDA. 3. VIN maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected current values. 54/134 DocID025540 Rev 4 - STM32F358xC Electrical characteristics Table 22. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD_x power lines (source) 160 ΣIVSS Total current out of sum of all VSS_x ground lines (sink) − 160 (1) IVDD Maximum current into each VDD_x power line (source) IVSS Maximum current out of each VSS _x ground line (sink)(1) IIO(PIN) ΣIIO(PIN) 25 −25 (2) 80 Total output current sourced by sum of all IOs and control pins(2) Injected current on TC and RST Injected current on TTa pins ΣIINJ(PIN) − 100 Output current source by any I/O and control pin Injected current on FT, FTf, POR and B IINJ(PIN) 100 Output current sunk by any I/O and control pin Total output current sunk by sum of all IOs and control pins Unit mA − 80 pins(3) -5/+0 pin(4) ±5 (5) ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be exceeded. Refer also to Table 21: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 66. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 23. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID025540 Rev 4 Value Unit –65 to +150 °C 150 °C 55/134 118 Electrical characteristics STM32F358xC 6.3 Operating conditions 6.3.1 General operating conditions Table 24. General operating conditions Symbol Parameter fHCLK Min Max Internal AHB clock frequency 0 72 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 72 Standard operating voltage 1.65 1.95 Analog operating voltage (OPAMP and DAC not used) 1.65 3.6 2.4 3.6 1.8 V 3.6 V 1.65 3.6 TC I/O –0.3 VDD+0.3 TTa I/O and POR I/O pins –0.3 VDDA+0.3 FT, FTf I/O pins –0.3 5.2 BOOT0 0 5.2 LQFP100 - 488 LQFP64 - 444 LQFP48 - 364 Maximum power dissipation –40 85 Low-power dissipation(2) –40 105 Maximum power dissipation –40 105 –40 125 6 suffix version –40 105 7 suffix version –40 125 VDD VDDA Analog operating voltage (OPAMP and DAC used) Analog operating voltage (ADC used) VBAT VIN PD Must have a potential equal to or higher than VDD Backup operating voltage I/O input voltage Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(1) Ambient temperature for 6 suffix version TA Ambient temperature for 7 suffix version TJ Conditions Junction temperature range Low-power dissipation(2) Unit MHz V V V V mW °C °C °C 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 23: Thermal characteristics). 2. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 23: Thermal characteristics). 56/134 DocID025540 Rev 4 STM32F358xC 6.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 25 are derived from tests performed under the ambient temperature condition summarized in Table 24. Table 25. Operating conditions at power-up / power-down Symbol tVDD tVDDA 6.3.3 Parameter Conditions VDD rise time rate - VDD fall time rate VDDA rise time rate - VDDA fall time rate Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit µs/V Embedded reference voltage The parameters given in Table 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 26. Embedded internal reference voltage Symbol Parameter VREFINT Internal reference voltage TS_vrefint VRERINT TCoeff TREFINT_RDY(3) Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V V –40 °C < TA < +85 °C 1.16 1.2 1.24(1) ADC sampling time when reading the internal reference voltage - 2.2 - - µs Internal reference voltage spread over the temperature range VDD = 1.8 V ±10 mV - - 10(2) mV Temperature coefficient - - - 100(2) ppm/°C Internal reference voltage temporization - 1.5 2.5 4.5 ms 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 3. Guaranteed by design, not tested in production. Latency between the time when pin NPOR is set to 1 by the application and the time when VREFINTRDYF is set to 1 by the hardware. Table 27. Internal reference voltage calibration values Calibration value name VREFINT_CAL Description Raw data acquired at temperature of 30 °C VDDA= 3.3 V DocID025540 Rev 4 Memory address 0x1FFF F7BA - 0x1FFF F7BB 57/134 118 Electrical characteristics 6.3.4 STM32F358xC Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in input mode with a static value at VDD or VSS (no load) • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz) • Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling) • When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2 • When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode. The parameters given in Table 28 to Table 37 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24. 58/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Table 28. Typical and maximum current consumption from VDD supply at VDD = 1.8 V All peripherals enabled Symbol Parameter Conditions Supply current in Run mode, executing from Flash External clock (HSE bypass) Internal clock (HSI) IDD fHCLK Max @ TA(1) Typ Supply current in Run mode, executing from RAM Internal clock (HSI) Max @ TA(1) Typ 25 °C 85 °C 105 °C 72 MHz 60.4 65.4 66.6 67.8 64 MHz 54.1 58.6 59.8 48 MHz 41.5 45.0 32 MHz 28.2 Unit 25 °C 85 °C 105 °C 27.3 29.6 30.3 31.0 60.9 24.5 26.5 27.3 27.9 46.1 47.0 18.8 20.4 21.0 21.7 30.6 31.6 32.4 12.9 14.0 14.5 15.1 24 MHz 21.5 23.4 24.2 24.9 9.8 10.8 11.3 11.8 8 MHz 7.2 8.0 8.6 9.1 3.3 3.8 4.1 4.8 1 MHz 1.1 1.4 1.6 2.4 0.6 0.8 1.1 1.9 64 MHz 49.4 53.6 54.6 55.7 24.3 26.3 27.0 27.6 48 MHz 37.9 41.2 42.1 43.0 18.6 20.3 20.8 21.4 32 MHz 25.8 28.1 29.0 29.7 12.7 13.9 14.4 14.9 24 MHz 19.7 21.4 22.3 22.9 6.6 7.3 7.8 8.3 8 MHz 7.5 8.0 8.6 3.3 3.7 4.1 4.8 72 MHz 61.3 66,5 67.6 68,9(2) 28.3 30,6(2) 31.5 32,2(2) 64 MHz 54.9 59.5 60.6 61.9 25.3 27.4 28.1 28.8 48 MHz 41.7 45.3 46.4 47.3 19.1 20.7 21.3 22.0 32 MHz 28.2 30.7 31.7 32.4 12.8 14.0 14.6 15.1 24 MHz 21.3 23.2 24.0 24.7 9.7 10.6 11.1 11.6 8 MHz 7.0 7.8 8.3 8.9 3.1 3.4 4.0 4.6 1 MHz 0.7 0.9 1.3 2.1 0.2 0.4 0.8 1.5 64 MHz 50.0 54.2 55.4 56.5 24.9 27.0 27.7 28.3 48 MHz 38.0 41.3 42.3 43.2 18.7 20.4 21.0 21.6 32 MHz 25.7 27.9 28.8 29.6 12.6 13.7 14.2 14.8 24 MHz 19.4 21.1 22.0 22.6 6.3 7.0 7.4 8.0 8 MHz 7.2 7.7 8.2 3.0 3.3 3.9 4.4 6.8 (2) External clock (HSE bypass) All peripherals disabled 6.4 DocID025540 Rev 4 mA 59/134 118 Electrical characteristics STM32F358xC Table 28. Typical and maximum current consumption from VDD supply at VDD = 1.8 V (continued) All peripherals enabled Symbol Parameter Conditions IDD Supply current in Sleep mode, executing from Flash or RAM External clock (HSE bypass) Internal clock (HSI) fHCLK Max @ TA(1) Typ All peripherals disabled Max @ TA(1) Typ 25 °C 85 °C 105 °C 72 MHz 44.2 48.2 49.4 50.5 64 MHz 39.5 43.1 44.3 48 MHz 29.9 32.7 32 MHz 20.2 Unit 25 °C 85 °C 105 °C 6.6 7.2 7.8 8.4 45.2 5.8 6.5 7.0 7.6 33.8 34.6 4.4 4.9 5.5 6.0 22.1 23.0 23.7 3.0 3.3 3.9 4.5 24 MHz 15.2 16.7 17.5 18.2 2.3 2.5 3.0 3.7 8 MHz 4.9 5.6 6.1 6.7 0.6 0.8 1.2 2.0 1 MHz 0.5 0.7 1.0 1.8 0.1 0.0 0.4 1.2 64 MHz 34.5 37.7 38.9 39.7 5.5 6.2 6.6 7.2 48 MHz 26.1 28.6 29.7 30.4 4.1 4.6 5.1 5.7 32 MHz 17.6 19.3 20.2 20.8 2.7 3.0 3.5 4.2 24 MHz 13.3 14.7 15.4 16.0 1.3 1.6 2.0 2.7 8 MHz 4.9 5.5 6.1 0.5 0.7 1.0 1.9 4.4 mA 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production with code executing from RAM. Table 29. Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter IDDA Supply current in Run/Sleep mode, code executing from Flash or RAM Conditions (1) HSE bypass HSI clock fHCLK Typ VDDA = 3.6 V Max @ TA(2) 25 °C 85 °C 105 °C Typ Max @ TA(2) 25 °C Unit 85 °C 105 °C 72 MHz 225 276 289 297 245 302 319 329 64 MHz 198 249 261 268 216 270 284 293 48 MHz 149 195 204 211 159 209 222 230 32 MHz 102 145 152 157 110 154 162 169 24 MHz 80 119 124 128 86 126 131 135 8 MHz 2 3 4 6 3 4 5 9 1 MHz 2 3 5 7 3 4 6 9 64 MHz 270 323 337 344 299 354 371 381 48 MHz 220 269 280 286 244 293 309 318 32 MHz 173 218 228 233 193 239 251 257 24 MHz 151 194 200 204 169 211 219 225 8 MHz 73 97 99 103 88 105 110 116 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 60/134 DocID025540 Rev 4 µA STM32F358xC Electrical characteristics 2. Data based on characterization results, not tested in production. Table 30. Typical and maximum VDD consumption in Stop mode Max(1) Symbol Parameter IDD Conditions Typ@VDD (VDD=VDDA=1.8V) Supply All oscillators current in OFF Stop mode Unit TA=25 °C TA=85 °C TA=105 °C 31.1(2) 6.6 1225.8(2) 560.5 µA 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production. Table 31. Typical and maximum VDDA consumption in Stop mode Max(1) Typ@VDDA(VDD = 1.8V) Symbol Parameter Conditions 1.8 V 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V IDDA Supply current in Stop mode All oscillators OFF 0.76 0.78 0.80 0.83 0.87 0.94 1.01 TA= 25 °C 3.2 TA= TA= 85 °C 105 °C 5.3 7.9 Unit µA 1. Data based on characterization results and tested in production. Note: The total current consumption is the sum of IDD and IDDA Table 32. Typical and maximum current consumption from VBAT supply Symbol Para meter Max @VBAT = 3.6 V(2) Typ @VBAT Conditions (1) LSE & RTC ON; "Xtal mode" lower driving capability; Backup LSEDRV[1: domain 0] = '00' IDD_VBAT supply LSE & RTC current ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11' 1.65V 1.8V 2V 0.48 0.50 0.52 2.4V 2.7V 0.58 3V Unit T = TA = TA = 3.3V 3.6V A 25°C 85°C 105°C 0.65 0.72 0.80 0.90 1.1 1.5 2.0 µA 0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5 2.2 2.9 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values. 2. Data based on characterization results, not tested in production. DocID025540 Rev 4 61/134 118 Electrical characteristics STM32F358xC Figure 12. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) 6 6 6 6 6 6 ) 6"!4! 6 6 # # # # 4! # -36 Typical current consumption The MCU is placed under the following conditions: 62/134 • VDD = 1.8 V, VDDA = 3.3 V • All I/O pins available on each package are in analog input configuration • The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON • When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively. DocID025540 Rev 4 STM32F358xC Electrical characteristics Table 33. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD Parameter Conditions Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash IDDA(1) (2) Supply current in Run mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 58.6 26.5 64 MHz 52.6 23.7 48 MHz 40.6 18.5 32 MHz 27.6 12.7 24 MHz 21.1 9.9 16 MHz 14.3 6.8 8 MHz 7.2 3.5 4 MHz 4.1 2.1 2 MHz 2.3 1.3 1 MHz 1.5 0.9 500 kHz 1.0 0.7 125 kHz 0.7 0.5 72 MHz 239.0 64 MHz 210.3 48 MHz 157.0 32 MHz 108.1 24 MHz 84.4 16 MHz 60.8 8 MHz 1.0 4 MHz 1.0 2 MHz 1.0 1 MHz 1.0 500 kHz 1.0 125 kHz 1.0 Unit mA µA 1. VDDA monitoring is ON. 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. DocID025540 Rev 4 63/134 118 Electrical characteristics STM32F358xC Table 34. Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol IDD Parameter Conditions Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM IDDA(1) (2) Supply current in Sleep mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 72 MHz 42.5 6.5 64 MHz 38.0 5.8 48 MHz 28.8 4.4 32 MHz 19.4 3.0 24 MHz 14.6 2.3 16 MHz 9.8 1.6 8 MHz 4.8 0.8 4 MHz 2.9 0.6 2 MHz 1.7 0.5 1 MHz 1.2 0.5 500 kHz 0.9 0.5 125 kHz 0.7 Unit mA 0.5 72 MHz 239.0 64 MHz 210.3 48 MHz 157.0 32 MHz 108.1 24 MHz 84.4 16 MHz 60.8 8 MHz 1.0 4 MHz 1.0 2 MHz 1.0 1 MHz 1.0 500 kHz 1.0 125 kHz 1.0 µA 1. VDDA monitoring is ON 2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. 64/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 52: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption (seeTable 36: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. DocID025540 Rev 4 65/134 118 Electrical characteristics STM32F358xC Table 35. Switching output I/O current consumption Symbol Parameter Conditions(1) VDD = 1.8 V Cext = 0 pF C = CINT + CEXT+ CS VDD = 1.8 V Cext = 10 pF C = CINT + CEXT +CS ISW I/O current consumption VDD = 1.8 V Cext = 22 pF C = CINT + CEXT +CS VDD = 1.8 V Cext = 33 pF C = CINT + CEXT+ CS VDD = 1.8 V Cext = 47 pF C = CINT + CEXT+ CS 1. CS = 5 pF (estimated value). 66/134 DocID025540 Rev 4 I/O toggling frequency (fSW) Typ 2 MHz 0.10 4 MHz 0.17 8 MHz 0.40 18 MHz 0.78 36 MHz 1.51 48 MHz 2.06 2 MHz 0.14 4 MHz 0.25 8 MHz 0.57 18 MHz 1.16 36 MHz 2.45 48 MHz 3.03 2 MHz 0.19 4 MHz 0.36 8 MHz 0.75 18 MHz 1.59 36 MHz 3.25 2 MHz 0.23 4 MHz 0.45 8 MHz 0.94 18 MHz 1.97 36 MHz 3.62 2 MHz 0.28 4 MHz 0.55 8 MHz 1.15 18 MHz 2.42 Unit mA STM32F358xC Electrical characteristics On-chip peripheral current consumption The MCU is placed under the following conditions: • all I/O pins are in analog input configuration • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption • – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature at 25°C and VDD = 1.8 V, VDDA = 3.3 V. Table 36. Peripheral current consumption Peripheral Typical consumption(1) Unit IDD BusMatrix (2) 12.6 DMA1 7.6 DMA2 6.1 CRC 2.1 GPIOA 10.0 GPIOB 10.3 GPIOC 2.2 GPIOD 8.8 GPIOE 3.3 GPIOF 3.0 TSC 5.5 ADC1&2 17.3 ADC3&4 18.8 APB2-Bridge (3) 3.6 SYSCFG 7.3 TIM1 40.0 SPI1 8.8 TIM8 36.4 USART1 23.3 TIM15 17.1 TIM16 10.1 TIM17 APB1-Bridge µA/MHz 11.0 (3) 6.1 TIM2 49.1 TIM3 38.8 TIM4 38.3 DocID025540 Rev 4 67/134 118 Electrical characteristics STM32F358xC Table 36. Peripheral current consumption (continued) Peripheral Typical consumption(1) Unit IDD TIM6 9.7 TIM7 12.1 WWDG 6.4 SPI2 40.4 SPI3 40.0 USART2 41.9 USART3 40.2 UART4 36.5 UART5 30.8 I2C1 10.5 I2C2 10.4 CAN 33.4 PWR 5.7 DAC 15.4 µA/MHz 1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections. 2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2). 3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus. 68/134 DocID025540 Rev 4 STM32F358xC 6.3.5 Electrical characteristics Wakeup time from low-power mode The wakeup times given in Table 37 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU: • For Stop or Sleep mode: the wakeup event is WFE. • WKUP1 (PA0) pin is used to wakeup from Stop and Sleep modes. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 37. Low-power mode wakeup timings Symbol Parameter Typ @VDD = 1.8 V, VDDA = 3.3V Max Unit tWUSTOP Wakeup from Stop mode 3.8 5.3 µs tWUSLEEP Wakeup from Sleep mode 6 - CPU clock cycles 69.2 100 µs tWUPOR Wakeup from Power off state DocID025540 Rev 4 69/134 118 Electrical characteristics 6.3.6 STM32F358xC External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 13. Table 38. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD 15 - - - - 20 tw(HSEH) tw(HSEL) tr(HSE) tf(HSE) OSC_IN high or low - time(1) V ns OSC_IN rise or fall time(1) 1. Guaranteed by design, not tested in production. Figure 13. High-speed external clock source AC timing diagram WZ+6(+ 9+6(+ 9+6(/ WU+6( WI+6( WZ+6(/ W 7+6( 069 70/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 14 Table 39. Low-speed external user clock characteristics Symbol Parameter Conditions fLSE_ext User External clock source frequency(1) VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSEH) tw(LSEL) OSC32_IN high or low time(1) tr(LSE) tf(LSE) Min Typ Max Unit - 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 450 - ns OSC32_IN rise or fall time(1) - - 50 1. Guaranteed by design, not tested in production. Figure 14. Low-speed external clock source AC timing diagram WZ/6(+ 9/6(+ 9/6(/ WU/6( WI/6( WZ/6(/ W 7/6( 069 DocID025540 Rev 4 71/134 118 Electrical characteristics STM32F358xC High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 40. HSE oscillator characteristics Symbol fOSC_IN RF Parameter Conditions(1) Min(2) Typ Max(2) Unit 4 8 32 MHz - 200 - - 8.5 VDD=3.3 V, Rm= 30Ω, CL=10 pF@8 MHz - 0.4 - VDD=3.3 V, Rm= 45Ω, CL=10 pF@8 MHz - 0.5 - VDD=3.3 V, Rm= 30Ω, CL=5 pF@32 MHz - 0.8 - VDD=3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 1 - VDD=3.3 V, Rm= 30Ω, CL=20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Oscillator frequency Feedback resistor During startup IDD gm tSU(HSE)(4) HSE current consumption Oscillator transconductance Startup time (3) kΩ mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 72/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 15). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 15. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7 I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. DocID025540 Rev 4 73/134 118 Electrical characteristics STM32F358xC Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 41. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm tSU(LSE)(3) Parameter LSE current consumption Oscillator transconductance Startup time Conditions(1) Min(2) Typ Max(2) LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]=01 medium low driving capability - - 1 LSEDRV[1:0]=10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]=01 medium low driving capability 8 - - LSEDRV[1:0]=10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDD is stabilized - 2 - Unit µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer. Note: 74/134 For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID025540 Rev 4 STM32F358xC Electrical characteristics Figure 16. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I+6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID025540 Rev 4 75/134 118 Electrical characteristics 6.3.7 STM32F358xC Internal clock source characteristics The parameters given in Table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24. High-speed internal (HSI) RC oscillator Table 42. HSI oscillator characteristics(1) Symbol Parameter fHSI TRIM Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - (2) Duty cycle DuCy(HSI) Accuracy of the HSI oscillator ACCHSI 45 IDDA(HSI) - 55 % TA = -40 to 105°C -2.8(3) - 3.8(3) TA = -10 to 85°C -1.9(3) - 2.3(3) TA = 0 to 85°C -1.9(3) - 2(3) TA = 0 to 70°C -1.3(3) - 2(3) TA = 0 to 55°C -1(3) - 2(3) -1 - 1 - 2(2) µs 80 100(2) µA TA = 25°C(4) tsu(HSI) (2) HSI oscillator startup time - 1(2) HSI oscillator power consumption - - % 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. 4. Factory calibrated, parts not soldered. Figure 17. HSI oscillator accuracy characterization results for soldered parts ."9 .*/ 5<$> " 069 76/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Low-speed internal (LSI) RC oscillator Table 43. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency (2) IDD(LSI)(2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.8 PLL characteristics The parameters given in Table 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24. Table 44. PLL characteristics Value Symbol fPLL_IN fPLL_OUT Parameter Unit Min Typ Max 1(2) - 24(2) MHz PLL input clock duty cycle (2) 40 - 60(2) % PLL multiplier output clock 16(2) - 72 MHz PLL input clock(1) tLOCK PLL lock time - - 200(2) µs Jitter Cycle-to-cycle jitter - - 300(2) ps 1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. DocID025540 Rev 4 77/134 118 Electrical characteristics 6.3.9 STM32F358xC Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 45. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 46. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 (2) 1 kcycle 10 at TA = 105 °C kcycles(2) at TA = 55 °C 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 78/134 Min(1) DocID025540 Rev 4 10 20 Unit kcycles Years STM32F358xC 6.3.10 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 47. They are based on the EMS levels and classes defined in application note AN1709. Table 47. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 1.8 V, LQFP100, TA = +25°C, Voltage limits to be applied on any I/O pin to fHCLK = 72 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 1.8 V, LQFP100, TA = +25°C, fHCLK = 72 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) DocID025540 Rev 4 79/134 118 Electrical characteristics STM32F358xC Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 48. EMI characteristics Symbol Parameter SEMI 6.3.11 Monitored frequency band Conditions Max vs. [fHSE/fHCLK] Unit 8/72 MHz 0.1 to 30 MHz VDD = 1.8 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level 7 16 dBµV 23 4 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 49. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions Electrostatic discharge TA = +25 °C, conforming voltage (human body model) to JESD22-A114 Electrostatic discharge VESD(CDM) voltage (charge device model) TA = +25 °C, conforming to JESD22-C101 1. Data based on characterization results, not tested in production. 80/134 DocID025540 Rev 4 Class Maximum value(1) 2 2000 Unit V II 500 STM32F358xC Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 50. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 51 DocID025540 Rev 4 81/134 118 Electrical characteristics STM32F358xC Table 51. I/O current injection susceptibility Functional susceptibility Symbol IINJ Note: 82/134 Description Negative injection Positive injection Injected current on BOOT0 –0 NA Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5 with induced leakage current on other pins from this group less than -50 µA –5 - Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA –5 - Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than 400 µA - +5 Injected current on NPOR pin and on any other FT and FTf pins –5 NA Injected current on any other pins –5 +5 mA It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID025540 Rev 4 Unit STM32F358xC 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 52 are derived from tests performed under the conditions summarized in Table 24. All I/Os are CMOS and TTL compliant. Table 52. I/O static characteristics Symbol VIL VIH Parameter Low level input voltage High level input voltage Conditions Vhys Ilkg Input leakage current (3) Typ Max Unit (1) TC and TTa I/O - - 0.3 VDD+0.07 FT and FTf I/O - - 0.475 VDD-0.2 (1) BOOT0 - - 0.3 VDD–0.3 (1) All I/Os except BOOT0 - - 0.3 VDD (2) TC and TTa I/O 0.445 VDD+0.398 (1) - - FT and FTf I/O 0.5 VDD+0.2 (1) - - - - BOOT0 All I/Os except BOOT0 Schmitt trigger hysteresis Min 0.2 VDD+0.95 0.7 VDD (2) (1) - V (1) - TC and TTa I/O - 200 FT and FTf I/O - 100 (1) - BOOT0 - 300 (1) - TC, FT, FTf and POR I/O TTa I/O in digital mode VSS ≤VIN ≤VDD - - ±0.1 TTa I/O in digital mode VDD ≤VIN ≤VDDA - - 1 TTa I/O in analog mode VSS ≤VIN ≤VDDA - - ±0.2 FT and FTf I/O(4) VDD ≤VIN ≤5 V - - 10 POR VDDA ≤ VIN ≤5 V - - 10 mV µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 25 40 55 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 25 40 55 kΩ CIO I/O pin capacitance - - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 51: I/O current injection susceptibility. 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. DocID025540 Rev 4 83/134 118 Electrical characteristics STM32F358xC 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. Figure 18. TC and TTa I/O input characteristics 9,/9,+9 XODWLRQV 9 '' HVLJQVLP QG VHGR PHQWV9,+PLQ 9'' 9,+PLQ 7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUH 9 ,+PLQ %D QV LPXODWLR '' 9H LJQV V QG VHGR $UHDQRWGHWHUPLQHG 9 ,/PD[ 9,/PD[ %D 7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9''9 069 Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics 9,/9,+9 9,+PLQ 7HVWHGLQSURGXFWLRQ &026VWDQGDUGUHTXLUHPHQWV9,+PLQ 9'' XODWLRQV ' 9 ' VLJQVLP H RQG DVHG 9 ,+PLQ % XODWLRQV 9 '' HVLJQVLP G Q VHGR $UHDQRWGHWHUPLQHG 9 ,/PD[ 9,/PD[ %D &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 7HVWHGLQSURGXFWLRQ 9''9 069 84/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 22). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating ΣIVSS (see Table 22). Output voltage levels Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant. Table 53. Output voltage characteristics Symbol Parameter Conditions Min Max VOL(1) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V < VDD < 1.95 V - 0.4 VOH(2) Output high level voltage for an I/O pin IIO = -4 mA 1.65 V < VDD < 1.95 V VDD – 0.4 - - 0.4 VOLFM+(1)(3) IIO = +10 mA Output low level voltage for an FTf I/O pin in VDD = 1.65 V to 1.95 V FM+ mode Unit V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 22 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 22 and the sum of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN). 3. Guaranted by Design, not tested in production. DocID025540 Rev 4 85/134 118 Electrical characteristics STM32F358xC Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 20 and Table 54, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 54. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) x0 01 11 FM+ configuration(4) - Symbol Parameter Conditions Min Max Unit CL = 50 pF, VDD = 1.65 V to 1.95 V - 1 MHz - 125(3) - 125(3) - 4(3) - 62.5(3) - 62.5(3) fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 1.65 V to 1.95 V - 10(3) tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.65 V to 1.95 V - 25(3) tr(IO)out Output low to high level rise time CL = 50 pF, VDD = 1.65 V to 1.95 V - 25(3) fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF, VDD = 1.65 V to 1.95 V CL = 50 pF, VDD = 1.65 V to 1.95 V ns CL = 50 pF, VDD = 1.65 V to 1.95 V ns MHz ns CL = 50 pF, VDD = 1.65 V to 1.95 V - - 0.5(4)(3) MHz - 16(4)(3) - 44(4)(3) 10 - ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 20. 3. Guaranteed by design, not tested in production. 4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the RM0316 STM32F303xx, STM32F358xC and STM32F328x4/6/8 reference manual (RM0316) for a description of FM+ I/O mode configuration. 86/134 MHz DocID025540 Rev 4 ns STM32F358xC Electrical characteristics Figure 20. I/O AC characteristics definition %84%2.!, /54054 /.P& TR)/OUT TF)/OUT 4 -AXIMUMFREQUENCYISACHIEVEDIFT RTF4ANDIFTHEDUTYCYCLEIS WHENLOADEDBYP& 6.3.14 AIC NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 52). Unless otherwise specified, the parameters given in Table 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24. Table 55. NRST pin characteristics Symbol Parameter VIL(NRST)(1) NRST Input low level voltage Conditions Min Typ Max - - - 0.3VDD+ 0.07(1) - - Unit V VIH(NRST)(1) NRST Input high level voltage - 0.445VDD+ 0.398(1) Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 25 40 55 kΩ - 100(1) ns - - ns RPU VF(NRST)(1) VNF(NRST)(1) Weak pull-up equivalent resistor(2) NRST Input filtered pulse NRST Input not filtered pulse - (1) 700 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). DocID025540 Rev 4 87/134 118 Electrical characteristics STM32F358xC Figure 21. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLWU\ 538 ,QWHUQDOUHVHW 1567 )LOWHU ) 069 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 55. Otherwise the reset will not be taken into account by the device. 6.3.15 NPOR pin characteristics The NPOR pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, Rpu (see Table 56) connected to VDDA supply. Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under ambient temperature and VDDA supply voltage conditions summarized in Table 24. Table 56. NPOR pin characteristics (1) Symbol Parameter Conditions Min Typ Max Unit VIL(NPOR) NPOR Input low level voltage - - - 0.475VDDA - 0.2 VIH(NPOR) NPOR Input high level voltage - 0.5VDDA + 0.2 - - Vhys(NPOR) NPOR Schmitt trigger voltage hysteresis - - 100 - mV VIN = VSS 25 40 55 kΩ RPU Weak pull-up equivalent resistor(2) V 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 6.3.16 Timer characteristics The parameters given in Table 57 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). 88/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Table 57. TIMx(1)(2) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER tMAX_COUNT Parameter Timer resolution time Timer external clock frequency on CH1 to CH4 Timer resolution 16-bit counter clock period Maximum possible count with 32-bit counter Conditions Min Max Unit - 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fTIMxCLK = 144 MHz, x= 1.8 6.95 - ns - 0 fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz TIMx (except TIM2) - 16 TIM2 - 32 - 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 µs fTIMxCLK = 144 MHz, x= 1.8 0.0069 455 µs - - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.65 s fTIMxCLK = 144 MHz, x= 1.8 - 29.825 s bit 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM6, TIM15, TIM16 and TIM17 timers. 2. Guaranteed by design, not tested in production. DocID025540 Rev 4 89/134 118 Electrical characteristics STM32F358xC Table 58. IWDG min/max timeout period at 40 kHz (LSI) (1) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 59. WWDG min-max timeout value @72 MHz (PCLK)(1) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 1. Guaranteed by design, not tested in production. 90/134 DocID025540 Rev 4 STM32F358xC 6.3.17 Electrical characteristics Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 60. Refer also to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 60. I2C timings specification (see I2C specification, rev.03, June 2007)(1) Standard mode Symbol Fast mode Fast Mode Plus Parameter Unit Min Max Min Max Min Max 0 100 0 400 0 1000 KHz - 1.3 - 0.5 - µs 0.26 - µs fSCL SCL clock frequency tLOW Low period of the SCL clock 4.7 tHIGH High Period of the SCL clock 4 tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 ns tf Fall time of both SDA and SCL signals - 300 - 300 - 120 ns Data hold time 0 - 0 - 0 - µs - 3.45(2) - 0.9(2) - 0.45(2) µs - 3.45(2) - 0.9(2) - 0.45(2) µs tHD;DAT tVD;DAT Data valid time 0.6 tVD;ACK Data valid acknowledge time tSU;DAT Data setup time 250 - 100 - 50 - ns tHD:STA Hold time (repeated) START condition 4.0 - 0.6 - 0.26 - µs tSU:STA Set-up time for a repeated START condition 4.7 - 0.6 - 0.26 tSU:STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - µs Bus free time between a STOP and START condition 4.7 - 1.3 - 0.5 - µs - 400 - 400 - 550 pF tBUF Cb Capacitive load for each bus line µs 1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to the reference manual). These characteristics are not tested in production. 2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. DocID025540 Rev 4 91/134 118 Electrical characteristics STM32F358xC Table 61. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit 50 260 ns Pulse width of spikes that are suppressed by the analog filter tSP 1. Guaranteed by design, not tested in production. Figure 22. I2C bus AC waveforms and measurement circuit 9''B,& 9''B,& 5S 5S 0&8 5V 6'$ ,&EXV 5V 6&/ UG 4%" U 46%"5 US UG U )%45" U 7%%"5 U )*() DPOUJOVFE U -08 G4$- 4 US 4$- DPOUJOVFE U )%%"5 UIDMPDL U #6' TUDMPDLDZDMF 4%" U 4645" U )%45" U 41 U 7%"$, U 46450 4$4S UIDMPDL 1 4 069 1. Rs: Series protection resistors, Rp: Pull-up resistors, VDD_I2C: I2C bus supply. 92/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 62 for SPI or in Table 63 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 24. Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). Table 62. SPI characteristics(1) Symbol Parameter Conditions Min Typ Master mode,SPI1/2/3 fSCK 1/tc(SCK) SPI clock frequency Duty(SCK) SPI slave input clock duty cycle Slave mode tsu(NSS) NSS setup time th(NSS) tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Slave mode,SPI1/2/3 Max 18 - - Slave mode transmitter/full duplex SPI1/2/3 18 50 70 Slave mode, SPI presc = 2 4*Tpclk - - NSS hold time Slave mode SPI presc = 2 2*Tpclk - - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk-2 Tpclk Tpclk+2 Master mode 5.5 - - Slave mode 6.5 - - Master mode 5 - - Slave mode 5 - - Data input hold time ta(SO) Data output access time Slave mode, fPCLK = 24 MHz 0 - 4*Tpclk tdis(SO) Data output disable time Slave mode 0 - 24 tv(SO) Data output valid time Slave mode (after enable edge) - 25 39 tv(MO) Data output valid time Master mode (after enable edge) - 1.5 3 Slave mode (after enable edge) 11 - - Master mode (after enable edge) 0 - - th(SO) th(MO) Data output hold time MHz 12.5(2) 30 Data input setup time Unit % ns 1. Data based on characterization results, not tested in production. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. DocID025540 Rev 4 93/134 118 Electrical characteristics STM32F358xC Figure 23. SPI timing diagram - slave mode and CPHA = 0 E^^ŝŶƉƵƚ ƚĐ;^<Ϳ ƚŚ;E^^Ϳ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W,сϬ WK>сϬ ƚǁ;^<,Ϳ ƚǁ;^<>Ϳ W,сϬ WK>сϭ ƚĂ;^KͿ D/^K KhdW hd ƚǀ;^KͿ ƚŚ;^KͿ D^ K hd /dϲ Khd D^ /E / dϭ /E ƚƌ;^<Ϳ ƚĨ;^<Ϳ ƚĚŝƐ;^KͿ >^ Khd ƚƐƵ;^/Ϳ DK^/ /EWhd >^ /E ƚŚ;^/Ϳ DLF Figure 24. SPI timing diagram - slave mode and CPHA = 1(1) 166LQSXW 6&.,QSXW W68166 &3+$ &32/ &3+$ &32/ WF6&. WZ6&.+ WZ6&./ WY62 WD62 0,62 287 3 87 WK62 06 % 2 87 WVX6, 026, , 1387 WK166 %, 7 287 WU6&. WI6&. WGLV62 /6% 287 WK6, 0 6% ,1 % , 7 ,1 /6% ,1 DL 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. 94/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Figure 25. SPI timing diagram - master mode(1) (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TW3#+( TW3#+, TSU-) -)3/ ).0 54 TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 " ) 4/54 - 3"/54 TV-/ ,3"/54 TH-/ AI6 1. Measurement points are done at 0.5VDD and with external CL = 30 pF. Table 63. I2S characteristics(1) Symbol Parameter Conditions Min Max fCK 1/tc(CK) I2S clock frequency Master data: 16 bits, audio freq=48 kHz 1.496 1.503 Slave 0 12.288 - 8 2 tr(CK) tf(CK) I S clock rise and fall time Capacitive load CL = 30 pF tw(CKH) I2S clock high time 331 - tw(CKL) I2S clock low time Master fPCLK= 36 MHz, audio frequency = 48 kHz 332 - tv(WS) WS valid time Master mode 4 - th(WS) WS hold time Master mode 4 - tsu(WS) WS setup time Slave mode 4 - th(WS) WS hold time Slave mode 0 - Duty Cycle I2S slave input clock duty cycle Slave mode 30 70 DocID025540 Rev 4 Unit MHz ns % 95/134 118 Electrical characteristics STM32F358xC Table 63. I2S characteristics(1) (continued) Symbol Parameter Conditions Min Max tsu(SD_MR) Data input setup time Master receiver 9 - tsu(SD_SR) Data input setup time Slave receiver 2 - Master receiver 0 - Slave receiver 0 - Data output valid time Slave transmitter (after enable edge) - 29 th(SD_ST) Data output hold time Slave transmitter (after enable edge) 12 - tv(SD_MT) Data output valid time Master transmitter (after enable edge) - 3 th(SD_MT) Data output hold time Master transmitter (after enable edge) 2 - th(SD_MR) th(SD_SR) tv(SD_ST) Data input hold time Unit ns 1. Data based on characterization results, not tested in production. Figure 26. I2S slave timing diagram (Philips protocol)(1) &.,QSXW WF&. &32/ &32/ WZ&.+ WK:6 WZ&./ :6LQSXW WY6'B67 WVX:6 6'WUDQVPLW /6%WUDQVPLW 06%WUDQVPLW WVX6'B65 6'UHFHLYH /6%UHFHLYH %LWQWUDQVPLW WK6'B67 /6%WUDQVPLW WK6'B65 06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH DLE 1. Measurement points are done at 0.5VDD and with external CL=30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 96/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Figure 27. I2S master timing diagram (Philips protocol)(1) TF#+ TR#+ #+OUTPUT TC#+ #0/, TW#+( #0/, TV73 TH73 TW#+, 73OUTPUT TV3$?-4 3$TRANSMIT ,3"TRANSMIT -3"TRANSMIT ,3"RECEIVE ,3"TRANSMIT TH3$?-2 TSU3$?-2 3$RECEIVE "ITNTRANSMIT TH3$?-4 -3"RECEIVE "ITNRECEIVE ,3"RECEIVE AIB 1. Measurement points are done at 0.5VDD and with external CL=30 pF. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. CAN (controller area network) interface Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). DocID025540 Rev 4 97/134 118 Electrical characteristics 6.3.18 STM32F358xC ADC characteristics Unless otherwise specified, the parameters given in Table 64 to Table 67 are guaranteed by design, with conditions summarized in Table 24. Table 64. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC - 1.8 - 3.6 V Single-ended mode, 5 MSPS - 907 1033.0 Single-ended mode, 1 MSPS - 194 285.5 Single-ended mode, 200 KSPS - 51.5 70 Differential mode, 5 MSPS - 887. 5 1009 Differential mode, 1 MSPS - 212 285 Differential mode, 200 KSPS - 51 69.5 - 2 - VDDA Single-ended mode, 5 MSPS - 104 139 Single-ended mode, 1 MSPS - 20.4 37 Single-ended mode, 200 KSPS - 3.3 11.3 Differential mode, 5 MSPS - 174 235 Differential mode, 1 MSPS - 34.6 52.6 Differential mode, 200 KSPS - 6 13.6 0.14 - 72 Resolution = 12 bits, Fast Channel 0.01 - 5.14 Resolution = 10 bits, Fast Channel 0.012 - 6 Resolution = 8 bits, Fast Channel 0.014 - 7.2 Resolution = 6 bits, Fast Channel 0.0175 - 9 IDDA VREF+ IREF fADC fS(1) 98/134 ADC current consumption on VDDA pin (see Figure 28) Positive reference voltage ADC current consumption on VREF+ pin (see Figure 29) ADC clock frequency Sampling rate DocID025540 Rev 4 µA V µA MHz MSPS STM32F358xC Electrical characteristics Table 64. ADC characteristics (continued) Symbol Conditions Min Typ Max Unit fADC = 72 MHz Resolution = 12 bits - - 5.14 MHz Resolution = 12 bits - - 14 1/fADC Conversion voltage range(2) - 0 - VREF+ V RAIN(1) External input impedance - - - 100 kΩ CADC(1) Internal sample and hold capacitor - - 5 - pF tCAL(1) Calibration time CKMODE = 00 1.5 2 2.5 1/fADC tlatr(1) Trigger conversion latency Regular and injected channels without conversion abort CKMODE = 01 - - 2 1/fADC CKMODE = 10 - - 2.25 1/fADC CKMODE = 11 - - 2.125 1/fADC Trigger conversion latency Injected channels aborting a regular conversion CKMODE = 00 2.5 3 3.5 1/fADC CKMODE = 01 - - 3 1/fADC CKMODE = 10 - - 3.25 1/fADC CKMODE = 11 - - 3.125 1/fADC fADC = 72 MHz 0.021 - 8.35 µs - 1.5 - 601.5 1/fADC - - - 10 µs fADC = 72 MHz Resolution = 12 bits 0.19 - 8.52 µs fTRIG(1) VAIN tlatrinj(1) tS(1) TADCVRE (1 G_STUP ) Parameter External trigger frequency Sampling time ADC Voltage Regulator Start-up time Total conversion time tCONV(1) (including sampling time) fADC = 72 MHz 1.56 µs - 112 1/fADC Resolution = 12 bits 14 to 614 (tS for sampling + 12.5 for successive approximation) 1/fADC 1. Data guaranteed by design, not tested in production. 2. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package. Refer to Section 4: Pinouts and pin description for further details. DocID025540 Rev 4 99/134 118 Electrical characteristics STM32F358xC Figure 28. ADC typical current consumption on VDDA pin $'&FXUUHQWFRQVXPSWLRQ$ 6LQJOHHQGHGPRGH 'LIIHUHQWLDOPRGH &ORFNIUHTXHQF\0636 069 Figure 29. ADC typical current consumption on VREF+ pin $'&FXUUHQWFRQVXPSWLRQ$ 6LQJOHHQGHGPRGH 'LIIHUHQWLDOPRGH &ORFNIUHTXHQF\0636 069 100/134 DocID025540 Rev 4 STM32F358xC Electrical characteristics Table 65. Maximum ADC RAIN (1) Resolution 12 bits 10 bits 8 bits 6 bits RAIN max (kΩ) Sampling cycle @ 72 MHz Sampling time [ns] @ 72 MHz Fast channels(2) Slow channels Other channels(3) 1.5 20.83 0.018 NA NA 2.5 34.72 0.150 NA 0.022 4.5 62.50 0.470 0.220 0.180 7.5 104.17 0.820 0.560 0.470 19.5 270.83 2.70 1.80 1.50 61.5 854.17 8.20 6.80 4.70 181.5 2520.83 22.0 18.0 15.0 601.5 8354.17 82.0 68.0 47.0 1.5 20.83 0.082 NA NA 2.5 34.72 0.270 0.082 0.100 4.5 62.50 0.560 0.390 0.330 7.5 104.17 1.20 0.82 0.68 19.5 270.83 3.30 2.70 2.20 61.5 854.17 10.0 8.2 6.8 181.5 2520.83 33.0 27.0 22.0 601.5 8354.17 100.0 82.0 68.0 1.5 20.83 0.150 NA 0.039 2.5 34.72 0.390 0.180 0.180 4.5 62.50 0.820 0.560 0.470 7.5 104.17 1.50 1.20 1.00 19.5 270.83 3.90 3.30 2.70 61.5 854.17 12.00 12.00 8.20 181.5 2520.83 39.00 33.00 27.00 601.5 8354.17 100.00 100.00 82.00 1.5 20.83 0.270 0.100 0.150 2.5 34.72 0.560 0.390 0.330 4.5 62.50 1.200 0.820 0.820 7.5 104.17 2.20 1.80 1.50 19.5 270.83 5.60 4.70 3.90 61.5 854.17 18.0 15.0 12.0 181.5 2520.83 56.0 47.0 39.0 601.5 8354.17 100.00 100.0 100.0 1. Data based on characterization results, not tested in production. 2. All fast channels, expect channels on PA2, PA6, PB1, PB12. DocID025540 Rev 4 101/134 118 Electrical characteristics STM32F358xC 3. Channels available on PA2, PA6, PB1 and PB12. Table 66. ADC accuracy - limited test conditions 100-pin packages(1)(2) Symbol Parameter ET Single ended Total unadjusted error Differential Single ended EO Offset error Differential Single ended EG Gain error Differential ED EL ENOB SINAD 102/134 Differential linearity error Integral linearity error Effective number of bits Signal-tonoise and distortion ratio Min Conditions ADC clock freq. ≤ 72 MHz Sampling freq. ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C 100-pin package Single ended Differential Single ended Differential Single ended Differential Single ended Differential DocID025540 Rev 4 (3) Typ Max (3) Unit ±3.5 ±4.5 Fast channel 5.1 Ms - Slow channel 4.8 Ms - ±4 ±4.5 Fast channel 5.1 Ms - ±3 ±3 Slow channel 4.8 Ms - ±3 ±3 Fast channel 5.1 Ms - ±1 ±1.5 Slow channel 4.8 Ms - ±1 ±2.5 Fast channel 5.1 Ms - ±1 ±1.5 Slow channel 4.8 Ms - ±1 ±1.5 Fast channel 5.1 Ms - ±3 ±4 Slow channel 4.8 Ms - ±3.5 ±4 Fast channel 5.1 Ms - ±1.5 ±2.5 Slow channel 4.8 Ms - ±2 ±2.5 Fast channel 5.1 Ms - ±1 ±1.5 Slow channel 4.8 Ms - ±1 ±1.5 Fast channel 5.1 Ms - ±1 ±1 Slow channel 4.8 Ms - ±1 ±1 Fast channel 5.1 Ms - ±1.5 ±2 Slow channel 4.8 Ms - ±1.5 ±3 Fast channel 5.1 Ms - ±1 ±1.5 Slow channel 4.8 Ms - ±1 ±1.5 Fast channel 5.1 Ms 10.7 10.8 - Slow channel 4.8 Ms 10.7 10.8 - Fast channel 5.1 Ms 11.2 11.3 - Slow channel 4.8 Ms 11.1 11.3 - Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms 69 70 - Slow channel 4.8 Ms 69 70 - LSB bits dB STM32F358xC Electrical characteristics Table 66. ADC accuracy - limited test conditions 100-pin packages(1)(2) (continued) Symbol Parameter Single ended SNR THD Signal-tonoise ratio Total harmonic distortion Min Conditions ADC clock freq. ≤ 72 MHz Sampling freq ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C 100-pin package Differential Single ended Differential Max (3) Typ Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms 69 70 - Slow channel 4.8 Ms 69 70 - Fast channel 5.1 Ms - -76 -76 Slow channel 4.8 Ms - -76 -76 Fast channel 5.1 Ms - -80 -80 Slow channel 4.8 Ms - -80 -80 (3) Unit dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. DocID025540 Rev 4 103/134 118 Electrical characteristics STM32F358xC Table 67. ADC accuracy, 100-pin packages(1)(2)(3) Symbol Parameter ET Total unadjusted error Single Ended Differential Single Ended EO Offset error Differential Single Ended EG ED EL ENOB 104/134 Gain error Differential linearity error Integral linearity error Effective number of bits Min(4) Max(4) Unit Conditions ADC clock freq. ≤ 72 MHz, Differential Sampling freq. ≤ 5 Msps 1.8V ≤ VDDA , VREF+ ≤ 3.6 V Single Ended 100-pin package Differential Single Ended Differential Single Ended Differential DocID025540 Rev 4 Fast channel 5.1 Ms - ±6.5 Slow channel 4.8 Ms - ±6.5 Fast channel 5.1 Ms - ±4 Slow channel 4.8 Ms - ±4 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±2 Fast channel 5.1 Ms - ±6 Slow channel 4.8 Ms - ±6 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±2 Fast channel 5.1 Ms 10.4 - Slow channel 4.8 Ms 10.2 - Fast channel 5.1 Ms 10.8 - Slow channel 4.8 Ms 10.8 - LSB bits STM32F358xC Electrical characteristics Table 67. ADC accuracy, 100-pin packages(1)(2)(3) (continued) Symbol Parameter Signal-tonoise and SINAD distortion ratio SNR THD Signal-tonoise ratio Total harmonic distortion Min(4) Max(4) Unit Conditions Single Ended Differential ADC clock freq. ≤ 72 MHz, Single Ended Sampling freq. ≤ 5 Msps, 1.8V ≤ VDDA, VREF+ ≤ 3.6 V Differential 100-pin package Single Ended Differential Fast channel 5.1 Ms - 64 Slow channel 4.8 Ms - 63 Fast channel 5.1 Ms - 67 Slow channel 4.8 Ms - 67 Fast channel 5.1 Ms 64 - Slow channel 4.8 Ms 64 - Fast channel 5.1 Ms 67 - Slow channel 4.8 Ms 67 - Fast channel 5.1 Ms - -74 Slow channel 4.8 Ms - -74 Fast channel 5.1 Ms - -78 Slow channel 4.8 Ms - -76 dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. DocID025540 Rev 4 105/134 118 Electrical characteristics STM32F358xC Table 68. ADC accuracy - limited test conditions 64-pin packages(1)(2) Symbol ET Parameter Single ended Total unadjusted error Differential Single ended EO Offset error Differential Single ended EG Gain error Differential ED EL Differential linearity error Integral linearity error Effective ENOB(4) number of bits Signal-tonoise and SINAD(4) distortion ratio 106/134 Min Conditions ADC clock freq. ≤ 72 MHz Sampling freq. ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C 64-pin package Single ended Differential Single ended Differential Single ended Differential Single ended Differential DocID025540 Rev 4 (3) Typ Max (3) Fast channel 5.1 Ms - ±4.0 ±4.5 Slow channel 4.8 Ms - ±5.5 ±6.0 Fast channel 5.1 Ms - ±3.5 ±4.0 Slow channel 4.8 Ms - ±3.5 ±4.0 Fast channel 5.1 Ms - ±2.0 ±2.0 Slow channel 4.8 Ms - ±1.5 ±2.0 Fast channel 5.1 Ms - ±1.5 ±2.0 Slow channel 4.8 Ms - ±1.5 ±2.0 Fast channel 5.1 Ms - ±3.0 ±4.0 Slow channel 4.8 Ms - ±5.0 ±5.5 Fast channel 5.1 Ms - ±3.0 ±3.0 Slow channel 4.8 Ms - ±3.0 ±3.0 Fast channel 5.1 Ms - ±1.0 ±1.0 Slow channel 4.8 Ms - ±1.0 ±1.0 Fast channel 5.1 Ms - ±1.0 ±1.0 Slow channel 4.8 Ms - ±1.0 ±1.0 Fast channel 5.1 Ms - ±1.5 ±2.0 Slow channel 4.8 Ms - ±2.0 ±3.0 Fast channel 5.1 Ms - ±1.5 ±1.5 Slow channel 4.8 Ms - ±1.5 ±2.0 Fast channel 5.1 Ms 10.8 10.8 - Slow channel 4.8 Ms 10.8 10.8 - Fast channel 5.1 Ms 11.2 11.3 - Slow channel 4.8 Ms 11.2 11.3 - Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms 69 70 - Slow channel 4.8 Ms 69 70 - Unit LSB bits dB STM32F358xC Electrical characteristics Table 68. ADC accuracy - limited test conditions 64-pin packages(1)(2) (continued) Symbol Parameter Single ended SNR(4) THD(4) Signal-tonoise ratio Total harmonic distortion Min Conditions ADC clock freq. ≤ 72 MHz Differential Sampling freq ≤ 5 Msps VDDA = VREF+ = 3.3 V 25°C Single ended 100-pin package Differential Max (3) Typ Fast channel 5.1 Ms 66 67 - Slow channel 4.8 Ms 66 67 - Fast channel 5.1 Ms 69 70 - Slow channel 4.8 Ms 69 70 - Fast channel 5.1 Ms - -80 -80 Slow channel 4.8 Ms - -78 -77 Fast channel 5.1 Ms - -83 -82 Slow channel 4.8 Ms - -81 -80 (3) Unit dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. 4. Value measured with a –0.5dB Full Scale 50kHz sine wave input signal. DocID025540 Rev 4 107/134 118 Electrical characteristics STM32F358xC Table 69. ADC accuracy, 64-pin packages(1)(2)(3) Symbol Parameter ET Total unadjusted error Single Ended Differential Single Ended EO Offset error Differential Single Ended EG ED EL ENOB 108/134 Gain error Differential linearity error Integral linearity error Effective number of bits Min(4) Max(4) Unit Conditions ADC clock freq. ≤ 72 MHz, Differential Sampling freq. ≤ 5 Msps 1.8V ≤ VDDA , VREF+ ≤ 3.6 V Single Ended 64-pin package Differential Single Ended Differential Single Ended Differential DocID025540 Rev 4 Fast channel 5.1 Ms - ±6.5 Slow channel 4.8 Ms - ±6.5 Fast channel 5.1 Ms - ±4 Slow channel 4.8 Ms - ±4.5 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3 Fast channel 5.1 Ms - ±2.5 Slow channel 4.8 Ms - ±2.5 Fast channel 5.1 Ms - ±6 Slow channel 4.8 Ms - ±6 Fast channel 5.1 Ms - ±3.5 Slow channel 4.8 Ms - ±4 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±1.5 Slow channel 4.8 Ms - ±1.5 Fast channel 5.1 Ms - ±3 Slow channel 4.8 Ms - ±3.5 Fast channel 5.1 Ms - ±2 Slow channel 4.8 Ms - ±2.5 Fast channel 5.1 Ms 10.4 - Slow channel 4.8 Ms 10.4 - Fast channel 5.1 Ms 10.8 - Slow channel 4.8 Ms 10.8 - LSB bits STM32F358xC Electrical characteristics Table 69. ADC accuracy, 64-pin packages(1)(2)(3) (continued) Symbol Parameter Single Ended Signal-tonoise and SINAD distortion ratio SNR THD Signal-tonoise ratio Min(4) Max(4) Unit Conditions Differential ADC clock freq. ≤ 72 MHz, Single Ended Sampling freq. ≤ 5 Msps, 1.8V ≤ VDDA, VREF+ ≤ 3.6 V Differential 64-pin package Single Ended Total harmonic distortion Differential Fast channel 5.1 Ms 64 - Slow channel 4.8 Ms 63 - Fast channel 5.1 Ms 67 - Slow channel 4.8 Ms 67 - Fast channel 5.1 Ms 64 - Slow channel 4.8 Ms 64 - Fast channel 5.1 Ms 67 - Slow channel 4.8 Ms 67 - Fast channel 5.1 Ms - -75 Slow channel 4.8 Ms - -75 Fast channel 5.1 Ms - -79 Slow channel 4.8 Ms - -78 dB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Table 70. ADC accuracy at 1MSPS(1)(2) Symbol Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Conditions ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 1 Msps 2.4V ≤ VDDA , VREF+ ≤ 3.6 V single-ended mode Typ Max(3) Unit Fast channel ±2.5 ±5 Slow channel ±3.5 ±5 Fast channel ±1 ±2.5 Slow channel ±1.5 ±2.5 Fast channel ±2 ±3 Slow channel ±3 ±4 Fast channel ±0.7 ±2 Slow channel ±0.7 ±2 Fast channel ±1 ±3 Slow channel ±1.2 ±3 LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Data based on characterization results, not tested in production. DocID025540 Rev 4 109/134 118 Electrical characteristics STM32F358xC Figure 30. ADC accuracy characteristics 9''$ 95() RUGHSHQGLQJRQSDFNDJH >/6%,'($/ (* ([DPSOHRIDQDFWX DOWUDQVIH UFXUYH 7KHLGHDOWUDQVIHUFX UYH (QGSRLQWFRUUHODWLRQOLQH (7 7RWDOXQDGMXVWHG(UURUPD[LPXPGHYLDWLRQ EHWZHHQWKHDFWXDODQGWKHLGHDOWUDQVIHUFXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (* *DLQ(UURUGHYLDWLRQEHWZHHQWKHODVWLGHDO WUDQVLWLRQDQGWKHODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO/LQHDULW\(UURUPD[LPXPGHYLDWLRQ EHWZHHQDQ\DFWXDOWUDQVLWLRQDQGWKHHQGSRLQW FRUUHODWLRQOLQH (7 (2 (/ (' /6%,'($/ 966$ 9''$ DLH Figure 31. Typical connection diagram using the ADC 9 '' 5 $,1 9 $,1 4BNQMFBOEIPME"%$ DPOWFSUFS 97 9 5 $'& $,1[ & SDU DVLWLF 97 9 , / $ CJU DPOWFSUFS &$'& 069 1. Refer to Table 64 for the values of RAIN. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 10. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 110/134 DocID025540 Rev 4 STM32F358xC 6.3.19 Electrical characteristics DAC electrical specifications Table 71. DAC characteristics Symbol VDDA Parameter Analog supply voltage for DAC ON RLOAD(1) Resistive load with buffer ON RO(1) Impedance output with buffer OFF CLOAD(1) Capacitive load Min Typ Max Unit Comments 2.4 - 3.6 V - 5 - - kΩ - - - 15 When the buffer is OFF, the Minimum resistive load between DAC_OUT kΩ and VSS to have a 1% accuracy is 1.5 MΩ - - 50 Maximum capacitive load at pF DAC_OUT pin (when the buffer is ON). It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VDDA = 3.6 V and (0x155) and (0xEAB) at VDDA = 2.4 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer ON 0.2 - - V DAC_OUT Higher DAC_OUT voltage max(1) with buffer ON - - VDDA – 0.2 V DAC_OUT Lower DAC_OUT voltage min(1) with buffer OFF - 0.5 - mV DAC_OUT Higher DAC_OUT voltage max(1) with buffer OFF - - VDDA – 1LSB V DAC DC current consumption in quiescent mode (2) - - 380 µA With no load, middle code (0x800) on the input - - 480 µA With no load, worst code (0xF1C) on the input Differential non linearity Difference between two consecutive code-1LSB) - - ±0.5 LSB Given for a 10-bit input code - - ±2 LSB Given for a 12-bit input code - - ±1 LSB Given for a 10-bit input code INL(3) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) - - ±4 LSB Given for a 12-bit input code - - ±10 mV Offset(3) Offset error (difference between measured value at Code (0x800) and the ideal value = VDDA/2) - - ±3 LSB Given for a 10-bit input code at VDDA= 3.6 V - - ±12 LSB Given for a 12-bit input code at VDDA= 3.6 V Gain error - - ±0.5 % IDDA(3) DNL(3) Gain error(3) DocID025540 Rev 4 It gives the maximum output excursion of the DAC. - Given for a 12-bit input code 111/134 118 Electrical characteristics STM32F358xC Table 71. DAC characteristics (continued) Symbol Min Typ Max Settling time (full scale: for a 10-bit input code transition between the lowest and the (3) tSETTLING highest input codes when DAC_OUT reaches final value ±1LSB - 3 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) - - 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Wakeup time from off state tWAKEUP(3) (Setting the ENx bit in the DAC Control register) - 6.5 10 CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ µs input code between lowest and highest possible ones. Power supply rejection ratio PSRR+ (1) (to VDDA) (static DC measurement - –67 –40 dB No RLOAD, CLOAD = 50 pF Update rate(3) Parameter Unit Comments 1. Guaranteed by design, not tested in production. 2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved. 3. Data based on characterization results, not tested in production. Figure 32. 12-bit buffered /non-buffered DAC %XIIHUHG1RQEXIIHUHG'$& %XIIHU 5/ '$&B287[ ELW GLJLWDOWR DQDORJ FRQYHUWHU &/ AI6 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 112/134 DocID025540 Rev 4 STM32F358xC 6.3.20 Electrical characteristics Comparator characteristics Table 72. Comparator characteristics(1) Symbol VDDA Parameter Analog supply voltage Conditions VREFINT scaler not in use VREFINT scaler in use Min Typ Max 1.65 - 3.6 2 - 3.6 Unit V VIN Comparator input voltage range - 0 - VDDA VBG Scaler input voltage - - 1.2 - VSC Scaler offset voltage - - ±5 ±10 mV tS_SC VREFINT scaler startup time from power down First VREFINT scaler activation after device power on - - 1(2) s Next activations - - 0.2 ms Startup time to reach propagation delay specification - - 60 µs Ultra-low-power mode - 2 4.5 - 0.7 1.5 - 0.3 0.6 - 50 100 - 100 240 Ultra-low-power mode - 2 7 Low-power mode - 0.7 2.1 Medium power mode - 0.3 1.2 - 90 180 - 110 300 tSTART Comparator startup time Low-power mode Propagation delay for 200 mV step with 100 mV Medium power mode overdrive VDDA ≥ 2.7 V High speed mode tD Propagation delay for full range step with 100 mV overdrive VDDA < 2.7 V VDDA ≥ 2.7 V High speed mode VDDA < 2.7 V µs ns µs ns Voffset Comparator offset error - - ±4 ±10 mV dVoffset/dT Offset error temperature coefficient - - 18 - µV/° C Ultra-low-power mode - 1.2 1.5 Low-power mode - 3 5 Medium power mode - 10 15 High speed mode - 75 100 IDD(COMP) COMP current consumption DocID025540 Rev 4 µA 113/134 118 Electrical characteristics STM32F358xC Table 72. Comparator characteristics(1) (continued) Symbol Parameter Conditions No hysteresis (COMPxHYST[1:0]=00) Vhys Comparator hysteresis Min Typ Max - 0 - High speed mode Low hysteresis (COMPxHYST[1:0]=01) All other power modes 3 High speed mode Medium hysteresis (COMPxHYST[1:0]=10) All other power modes 7 High speed mode High hysteresis (COMPxHYST[1:0]=11) All other power modes 18 5 9 19 Unit 13 8 10 26 15 mV 19 49 31 40 1. Data based on characterization results, not tested in production. 2. For more details and conditions, see Figure 33 Maximum VREFINT scaler startup time from power down. Figure 33. Maximum VREFINT scaler startup time from power down 069 114/134 DocID025540 Rev 4 STM32F358xC 6.3.21 Electrical characteristics Operational amplifier characteristics Table 73. Operational amplifier characteristics(1) Symbol Parameter Condition Min Typ Max Unit VDDA Analog supply voltage - 2.4 - 3.6 V CMIR Common mode input range - 0 - VDDA V - - 4 - - 6 25°C, No Load on output. VIOFFSET Input offset voltage Maximum calibration range All voltage/Temp. After offset calibration ΔVIOFFSET mV 25°C, No Load on output. - - 1.6 All voltage/Temp. - - 3 Input offset voltage drift - - 5 - µV/°C ILOAD Drive current - - - 500 µA IDDOPAMP Consumption No load, quiescent mode - 690 1450 µA - - 90 - dB 73 117 - dB CMRR Common mode rejection ratio PSRR Power supply rejection ratio GBW Bandwidth - - 8.2 - MHz SR Slew rate - - 4.7 - V/µs RLOAD Resistive load - 4 - - kΩ CLOAD Capacitive load - - - 50 pF Rload = min, Input at VDDA. - - 100 Rload = 20K, Input at VDDA. - - 20 Rload = min, input at 0V - - 100 Rload = 20K, input at 0V. - - 20 VOHSAT VOLSAT ϕm tOFFTRIM tWAKEUP DC High saturation voltage Low saturation voltage mV Phase margin - - 62 - ° Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy - - - 2 ms - 2.8 5 µs Wake up time from OFF state. CLOAD ≤50 pf, RLOAD ≥ 4 kΩ, Follower configuration DocID025540 Rev 4 115/134 118 Electrical characteristics STM32F358xC Table 73. Operational amplifier characteristics(1) (continued) Symbol PGA gain Rnetwork Parameter Condition PGA BW en Typ Max Unit - 2 - - - 4 - - - 8 - - - 16 - - Gain=2 - 5.4/5.4 - Gain=4 - 16.2/5.4 - Gain=8 - 37.8/5.4 - Gain=16 - 40.5/2.7 - - -1% - 1% - - - ±0.2(3) PGA Gain = 2, Cload = 50pF, Rload = 4 KΩ - 4 - PGA Gain = 4, Cload = 50pF, Rload = 4 KΩ - 2 - PGA Gain = 8, Cload = 50pF, Rload = 4 KΩ - 1 - PGA Gain = 16, Cload = 50pF, Rload = 4 KΩ - 0.5 - @ 1KHz, Output loaded with 4 KΩ - 109 - Non inverting gain value - R2/R1 internal resistance values in PGA mode (2) PGA gain error PGA gain error Ibias Min OPAMP input bias current PGA bandwidth for different non inverting gain Voltage noise density @ 10KHz, Output loaded with 4 KΩ 1. Guaranteed by design, not tested in production. 2. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1 3. Mostly TTa I/O leakage, when used in analog mode. 116/134 DocID025540 Rev 4 kΩ µA MHz - 43 - nV ----------Hz STM32F358xC Electrical characteristics Figure 34. OPAMP Voltage Noise versus Frequency DocID025540 Rev 4 117/134 118 Electrical characteristics 6.3.22 STM32F358xC Temperature sensor characteristics Table 74. TS characteristics Symbol Parameter TL(1) Min Typ Max Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C Voltage at 25 °C 1.34 1.43 1.52 V 4 - 10 µs 2.2 - - µs VSENSE linearity with temperature (1) Avg_Slope V25 tSTART(1) TS_temp(1)(2) Startup time ADC sampling time when reading the temperature 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. Table 75. Temperature sensor calibration values Calibration value name 6.3.23 Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 VBAT monitoring characteristics Table 76. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit KΩ R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q -1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 2.2 - - µs Er (1) TS_vbat(1)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 118/134 DocID025540 Rev 4 STM32F358xC 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package information Figure 35. LQFP100 – 14 x 14 mm, low-profile quad flat package outline MM C ! ! ! 3%!4).'0,!.% # '!5'%0,!.% $ , $ ! + CCC # , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 77. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data Symbol inches(1) millimeters Min Typ Max Min Typ Max A - - 1.60 - - 0.063 A1 0.05 - 0.15 0.002 - 0.0059 DocID025540 Rev 4 119/134 131 Package information STM32F358xC Table 77. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued) Symbol inches(1) millimeters Min Typ Max Min Typ Max A2 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.2 0.0035 - 0.0079 D 15.80 16.00 16.2 0.622 0.6299 0.6378 D1 13.80 14.00 14.2 0.5433 0.5512 0.5591 D3 - 12.00 - - 0.4724 - E 15.80 16.00 16.2 0.622 0.6299 0.6378 E1 13.80 14.00 14.2 0.5433 0.5512 0.5591 E3 - 12.00 - - 0.4724 - e - 0.50 - - 0.0197 - L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - K 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.08 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 36. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint AIC 1. Dimensions are in millimeters. 120/134 DocID025540 Rev 4 STM32F358xC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 37. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example 3URGXFWLGHQWLILFDWLRQ 45.' 5HYLVLRQFRGH 7$53 'DWHFRGH :88 67ORJR 3LQ LGHQWLILHU 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID025540 Rev 4 121/134 131 Package information 7.2 STM32F358xC LQFP64 – 10 x 10 mm, low-profile quad flat package information Figure 38. LQFP64 – 10 x 10 mm, low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( ( E H :B0(B9 1. Drawing is not to scale. Table 78. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data inches(1) millimeters Symbol 122/134 Min Typ Max Min Typ Max A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.350 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 D - 12.00 - - 0.4724 - D1 - 10.00 - - 0.3937 - D3 - 7.50 - - 0.2953 - E - 12.00 - - 0.4724 - DocID025540 Rev 4 0.0079 STM32F358xC Package information Table 78. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 - 10.00 - - 0.3937 - E3 - 7.50 - - 0.2953 - e - 0.50 - - 0.0197 - K 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - ccc - - 0.08 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 39. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint AIC 1. Dimensions are in millimeters. DocID025540 Rev 4 123/134 131 Package information STM32F358xC Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 40. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ 5 670 5&7 'DWHFRGH < :: %DOO LQGHQWLILHU 06Y9 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 124/134 DocID025540 Rev 4 STM32F358xC LQFP48 – 7 x 7 mm, low-profile quad flat package information Figure 41. LQFP48 – 7 x 7 mm, low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'%0,!.% CCC # + ! $ $ , , $ % % B % 7.3 Package information 0). )$%.4)&)#!4)/. E "?-%?6 1. Drawing is not to scale. Table 79. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data Symbol inches(1) millimeters Min Typ Max Min Typ Max A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 - 0.0079 D 8.80 9.00 9.20 0.3465 0.3543 0.3622 D1 6.80 7.00 7.20 0.2677 0.2756 0.2835 D3 - 5.50 - - 0.2165 - E 8.80 9.00 9.20 0.3465 0.3543 0.3622 DocID025540 Rev 4 125/134 131 Package information STM32F358xC Table 79. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued) Symbol inches(1) millimeters Min Typ Max Min Typ Max E1 6.80 7.00 7.20 0.2677 0.2756 0.2835 E3 - 5.50 - - 0.2165 - e - 0.50 - - 0.0197 - L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - K 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.08 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 42. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint AID 1. Dimensions are in millimeters. 126/134 DocID025540 Rev 4 STM32F358xC Package information Device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. Figure 43. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 45.' $$5 'DWHFRGH : 88 3LQ LGHQWLILFDWLRQ 5HYLVLRQFRGH 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID025540 Rev 4 127/134 131 Package information 7.4 STM32F358xC Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 24: General operating conditions on page 56. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 80. Package thermal characteristics Symbol ΘJA 7.4.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 55 Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 41 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 128/134 DocID025540 Rev 4 STM32F358xC 7.4.2 Package information Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F358xC devices at the maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW This gives: PINTmax = 175 mW and PIOmax = 61.6 mW: PDmax = 175 + 61.6 = 236.6 mW Thus: PDmax = 236.6 mW Using the values obtained in Table 80 TJmax is calculated as follows: – For LQFP64, 45°C/W TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). DocID025540 Rev 4 129/134 131 Package information STM32F358xC Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW This gives: PINTmax = 70 mW and PIOmax = 28.8 mW: PDmax = 70 + 28.8 = 98.8 mW Thus: PDmax = 98.8 mW Using the values obtained in Table 80 TJmax is calculated as follows: – For LQFP100, 41°C/W TJmax = 115 °C + (41°C/W × 98.8 mW) = 115 °C + 4.05 °C = 119.05 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering). 130/134 DocID025540 Rev 4 STM32F358xC 8 Part numbering Part numbering Table 81. Ordering information scheme Example: STM32 F 358 R C T 6 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 358 = STM32F358 Pin count C = 48 pins R = 64 pins V = 100 pins Flash memory size C = 256 Kbytes of Flash memory Package T = LQFP Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Options xxx = programmed parts TR = tape and reel For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID025540 Rev 4 131/134 131 Revision history 9 STM32F358xC Revision history Table 82. Document revision history Date Revision 17-Apr-2014 1 Initial release. 2 Updated core description in cover page. Updated Figure 1: STM32F358xC block diagram. Updated HSI characteristics Table 42: HSI oscillator characteristics and Figure 17: HSI oscillator accuracy characterization results for soldered parts. Updated Table 29: Typical and maximum current consumption from the VDDA supply. Updated Table 51: I/O current injection susceptibility adding ‘on NPOR pin”. Updated Table 37: Low-power mode wakeup timings. Updated Figure 18: TC and TTa I/O input characteristics and Figure 19: Five volt tolerant (FT and FTf) I/O input characteristics. Updated Table 13: STM32F358xC pin definitions adding note for I/Os featuring an analog output function (DAC_OUT,OPAMP_OUT). Updated Table 64: ADC characteristics adding IDDA & IREF consumptions. Added Figure 28: ADC typical current consumption on VDDA pin and Figure 29: ADC typical current consumption on VREF+ pin. Added Section 3.8: Interconnect matrix. Updated Section 6.3.5: Wakeup time from low-power mode removing standby mode. Added note for Table 31: Typical and maximum VDDA consumption in Stop mode and Table 30: Typical and maximum VDD consumption in Stop mode. Updated Section 7: Package information with new LQFP100, LQFP64, LQFP48 package markings. Updated Table 13: STM32F358xC pin definitions and alternate functions tables replacing usart_rts by usart_rts_de. 10-Dec-2014 132/134 Changes DocID025540 Rev 4 STM32F358xC Revision history Table 82. Document revision history (continued) Date 30-Jan-2015 17-Apr-2015 Revision Changes 3 Updated Section 6.3.20: Comparator characteristics modifying ts_sc, VDDA characteristics in Table 76 and adding Figure 36: Maximum VREFINT scaler startup time from power down. Updated IDD data current consumption in Table 40: HSE oscillator characteristics. 4 Updated Table 36: Peripheral current consumption with 12.6uA/MHzBusMatrix, 7.6uA/MHz-DMA1, 6.1uA/MHz-DMA2 new current values. Updated Section 7: Package information: with new package information structure adding 1 sub paragraph for each package. Updated Figure 40: LQFP100 – 14 x 14 mm, low-profile quad flat package top view example removing gate mark. Added note for all package device markings: “the following figure gives an example of topside marking orientation versus pin 1 identifier location”. Updated Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. DocID025540 Rev 4 133/134 133 STM32F358xC IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 134/134 DocID025540 Rev 4