APW7075 Step-Up Converter and LDO Combo Features • General Description The APW7075 is a PWM/PFM, high-efficiency, and stepup DC-DC converter with an integrated LDO input switch Built-In a 500mA LDO and Synchronous Step-Up DC-DC Converter • • • • • • • • • • • • • for dual mode application. During battery mode operation, the APW7075 acts as synchronous rectifier and step-up Built-In PWM/PFM Operating Mode DC-DC converter with a fixed or adjustable output voltage. When the VIN pin sense 5V input voltage, the APW7075 is Provided Dual Input Power Sources Connect FB to OUT for 3.3V Output Voltage or switched to LDO operation mode, maintaining the con- GND for 2.5V Output Voltage or an External stant output voltage. Resistor Divider for Adjustable Output Voltage. The input voltage ranges from 0.6 V to 4.5V for step-up Fixed 300kHz Operating Frequency DC-DC converter. The start-up is guaranteed at 1V and the device operates down to 0.6V. When the device is at High Efficiency Up to 94% at 200mA Output Current LDO operating mode, the suitable output voltage 3.3V and loading current 500mA for maximum power con- 0.6V to 4.5V Operating Voltage sumption are guaranteed. 1V Start-Up Input Voltage The APW7075 is suited for dual mode and portable bat- Low Battery Voltage Detection tery powered appliance with low-battery detector. In dualmode applications, the APW7075 draws power from any Reverse Voltage Protection available 5V USB connection and reverts to battery power when the USB power is removed. Internal Synchronous Rectifier Automatic Detection Input Voltage Pin Configuration Compact SOP-8P and TSSOP-8 Packages Lead Free and Green Devices Available TSSOP-8 Top View (RoHS Compliant) Applications • • • • • Dual Mode Power System SOP-8P Top View VIN 1 8 OUT VIN 1 8 FB 2 7 LX FB 2 7 LX SHDN 3 6 GND SHDN 3 6 GND LBI 4 5 LBO LBI 4 5 LBO OUT USB Peripheral Camcorders and Digital Camera = Thermal Pad (connected to GND plane for better heat dissipation) Hand-Held Instrument PDAs ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 1 www.anpec.com.tw APW7075 Ordering and Marking Information Package Code KA : SOP-8P O : TSSOP-8 Temperature Range C : 0 to 70 °C I : -40 °C to 85°C Handling Code TR : Tape & Reel Assembly Material L : Lead Free Device G : Halogen and Lead Free Device APW7075 Assembly Material Handling Code Temperature Range Package Code APW7075 KA : APW7075 XXXXX XXXXX - Date Code APW7075 O : APW7075 XXXXX XXXXX - Date Code Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Absolute Maximum Ratings Symbol Value Unit Supply Voltage (OUT to GND) -0.3 to 6.0 V VIO Input / Output Pins -0.3 to 6.0 V TA Operating Ambient Temperature Range 0 to 85 °C TJ Junction Temperature Range 0 to 150 °C TSTG Storage Temperature Range -65 to +150 °C 260 °C Typical Value Unit 124 80 160 °C/W VOUT TS Parameter Soldering Temperature, 10 Seconds Thermal Characteristics Symbol R θJA Parameter Thermal Resistance − Junction to Ambient SOP-8 SOP-8-P TSSOP-8 Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 2 www.anpec.com.tw APW7075 Electrical Characteristics VBAT = 2V, FB = OUT (VOUT = 3.3V), RL = ∞, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C. APW7075 Symbol Parameter Test Conditions Unit Min. Typ. Max. Minimum Operating Input Voltage (Note1) 0.6 - - V Operating Voltage 0.6 - 4.5 V STEP-UP SECTION VBAT Start-up Voltage RL = 3kΩ - 0.9 1 V FSW Operating Frequency VOUT = 3.3VX96% - 300 - kHz DMAX Maximum PWM Duty Cycle VOUT = 3.3VX96% - 90 - % ILX = 100mA - 0.3 0.6 Ω ILX = 100mA - 0.6 0.9 Ω FB = OUT, ILOAD = 0mA 3.234 3.3 3.366 V FB = GND, ILOAD = 0mA 2.45 2.5 2.55 V Output Voltage Range External divider 2.5 - 5.5 V VOUT Dropping Voltage (Note 2) VOUT = 3.3V, C OUT = 100µF - - 150 mV TSS Soft-Start Time VOUT = 3.3V - 30 100 ms VREF FB Input Threshold ILOAD = 0mA 1.176 1.2 1.224 V FB Input Current VFB = 1.4V - 0.03 50 nA VOUT = 3.3VX96%, ILOAD = 0mA - 70 140 µA Shutdown Current VSHDN = 0 - 0.1 5 µA SHDN Input Current VSHDN = 0 or VOUT - 0.07 50 nA Logic LOW (VIL) - 0.8 0.3 V Logic HIGH(VIH) 1.4 0.8 - V - 10 - mV 0.588 0.6 0.612 V POWER MOSFET RDS(on)-N Active Switch ON Resistance RDS(ON)-P Synchronous Switch on Resistance CONTROL Output Voltage VOUT VOUT(drop) IFB IDD ISHDN Operating Current (Note3) SHDN LBI Input Hysteresis VLBI LBI Threshold ILBI LBI Input Current VLBI = 0.8V - 1 50 nA VLBO LBO Logic Low VLBI = 0, ISINk = 1mA - 0.2 0.4 V ILBO LBO Off Leakage Current VLBO = 5.5V, VLBI = 5.5V - 0.07 1 µA Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 3 www.anpec.com.tw APW7075 Electrical Characteristics (Cont.) Unless otherwise noted these specifications apply over full temperature, 3.9V≤VIN<5.5V, COUT≥10µF, SHDN=VIN , Typical values are at TA=+25°C.) APW7075 Symbol Parameter Test Conditions Unit Min. Typ. Max. LDO SECTION (Note 4) VIN(upper) Upper VIN Threshold Voltage VIN increasing 3.75 3.9 4.05 V VIN(lower) Lower VIN Threshold Voltage VIN decreasing 3.65 3.8 3.95 V - 100 - mV VOUT-2 VOUT VOUT+2 V VTH VIN Threshold Hysteresis VOUT Output Voltage ILIM Current Limit VIN = 5V - 1 - A ISHORT Short Current VOUT = 0V - 110 - mA IOUT Load Current 500 - - mA 0.9 V VDROP Iq Dropout Voltage ILOAD = 500mA - 0.6 No load - 800 1000 uA ILOAD = 500mA - 1.1 1.5 mA Quiescent Current REGLINE Line Regulation 4V<VIN<5.5V, ILOAD = 0mA - 4 10 mV REGLOAD Load Regulation VIN = 5V, 0mA<ILOAD<500mA - 20 30 mV Note1: The min. operating voltage is dependent on the duty cycle. Note2: The dropped output voltage is that the input power (VIN pin) is switched to battery power (LX pin), when the VIN power is removed. Note3: Device is boostrapped ( power to the IC comes from OUT). This correlates directly with the actual battery supply. Note4: If the LDO mode is used, the output voltage should be under 3.8V. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 4 www.anpec.com.tw APW7075 Function Pin Description VIN (Pin 1) Input supply voltage for dual-mode application. Connect a schokkty diode (current rating >500mA) to USB port or 5V adapter. If the LDO mode is not used, ties the VIN pin to the ground. FB (pin 2) Internal 1.2V reference voltage. Connect to OUT for 3.3V output. Connect to the GND for 2.5V output. Use a resistor divider to set the output voltage from 2.5V to 5.5V. SHDN (pin 3) Shutdown input. High = operating mode; Low = shutdown mode. LBI (Pin 4) Low-battery comparator input. Internally set to trip at 0.6V. LBO (pin 5) Open-drain low battery comparator output. Connect LBO to OUT through a 100kΩ resistor. Output is low as VLBI < 0.6V. Open-drain device is turned on during shutdown. OUT (pin 8) Power output. OUT provides bootstrap power to the IC. GND (Pin 6) Ground pins of the circuitry and all ground pins must be soldered to PCB with proper power dissipation. LX (pin 7) N-channel and P-channel power MOSFET drain connection. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 5 www.anpec.com.tw APW7075 Application Schematic VBAT L1 22UH C1 10µF 1N5817 Adapter C3 5V 10µF VOUT 3.3V R6 1 2 ON 3 8 VIN OUT 7 FB SHDN GND LBI LBO 4 OFF R3 C4 1µF LX C2 100µF 6 5 R5 100kΩ APW7075 R4 Low Battery Output Connect the R6=500Ω to 1kΩ to GND Figure 1. Dual Model : 3.3V Output Voltage VBAT L1 22UH C1 10µF 1N5817 Adapter C3 5V 10µF VOUT 2.5V R6 1 2 ON 3 8 VIN OUT FB LX SHDN GND LBI LBO 4 OFF R3 7 C4 1µF C2 100µF 6 5 R5 100kΩ APW7075 R4 Low Battery Output Connect the R6=500Ω to 1kΩ to GND Figure 2. Dual Model : 2.5V Output Voltage Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 6 www.anpec.com.tw APW7075 Application Schematic (Cont.) VBAT L1 22UH C1 10µF 1N5817 2.5V ≦ VOUT ≦ 3.8V Adapter C3 5V 10µF VOUT 3.6V R1 R6 300kΩ 1 2 ON 3 8 VIN OUT FB LX SHDN GND LBI LBO 4 OFF 7 C4 1µF C2 100µF 6 5 R5 100kΩ R2 APW7075 150kΩ R4 Low Battery Output Connect the R6=500Ω to 1kΩ to GND Figure 3. Dual Model: Adjustable Output Voltage 0.6V ≦ VBAT ≦ 4.5V VBAT L1 22UH C1 10µF 2.5V ≦ VOUT ≦ 5V 3.6V VOUT R1 300kΩ 1 2 ON 3 8 VIN OUT FB LX SHDN GND LBI LBO 4 OFF R3 7 C4 1µF C2 100µF 6 5 100kΩ R2 150kΩ APW7075 R4 Low Battery Output Figure 4. Single Boost Converter Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 7 www.anpec.com.tw APW7075 Block Diagram VIN SHDN Vref VDD VDD FB VDD P-MOS Current Limit Y Q1 VDD VOUT A GND B R1,R2 C OUT Vref Q2 P-MOS A B VDD Y PWM/ PFM controller C phase compensation FB LX Drive Q3 Oscillator N-MOS voltage reference GND soft-start Q4 LBI Vref 2 LBO N-MOS SHDN Typical Operating Characteristics Power Up (VBATTERY=2.4V) Power Up (VBATTERY=1.2V) IOUT=100mA IOUT=100mA VBAT(1V/div) VBAT(1V/div) VOUT(1V/div) VOUT(1V/div) LX(2V/div) LX(2V/div) Time(10ms/div) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 Time(10ms/div) 8 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Power Down Enable IOUT=100mA IOUT=100mA SHDN(1V/div) VBAT(2V/div) VOUT(1V/div) VOUT(1V/div) LX(2V/div) LX(2V/div) Time(5ms/div) Time(10ms/div) Shutdown Heavy Load Operating Waveforms IOUT=100mA SHDN(1V/div) IL(200mA/div) IOUT=100mA, VOUT=3.3V VBAT=2.4V, CBAT=10µF COUT=100µF, L=22µH VOUT(1V/div) LX(2V/div) LX(2V/div) LOUT(100mV/div) Time(1ms/div) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 Time(1µs/div) 9 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Output Current vs. Start-up Voltage Light Load Operating Waveforms 1.4 Start-up Voltage(V) 1.2 IL(200mA/div) IOUT=30mA, VOUT=3.3V VBAT=2.4V, CBAT=10µF COUT=100µF, L=22µH LX(2V/div) 1 0.8 0.6 0.4 0.2 0 LOUT(100mV/div) 0.1 1 Effciency vs. Output Current Effciency vs. Output Current 100 100 VIN=2.4V 90 80 80 70 70 VIN=1.2V Effciency(%) Effciency(%) 100 Output Current(mA) Time(5µs/div) 90 10 60 50 40 50 40 30 30 20 VOUT=3.3V, L=22µH 20 10 10 0 0.01 VOUT=2.5V, L=22µH VIN=1.2V 60 0.1 1 10 100 0 0.01 1000 1 10 100 1000 Output Current(mA) Output Current(mA) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 0.1 10 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Efficiency vs. Output Current Efficiency vs. Output Current 100 100 VIN=2.4V 90 80 80 70 70 60 Efficiency(%) Efficiency(%) 90 VIN=1.2V 50 40 30 VOUT=3.3V, L=10µH 20 VOUT=2.5V, L=10µH VIN=1.2V 60 50 40 30 20 10 10 0 0.01 0.1 1 10 100 0 0.01 1000 0.1 Output Current(mA) 1 10 1000 Output Current(mA) Maximum Output Current vs.Input Voltage Operating Curretnt into OUT vs. Output Voltage 0.5 1000 Operating Current into OUT(mA) L=22µH Maximum Output Current (mA) 100 VOUT=3.3V VOUT=3.6V 750 VOUT=2.5V 500 250 VOUT=5V FB=1.4V 0.4 0.3 0.2 0.1 0 0 1 1.5 2 2.5 3 3.5 0 4 Input Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 0.5 1 1.5 2 2.5 3 3.5 4 Output Voltage(V) 11 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Transition from PFM to PWM vs. Input Voltage Transition from PFM to PWM vs. Input Voltage 500 L=10µH The transition from PFM to PWM(mA) The transition from PFM to PWM(mA) 500 VOUT=3.3V 400 VOUT=3.6V 300 VOUT=2.5V VOUT=5V 200 100 L=22µH 400 300 200 VOUT=3.6V VOUT=3.3V VOUT=5V VOUT=2.5V 100 0 0 1 1.5 2 2.5 3 3.5 1 4 Input Voltage(V) 1.5 2 2.5 3 3.5 4 Input Voltage(V) Line Transient Response Input Battery Current vs. Input Battery Voltage 300 VBAT(2V/div) Input Battery Current(µA) 250 IOUT=100mA, VOUT=3.3V VBAT=2V~3V 200 VOUT=3.3V 150 VOUT=2.4V 100 VOUT(200mV/div) 50 0 0 0.5 1 1.5 2 2.5 3 Input Battery Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 Time(2ms/div) 12 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Load Transient Response PWM to LDO V IN(2V/div) VOUT(200mV/div) IOUT=100mA, VOUT=3.3V CIN=10µF, VBAT=2.4V VBAT=2.4V, VOUT=3.3V L=22µH VOUT(100mV/div) IOUT=10~300mA LX(2V/div) Time(0.5ms/div) Time(50µs/div) LDO to PWM LDO Power Up V IN(2V/div) IOUT=100mA IOUT=100mA, VOUT=3.3V CIN=10µF, VBAT=2.4V V IN(2V/div) VOUT(100mV/div) VOUT(2V/div) LX(2V/div) IIN(1A/div) Time(0.2ms/div) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 Time(10ms/div) 13 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) LDO Power Down LDO Load Transient Response IOUT=100mA VIN(20V/div) VOUT(50mV/div) VIN=5V, VOUT=3. VOUT(2V/div) IOUT=10mA~500mA IN(1A/div) Time(10ms/div) Time(5µs/div) LDO Load Transient Response LBO Rising Delay Time VOUT(50mV/div) VBAT=2.4V, VOUT=3.3V LBI(0.5V/div) VIN=5V, VOUT=3. IOUT=10mA~500mA LBO(2V/div) Time(5µs/div) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 Time(5µs/div) 14 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) LBO Falling Delay Time LBO Output Sink Current vs. LBO Low Voltage 30 VOUT=3.3V 25 LBO Sink Current(mA) LBI(0.5V/div) VBAT=2.4V, VOUT=3.3V LBO(2V/div) 20 15 10 5 0 0 0.25 0.5 0.75 1 1.25 1.5 LBO Output Low Voltage(V) Time(5µs/div) LDO Current Limit vs. LDO Input Voltage LDO Quiescent Current vs. LDO Input Voltage 2 1.2 1.8 LDO Quiescent Current (A) LDO Current Limit(A) 1 0.8 0.6 0.4 0.2 1.6 1.4 IOUT=10mA 1.2 1 0.8 0.6 IOUT=0mA 0.4 0.2 0 0 4 4.5 5 5.5 6 4 LDO Input Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 4.5 5 5.5 6 LDO Input Voltage(V) 15 www.anpec.com.tw APW7075 Typical Operating Characteristics (Cont.) Dropout Voltage vs. LDO Output Current Quiescent Current vs. LDO Output Current 700 1.2 VOUT=4.2V Dropout Voltage (mV) 1 Quiescent Current (mA) 600 V IN=5V 0.8 0.6 0.4 0.2 500 400 300 200 100 0 0 0 100 200 300 400 0 500 100 LDO Output Current(mA) 300 400 500 LDO Output Current(mA) Output Voltage vs. Temperature Output Voltage vs. LDO Input Voltage 3.3 3.303 IOUT=0mA Iout=0mA 3.302 3.295 3.301 3.29 Output Voltage (V) Output Voltage (V) 200 3.3 3.299 3.285 3.28 3.275 3.298 3.297 4 4.5 5 5.5 3.27 -40 6 0 20 40 60 80 100 120 140 Temperature (oC ) LDO Input Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 -20 16 www.anpec.com.tw APW7075 Function Description PFM Control Scheme Soft-Start The APW7075 features the PFM control scheme to im- The APW7075 provides the soft-start function to get the prove the efficiency during light load. In PFM mode, the inductor stores the energy during internal N-channel controlled output voltage rise. When the battery voltage (<1.8V) is supplied to the device and exceeds the start-up MOSFET turns on, and the energy is transferred to output capacitors and load during internal P-channel MOSFET voltage, the internal N-channel and P-channel MOSFETs start to switch and pump up the output voltage to 1.8V( if turns on. If the energy which is charged to output capacitors exceeds the requirement of load, the current will re- the battery voltage is over 1.8V, the output voltage will equal battery voltage during this time ), which control cir- verse from output capacitors to inductor and input capacitors. The PFM comparator compares the source cuitry can operate normally. The soft-start controls the rise of internal reference voltage. When the internal refer- (OUT) and drain (LX) of the internal P-channel MOSFET. When the current that flows through the internal P-chan- ence voltage exceeds the feedback voltage which is divided by the resistor from the output voltage, the soft-start nel MOSFET is backward (from OUT to LX), the internal Pchannel MOSFET will be turned off, and the output capaci- circuit will control the output voltage until the output voltage is in regulation. The soft-start interval is approximately tor supplies the load and maintains the output voltage. During PFM mode, the IC switches only as need to serve 30ms. LDO the load, reduce the switching frequency and associate losses in the internal switches and the external inductor. The output voltage has two operation modes. When VIN Some jitter are normal during transition from PFM to PWM mode; the transition of the PFM to PWM is dependent on exceeds 3.9V, the output will become the LDO regulator and the step-up converter will be disabled. The LDO out- the inductance values, VIN and VOUT. The output ripple is higher during PFM operation, a larger output capacitor put is a P-channel low dropout regulator with 1A current limit. When the VIN is below 3.8V, the output will return to can be used to minimize the output ripple. the step-up converter, and the LDO mode will be disabled. Note that when LDO mode is used, the output voltage Synchronous Rectification should be under 3.8V. The APW7075 has an internal N-channel and a P-channel Low Battery Detection MOSFET, it is no need for external components, the internal low RDS(ON) P-channel MOSFET replaces the dis- The low battery detection is used to monitor the battery crete Schottky diode, and it reduces cost and board space. During the cycle off time, the P-channel MOSFET turns voltage and to generate a signal. This function includes two pins, LBI is the inverting input of the comparator and on, and the power dissipation on the P-channel MOSFET is lower than discrete Schottky diode, thus, the conver- LBO is an open drain output (See Block Diagram). When the LBI voltage drops below the threshold voltage 0.6V, sion efficiency can be improved. the open drain device will turn on and LBO becomes low. The Low battery threshold voltage can be programmed Shutdown with a resistive divider from battery to LBI pin to the ground. Since the LBO is an open drain output, it usually requires The APW7075 has an active high enable function. Force SHDN high (>1.4V) to enable the step-up converter, SHDN an external pull-up resistor. low (<0.3V) to disable the step-up converter and the device enters shutdown mode. In shutdown mode, the converter stops switching and all internal control circuits are turned off, but the output is still applied by input voltage through the body diode of P-channel MOSFET, it is about Vin-0.6V. Note that when the output is applied from the VIN (LDO mode), the shutdown function is disabled. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 17 www.anpec.com.tw APW7075 Application Information Output Voltage Selection The inductor’s DC resistance affects the efficiency; larger The output voltage of APW7075 can be adjusted by an resistance dissipates more power, it should be as small as possible. It is important to choose the inductor’s satu- external resistor divider, or connect FB pin to OUT for 3.3V and to the ground for 2.5V (see Application ration current rating greater than the peak current which the inductor will flow in the application. Schematic). The internal reference voltage is 1.2V and the allowed output voltage is from 2.5V to 5.5V. The fol- Boost Converter Input Capacitor Selection lowing equation can be used to calculate the output voltage: V OUT At least a 10µF input capacitor is recommended to stabilize the battery voltage and minimizes the peak current ripple from the battery. R1 = 1+ × 1.2V R2 LDO Input Capacitor Selection Programming Low Battery Threshold Voltage The LDO input capacitor with larger values and lower The low battery threshold voltage can be programmed with a resistive divider from battery to LBI pin to the ground ESRs provides better PSRR and line transient response. At least a 10µF capacitor is recommended. (see Application Schematic). The internal reference voltage is 0.6V, and the low battery threshold voltage must Output Capacitor Selection The output capacitor is used for supplying the output dur- be below the battery voltage. The following equation can be used to calculate the low battery threshold voltage: ing internal N-channel MOSFET turns on time. Larger capacitance and lower ESR reduce the output voltage ripple. The output voltage supplies the power to the IC and so R3 VBAT - TH = 1 + × 0.6V R4 the output voltage ripple must be as small as possible to provide better PSRR. In general, a 100µF to 220µF low Inductor Selection ESR Tantalum capacitor is recommended, a 1µF ceramic capacitor in parallel for bypassing the noise is also recommended. The following equation calculates the The APW7075 works well with a 22µH inductor in most applications. The inductance values determine the inductor ripple current and affect the output current. Higher in- output ripple. ductance values reduce ripple and improve efficiency. Lower inductance values have fast response but increase Voripple= IOUT× ( the ripple and reduce the efficiency. The maximum allowed LX current is 1A (the maximun output current shows Layout Consideration in Typical Characteristics), therefore, the peak inductor current cannot exceed it. The following equations calcu- The correct PCB layout is important for all switching converters. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. late the inductor current, and output current. Figure 5 illustrates the layout guidelines, the bold lines indicate the high current paths; these traces must be short IOUT = IL x (1-D) ∆IL = (VOUT− VIN) × Where: D= VOUT− VBAT + ESR) COUT×FSW × VOUT (1− D) and wide. The input capacitors, output capacitors, and the inductor should be as close to the IC as possible. Use a L× f common ground plane for power ground and a different one for control ground to minimize the effects of the ground VOUT −VIN VOUT noise. Connect these ground planes at a node close to the GND pin of IC. The feedback and LBI resistor dividers should be placed as close to the IC as possible. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 18 www.anpec.com.tw APW7075 Application Information (Cont.) Layout Consideration (Cont.) USB 5V 1 2 3 4 C2 100uF C4 1uF C3 10uF VIN FB SHDN LBI OUT LX GND LBO 8 7 6 VOUT C1 10uF 22UH 5 VBAT APW7075 Figure 5. Recommended Layout Diagram Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 19 www.anpec.com.tw APW7075 Package Information SOP-8P D SEE VIEW A E E2 THERMAL PAD E1 D1 h X 45 ° c A 0.25 b L 0 GAUGE PLANE SEATING PLANE A1 A2 e VIEW A S Y M B O L SOP-8P MILLIMETERS MIN. MAX. MAX. MIN. 0.063 1.60 A A1 INCHES 0.006 0.000 0.15 0.00 0.049 A2 1.25 b 0.31 0.51 0.012 0.020 c 0.17 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 D1 2.25 3.50 0.098 0.138 E 5.80 6.20 0.228 0.244 E1 3.80 4.00 0.150 0.157 E2 2.00 3.00 0.079 0.118 e 1.27 BSC 0.050 BSC h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 0 0o 8o 0o 8o Note : 1. Follow JEDEC MS-012 BA. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side . 3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 20 www.anpec.com.tw APW7075 Package Information TSSOP-8 D E E1 SEE VIEW A C A 0.25 b A2 e GAUGE PLANE A1 SEATING PLANE S Y M B O L VIEW A L TSSOP-8 INCHES MILLIMETERS MIN. MIN. MAX. A MAX. 0.047 1.20 A1 0.05 0.15 0.002 0.006 A2 0.80 1.05 0.031 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.10 0.114 0.122 E 6.20 6.60 0.244 0.260 E1 4.30 4.50 0.169 0.177 0.65 BSC e L 0.45 0 0 ° 0.026 BSC 0.75 8° 0.018 0.030 0° 8° Note : 1. Follow JEDEC MO-153 AA 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 21 www.anpec.com.tw APW7075 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application A H 330.0±2.00 50 MIN. P0 P1 P2 4.0±0.10 8.0±0.10 2.0±0.05 A H SOP-8P Application 330.0±2.00 50 MIN. TSSOP-8 T1 C d D W E1 12.4+2.00 13.0+0.50 -0.00 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 P0 P1 D0 1.5+0.10 -0.00 D1 1.5 MIN. D0 1.5+0.10 4.00±0.10 8.00±0.10 2.00±0.05 -0.00 D1 1.5 MIN. 5.5±0.05 T A0 B0 K0 0.6+0.00 6.40±0.20 5.20±0.20 2.10±0.20 -0.40 T1 C d D W E1 12.4+2.00 13.0+0.50 -0.00 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 P2 F F 5.5±0.10 T A0 B0 K0 0.6+0.00 -0.40 6.90±0.20 3.40±0.20 1.60±0.20 (mm) Devices Per Unit Package Type Unit Quantity SOP-8P Tape & Reel 2500 TSSOP-8 Tape & Reel 2500 Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 22 www.anpec.com.tw APW7075 Taping Direction Information SOP-8P t USER DIRECTION OF FEED TSSOP-8 USER DIRECTION OF FEED Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 23 www.anpec.com.tw APW7075 Reflow Condition (IR/Convection or VPR Reflow) tp TP Critical Zone TL to TP Ramp-up Temperature TL tL Tsmax Tsmin Ramp-down ts Preheat 25 t 25°C to Peak Time Reliability Test Program Test item SOLDERABILITY HOLT PCT TST ESD Latch-Up Method MIL-STD-883D-2003 MIL-STD-883D-1005.7 JESD-22-B, A102 MIL-STD-883D-1011.9 MIL-STD-883D-3015.7 JESD 78 Description 245°C, 5 sec 1000 Hrs Bias @125°C 168 Hrs, 100%RH, 121°C -65°C~150°C, 200 Cycles VHBM > 2KV, VMM > 200V 10ms, 1tr > 100mA Classification Reflow Profiles Profile Feature Average ramp-up rate (TL to TP) Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts) Time maintained above: - Temperature (TL) - Time (tL) Peak/Classification Temperature (Tp) Time within 5°C of actual Peak Temperature (tp) Ramp-down Rate Time 25°C to Peak Temperature Sn-Pb Eutectic Assembly Pb-Free Assembly 3°C/second max. 3°C/second max. 100°C 150°C 60-120 seconds 150°C 200°C 60-180 seconds 183°C 60-150 seconds 217°C 60-150 seconds See table 1 See table 2 10-30 seconds 20-40 seconds 6°C/second max. 6°C/second max. 6 minutes max. 8 minutes max. Notes: All temperatures refer to topside of the package. Measured on the body surface. Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 24 www.anpec.com.tw APW7075 Classification Reflow Profiles (Cont.) Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures 3 3 Package Thickness Volume mm <350 Volume mm ≥350 <2.5 mm ≥2.5 mm 240 +0/-5°C 225 +0/-5°C 225 +0/-5°C 225 +0/-5°C Table 2. Pb-free Process – Package Classification Reflow Temperatures 3 Package Thickness 3 Volume mm <350 Volume mm 350-2000 3 Volume mm >2000 <1.6 mm 260 +0°C* 260 +0°C* 260 +0°C* 1.6 mm – 2.5 mm 260 +0°C* 250 +0°C* 245 +0°C* ≥2.5 mm 250 +0°C* 245 +0°C* 245 +0°C* * Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level. Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.7 - Oct., 2008 25 www.anpec.com.tw