Datasheet

AOT474/AOTF474
75V N-Channel MOSFET
General Description
Product Summary
The AOT474 and AOTF474 use a robust technology that
is designed to provide efficient and reliable power
conversion even in the most demanding applications,
including motor control. With low R DS(ON) and excellent
thermal capability this device is appropriate for high
current switching and can endure adverse operating
conditions.
75V
VDS
ID (TO220 at V GS=10V)
127A
ID (TO220FL at VGS=10V)
47A
RDS(ON) (at VGS=10V)
< 11.3mΩ
100% UIS Tested
100% Rg Tested
Top View
TO-220
G
D
G
S
TO-220FL
D
G
D
AOT474
S
S
AOTF474
Absolute Maximum Ratings TA=25°C unless otherwise noted
AOT474
Symbol
Parameter
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current
Pulsed Drain Current
C
TA=25°C
Continuous Drain
Current
Avalanche Current
C
Avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation
B
TC=100°C
Power Dissipation
A
TA=70°C
TA=25°C
Rev 3: March 2009
Steady-State
Steady-State
7
7
A
A
562
mJ
PD
417
57.5
208
29
PDSM
1.9
1.9
1.2
1.2
Symbol
AD
9
106
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient
Maximum Junction-to-Ambient
Maximum Junction-to-Case
9
EAS,EAR
TJ, TSTG
t ≤ 10s
A
IAS,IAR
Junction and Storage Temperature Range
A
33
240
IDSM
TA=70°C
47
89
IDM
Units
V
V
±20
127
ID
TC=100°C
AOTF474
75
RθJA
RθJC
www.aosmd.com
W
°C
-55 to 175
AOT474
13.9
W
AOTF474
13.9
Units
°C/W
65
65
°C/W
0.36
2.6
°C/W
Page 1 of 7
AOT474/AOTF474
Electrical Characteristics (T J=25°C unless otherwise noted)
Parameter
Symbol
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250μA, VGS=0V
VDS=75V, VGS=0V
5
IGSS
Gate-Body leakage current
VDS=0V, VGS= ±20V
Gate Threshold Voltage
On state drain current
VDS=VGS ID=250μA
2.6
VGS=10V, VDS=5V
240
VGS=10V, ID=30A
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VSD
IS=1A,VGS=0V
Diode Forward Voltage
Maximum Body-Diode Continuous Current
TJ=125°C
VDS=5V, ID=30A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
Units
V
1
TJ=55°C
RDS(ON)
Max
75
VGS(th)
ID(ON)
IS
Typ
μA
100
nA
3.4
4
V
9.4
11.3
18
21.5
A
67
0.73
mΩ
S
1
V
128
A
2240
2805
3370
pF
355
507
660
pF
22
36
50
pF
VGS=0V, VDS=0V, f=1MHz
1.4
2.8
4.2
Ω
39
49.6
60
nC
VGS=10V, VDS=30V, ID=30A
11
13.8
17
nC
8
14
20
nC
VGS=0V, VDS=30V, f=1MHz
VGS=10V, VDS=30V, RL=1Ω,
RGEN=3Ω
15
ns
34
ns
42
ns
4.5
ns
trr
Body Diode Reverse Recovery Time
IF=30A, dI/dt=500A/μs
35
50
65
Qrr
Body Diode Reverse Recovery Charge IF=30A, dI/dt=500A/μs
330
472
614
ns
nC
A. The value of RθJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The RθJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
Rev 0:February 2009
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 3: March 2009
www.aosmd.com
Page 2 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
150
105
10V
8V
120
VDS=5V
90
6V
ID(A)
ID (A)
75
90
5.5V
60
-40°C
60
125°C
45
30
5V
30
25°C
15
VGS=4.5V
0
0
0
2
4
6
8
3
10
13
4
4.5
5
5.5
6
6.5
7
2.5
11
Normalized On-Resistance
12
RDS(ON) (mΩ)
3.5
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=10V
10
9
8
7
VGS=10V
ID=30A
2.0
1.5
17
5
2
10
1.0
0.5
0.0
6
0
20
40
60
80
-50 -25
100
ID (A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage (Note E)
0
25
50
75 100 125 150 175 200
Temperature (°C)
0
Figure 4: On-Resistance vs. Junction Temperature
18
(Note E)
1.0E+02
30
ID=30A
1.0E+01
25
15
IS (A)
RDS(ON) (mΩ)
40
1.0E+00
20
125°C
10
125°C
1.0E-01
1.0E-03
25°C
5
-40°C
1.0E-02
25°C
1.0E-04
1.0E-05
0
4
8
12
16
20
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 3: March 2009
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
5000
VDS=30V
ID=30A
4000
Capacitance (pF)
VGS (Volts)
8
6
4
Ciss
3000
2000
Coss
2
1000
0
0
Crss
0
10
20
30
40
Qg (nC)
Figure 7: Gate-Charge Characteristics
50
0
10
20
30
40
50
VDS (Volts)
Figure 8: Capacitance Characteristics
60
IAR (A) Peak Avalanche Current
200
150
TA=25°C
TA=100°C
100
TA=150°C
50
TA=125°C
0
0.000001
0.00001
0.0001
0.001
Time in avalanche, tA (s)
Figure 9: Single Pulse Avalanche capability (Note
C)
Rev 3: March 2009
www.aosmd.com
Page 4 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10000
10000
TJ(Max)=175°C
TC=25°C
TJ(Max)=175°C
TC=25°C
8000
Power (W)
Power (W)
8000
6000
4000
2000
6000
4000
2000
0
1E-05 0.0001 0.001
0.01
0.1
1
0
1E-05 0.0001
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase for AOT474 (Note F)
10000
0.001
0.01
0.1
TA=25°C
1000
1000
Power (W)
Power (W)
10
10000
TA=25°C
100
10
100
10
1
0.001
0.1
10
1
0.001
1000
Pulse Width (s)
Figure 12: Single Pulse Power Rating Junction-toAmbient for AOT474 (NoteG)
10μs
RDS(ON)
limited
1000
10ms
1.0
TJ(Max)=175°C
TC=25°C
0.1
10.0
RDS(ON)
limited
100μs
1ms
10ms
DC
1.0
TJ(Max)=175°C
TC=25°C
0.1
1
10
100
1000
VDS (Volts)
Figure 14: Maximum Forward Biased
Safe Operating Area for AOT474 (Note F)
Rev 3: March 2009
0.1
ID (Amps)
1ms
10μs
100.0
100μs
DC
0.0
0.01
10
1000.0
100.0
10.0
0.1
Pulse Width (s)
Figure 13: Single Pulse Power Rating Junction-toAmbient for AOTF474 (Note G)
1000.0
ID (Amps)
1
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-toCase for AOTF474 (Note F)
0.0
0.01
www.aosmd.com
0.1
1
10
100
1000
VDS (Volts)
Figure 15: Maximum Forward Biased
Safe Operating Area for AOTF474 (Note
F)
Page 5 of 7
AOT474/AOTF474
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJC=0.36°C/W
0.1
PD
0.01
Ton
Single Pulse
0.001
0.000001
0.00001
0.0001
0.001
0.01
0.1
T
1
10
100
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance for AOT474 (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJC=2.6°C/W
0.1
PD
0.01
0.001
0.00001
Ton
Single Pulse
0.0001
0.001
0.01
0.1
1
T
10
100
Pulse Width (s)
Figure 17: Normalized Maximum Transient Thermal Impedance for AOTF474 (Note F)
Rev 3: March 2009
www.aosmd.com
Page 6 of 7
AOT474/AOTF474
Gate Charge Test Circuit & W aveform
Vgs
Qg
10V
+
+ Vds
VDC
-
VDC
DUT
Qgs
Qgd
-
Vgs
Ig
Charge
Resistive Switching Test Circuit & W aveforms
RL
Vds
Vds
Vgs
90%
+ Vdd
DUT
VDC
Rg
-
10%
Vgs
Vgs
t d(on)
tr
t d(off)
ton
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & W aveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
VDC
Rg
-
I AR
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds -
Isd
Vgs
Ig
Rev 3: March 2009
Vgs
Isd
L
+ Vdd
VDC
-
IF
t rr
dI/dt
I RM
Vdd
Vds
www.aosmd.com
Page 7 of 7