AOT472/AOTF472 75V N-Channel MOSFET General Description Product Summary The AOT472 and AOTF472 use a robust technology that is designed to provide efficient and reliable power conversion even in the most demanding applications, including motor control. With low R DS(ON) and excellent thermal capability this device is appropriate for high current switching and can endure adverse operating conditions. VDS 75V ID (TO220 at VGS=10V) 140A ID (TO220FL at VGS=10V) 53A RDS(ON) (at VGS=10V) < 8.9mΩ 100% UIS Tested 100% Rg Tested Top View TO-220 G D G S D AOT472 TO-220FL D G S S AOTF472 Absolute Maximum Ratings TA=25°C unless otherwise noted AOT472 Symbol Parameter VDS Drain-Source Voltage VGS Gate-Source Voltage TC=25°C Continuous Drain Current Pulsed Drain Current C TA=25°C Continuous Drain Current Avalanche Current C C B Power Dissipation A TC=100°C TA=25°C 8 TA=70°C PD 208 29 PDSM 1.9 1.9 1.2 1.2 Thermal Characteristics Parameter Maximum Junction-to-Ambient Symbol Maximum Junction-to-Ambient Maximum Junction-to-Case t ≤ 10s AD Steady-State Steady-State RθJA RθJC www.aosmd.com W W °C -55 to 175 AOT472 13.9 A mJ 781 57.5 TJ, TSTG A A A 125 417 Junction and Storage Temperature Range Rev 4: March 2009 10 8 EAS,EAR TC=25°C Power Dissipation 10 IAS,IAR Avalanche energy L=0.1mH 37.5 340 IDSM TA=70°C 53 101 IDM Units V V ±20 140G ID TC=100°C AOTF472 75 AOTF472 13.9 Units °C/W 65 65 °C/W 0.36 2.6 °C/W Page 1 of 7 AOT472/AOTF472 Electrical Characteristics (T J=25°C unless otherwise noted) Parameter Symbol STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current Conditions Min ID=250μA, VGS=0V VDS=75V, VGS=0V 5 IGSS Gate-Body leakage current VDS=0V, VGS= ±20V Gate Threshold Voltage On state drain current VDS=VGS ID=250μA 2.5 VGS=10V, VDS=5V 340 VGS=10V, ID=30A Static Drain-Source On-Resistance gFS Forward Transconductance VSD IS=1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current TJ=125°C VDS=5V, ID=30A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Qrr Units V 1 TJ=55°C RDS(ON) Max 75 VGS(th) ID(ON) IS Typ μA 100 nA 3.3 3.9 V 7.4 8.9 13.6 16.3 A 75 0.73 mΩ S 1 V 140 A 3000 3753 4500 pF 475 679 885 pF 32 54 76 pF VGS=0V, VDS=0V, f=1MHz 1.6 3.2 4.8 Ω 77 96 115 nC VGS=10V, VDS=30V, ID=30A 14 17 20 nC 8 13 18 nC VGS=0V, VDS=30V, f=1MHz VGS=10V, VDS=30V, RL=1Ω, RGEN=3Ω IF=30A, dI/dt=500A/μs Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=30A, dI/dt=500A/μs 18 ns 38 ns 57 ns 8 ns 36 52 68 365 521 677 ns nC A. The value of RθJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 4: March 2009 www.aosmd.com Page 2 of 7 AOT472/AOTF472 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 150 140 10V 6V 120 5.5V 100 8V 90 ID(A) ID (A) VDS=5V 120 60 5V 80 60 125°C -40°C 40 30 20 VGS=4.5V 25°C 0 0 0 2 4 6 8 3 10 11 4 4.5 5 5.5 6 Normalized On-Resistance 2.5 10 RDS(ON) (mΩ) 3.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 9 VGS=10V 8 7 6 VGS=10V ID=30A 2.0 1.5 17 5 2 10 1.0 0.5 0.0 5 0 20 40 60 80 -50 -25 100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0 25 50 75 100 125 150 175 200 Temperature (°C) 0 Figure 4: On-Resistance vs. Junction Temperature 18 (Note E) 20 1.0E+02 ID=30A 1.0E+01 16 40 12 IS (A) RDS(ON) (mΩ) 1.0E+00 125°C 8 125°C 1.0E-01 -40°C 1.0E-02 1.0E-03 4 25°C 25°C 1.0E-04 1.0E-05 0 4 8 12 16 20 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 4: March 2009 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 7 AOT472/AOTF472 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 6000 10 VDS=30V ID=30A 5000 Capacitance (pF) VGS (Volts) 8 6 4 2 Ciss 4000 3000 2000 Coss 1000 Crss 0 0 0 20 40 60 Qg (nC) Figure 7: Gate-Charge Characteristics 80 0 10 20 30 40 50 VDS (Volts) Figure 8: Capacitance Characteristics 60 IAR (A) Peak Avalanche Current 200 150 TA=25°C TA=100°C 100 TA=150°C 50 TA=125°C 0 0.000001 0.00001 0.0001 0.001 Time in avalanche, tA (s) Figure 9: Single Pulse Avalanche capability (Note C) Rev 4: March 2009 www.aosmd.com Page 4 of 7 AOT472/AOTF472 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10000 10000 TJ(Max)=175°C TC=25°C TJ(Max)=175°C TC=25°C 8000 Power (W) Power (W) 8000 6000 4000 6000 4000 2000 2000 0 1E-05 0.0001 0.001 0.01 0.1 1 0 1E-05 0.0001 0.001 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase for AOT472 (Note F) 10000 0.01 0.1 TA=25°C 1000 1000 Power (W) Power (W) 10 10000 TA=25°C 100 10 100 10 1 0.001 0.1 10 1 0.001 1000 Pulse Width (s) Figure 12: Single Pulse Power Rating Junction-toAmbient for AOT472 (Note H) 10μs RDS(ON) limited 1000 1.0 TJ(Max)=175°C TC=25°C 0.1 10.0 RDS(ON) limited 0.0 0.01 www.aosmd.com 100μs DC 1.0 1ms 10ms TJ(Max)=175°C TC=25°C 0.1 1 10 100 1000 VDS (Volts) Figure 14: Maximum Forward Biased Safe Operating Area for AOT472 (Note F) Rev 4: March 2009 0.1 ID (Amps) 1ms 10ms 10μs 100.0 100μs DC 0.0 0.01 10 1000.0 100.0 10.0 0.1 Pulse Width (s) Figure 13: Single Pulse Power Rating Junction-toAmbient for AOTF472 (Note H) 1000.0 ID (Amps) 1 Pulse Width (s) Figure 11: Single Pulse Power Rating Junction-toCase for AOTF472 (Note F) 0.1 1 10 100 1000 VDS (Volts) Figure 15: Maximum Forward Biased Safe Operating Area for AOTF472 (Note F) Page 5 of 7 AOT472/AOTF472 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJC=0.36°C/W 0.1 PD 0.01 Ton Single Pulse 0.001 0.000001 0.00001 0.0001 0.001 0.01 0.1 T 1 10 100 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance for AOT472 (Note F) ZθJC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RθJC=2.6°C/W 0.1 PD 0.01 0.001 0.00001 Ton Single Pulse 0.0001 0.001 0.01 0.1 1 T 10 100 Pulse Width (s) Figure 17: Normalized Maximum Transient Thermal Impedance for AOTF472 (Note F) Rev 4: March 2009 www.aosmd.com Page 6 of 7 AOT472/AOTF472 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - VDC DUT Qgs Qgd - Vgs Ig Charge Resistive Switching Test Circuit & W aveforms RL Vds Vds 90% + Vdd DUT Vgs VDC Rg - 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR= 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs VDC Rg - I AR Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev 4: March 2009 Vgs L Isd + Vdd VDC - IF t rr dI/dt I RM Vdd Vds www.aosmd.com Page 7 of 7