V23990-P629-L99-PM datasheet Maximum Ratings

V23990-P629-L99-PM
datasheet
flow BOOST 0
1200V/40A
Features
flow 0 17mm housing
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V SiC diode
● Antiparallel IGBT protection diode with high current
Target Applications
● solar inverter
Schematic
Types
● V23990-P629-L99-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
45
45
A
200
A
200
A2s
68
102
W
Tjmax
150
°C
VCES
1200
V
55
55
A
tp limited by Tjmax
160
A
Tj≤150°C
VCE<=VCES
160
A
202
306
W
25
V
10
600
µs
V
150
°C
D7,D8
Repetitive peak reverse voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=150°C
Tj=Tjmax
Th=80°C
Tc=80°C
T1,T2
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Tc=80°C
54
55
A
Tj=25°C
213
A
141
A
154
234
W
175
°C
1200
V
12
15
A
28
A
D1,D2,D3,D4,D5,D6 *
Peak Repetitive Reverse Voltage
VRRM
Th=80°C
Forward average current
IFAV
Tj=Tjmax
Surge forward current
IFSM
tp=10ms
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
* The values was measured on 3 diodes in paralell
D9,D10
VRRM
Tc=25°C
Forward average current
IFAV
Tj=Tjmax
Surge non repetitive forward current
IFSM
tp=10ms half sine wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Peak Repetitive Reverse Voltage
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
33
49
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
t=2s
DC voltage
2
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,13
1,09
0,93
0,80
0,008
0,011
1,9
D7,D8
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
25
1500
V
Ω
0,05
Thermal foil
thickness=76um
Kunze foil KUALF5
V
mA
K/W
1,04
T1,T2
Gate emitter threshold voltage
VGE(th)
15
VCE(sat)
15
Collector-emitter cut-off
ICES
0
Gate-emitter leakage current
IGES
25
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
40
1200
tf
Eon
Turn-off energy loss per pulse
Eoff
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,5
5,5
7,5
1
2,74
3,01
3,5
1
300
none
tr
td(off)
Turn-on energy loss per pulse
Rgoff=4 Ω
Rgon=4 Ω
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
f=1MHz
RthJH
Thermal foil
thickness=76um
Kunze foil KUALF5
Thermal resistance chip to heatsink per chip
0,00025
700
15
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
23,2
22,6
10
11,2
186,4
215,8
11,1
32,3
0,542
0,630
0,850
1,679
ns
mWs
3200
30
f=1MHz
370
Tj=25°C
pF
125
30
Tj=25°C
220
330
nC
K/W
0,35
D1,D2,D3,D4,D5,D6 *
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
30
700
Rgon=4 Ω
15
700
40
di(rec)max
/dt
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,49
1,77
1,9
750
29,24
28,42
11,7
12,5
0,187
0,19
0,026
0,028
7553
7097
Thermal foil
thickness=76um
Kunze foil KUALF5
V
µA
A
ns
µC
mWs
A/µs
0,62
K/W
1,98
1,82
V
2,15
K/W
D9,D10
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
4
Tj=25°C
Tj=125°C
Thermal foil
thickness=76um
Kunze foil KUALF5
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
+4,5
%
T=25°C
210
mW
T=25°C
3,5
mW/K
K
B-value
B(25/50)
T=25°C
3884
B-value
B(25/100)
T=25°C
3964
Vincotech NTC Reference
Ω
21511
-4,5
K
F
** Values are calculated for Phase change material
Copyright by Vincotech
3
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
D9,D10
Figure 25
Figure 26
D9,D10
D9,D10
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
IF = f(VF)
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
12
9
100
6
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
3
0
0
0,5
At
tp =
1
1,5
2
2,5
3
10-2
V F (V) 3,5
10-5
10-3
tp / T
2,15
K/W
10-2
10-1
t p (s)
100
101 10
At
µs
250
Tj =
°C
25/125
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D=
RthJH =
Phase change material
RthJH =
1,49
K/W
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
IF (A)
D9,D10
70
Ptot (W)
10-4
D9,D10
15
60
12
50
9
40
30
6
20
3
10
0
0
0
At
Tj =
30
150
60
90
120
Th ( o C) 150
0
At
Tj =
ºC
Copyright by Vincotech
4
30
150
60
90
120
Th ( o C)
150
ºC
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 1
Figure 2
T1,T2
T1,T2
Typical output characteristics
ID = f(VDS)
120
120
IC(A)
IC (A)
Typical output characteristics
ID = f(VDS)
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
5
D1,D2,D3,D4,D5,D6
120
IF (A)
ID (A)
40
V CE (V)
µs
250
126
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
T1,T2
4
30
90
20
60
10
30
0
0
0
At
tp =
VDS =
2
100
10
4
µs
V
Copyright by Vincotech
6
Tj =
8
25/125
0
V GS (V) 10
At
tp =
°C
5
1
250
2
µs
3
Tj =
4
25/125
V F (V)
5
°C
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 5
Figure 6
T1,T2
T1,T2
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(ID)
as a function of gate resistor
E = f(RG)
3
E (mWs)
E (mWs)
3
Eoff High T
2,5
2,5
2
2
Eoff High T
Eoff Low T
1,5
Eon High T
1,5
Eoff Low T
Eon High T
Eon Low T
1
1
Eon Low T
0,5
0,5
0
0
0
20
40
60
80
0
I C (A)
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω)
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6
0,06
E (mWs)
E (mWs)
0,06
0,05
0,05
0,04
0,04
0,03
0,03
Erec High T
Erec Low T
Erec High T
0,02
0,02
Erec Low T
0,01
0,01
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
Copyright by Vincotech
4
8
12
16
R G ( Ω ) 20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
40
A
6
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 9
Figure 10
T1,T2
T1,T2
Typical switching times as a
Typical switching times as a
function of collector current
t = f(ID)
function of gate resistor
t = f(RG)
1
t ( ms)
t ( ms)
1
tdoff
tdoff
0,1
0,1
tf
tdon
tr
tdon
tf
0,01
0,01
tr
0,001
0,001
0
20
40
60
I D (A)
0
80
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
D1,D2,D3,D4,D5,D6
t rr( ms)
t rr( ms)
0,02
0,016
D1,D2,D3,D4,D5,D6
0,02
0,016
trr High T
trr Low T
trr High T
0,012
0,012
trr Low T
0,008
0,008
0,004
0,004
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
40
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/125
700
40
15
8
12
16
R Gon (W)
20
°C
V
A
V
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 13
Figure 14
D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,3
Qrr ( µC)
Qrr ( µC)
0,3
0,25
0,25
Qrr Low T
0,2
0,2
Qrr High T
Qrr High T
0,15
0,15
0,1
0,1
0,05
0,05
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
Qrr Low T
20
40
60
I C (A)
80
0
4
8
12
16
R Gon ( Ω)
20
At
25/125
700
15
4
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
700
40
15
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6
50
IrrM (A)
IrrM (A)
50
D1,D2,D3,D4,D5,D6
40
40
IRRM Low T
IRRM High T
30
30
20
20
10
10
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
40
60
I C (A)
80
°C
V
V
Ω
Copyright by Vincotech
8
0
4
At
Tj =
VR =
IF =
VGS =
25/125
700
40
15
8
12
16
R Gon (W)
20
°C
V
A
V
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 17
Figure 18
D1,D2,D3,D4,D5,D6
D1,D2,D3,D4,D5,D6
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
15000
dIrec/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
dI0/dt
dIrec/dtLow T
12000
dI0/dt
dIrec/dtLow T
dIrec/dt
12000
dIrec/dtHigh T
9000
9000
dIrec/dtHigh T
di0/dtHigh T
6000
dI0/dtLow T
6000
di0/dtLow T
3000
3000
dI0/dtHigh T
0
0
0
20
40
60
80
I C (A)
0
At
Tj =
VCE =
25/125
700
°C
V
Tj =
VR =
VGE =
Rgon =
15
4
V
Ω
IF =
VGS =
4
8
12
R Gon ( Ω)
16
20
At
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
700
40
15
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
T1,T2
100
ZthJH (K/W)
ZthJH (K/W)
100
D1,D2,D3,D4,D5,D6
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
10-4
10-3
10-2
10-1
100
t p (s)
10-5
101 10
At
10-4
10-3
10-2
10-1
100
t p (s)
101 10
At
D=
RthJH =
tp / T
0,35
D=
RthJH =
K/W
tp / T
0,62
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,080
0,161
0,072
0,035
R (C/W)
0,042
0,072
0,218
0,128
0,125
Tau (s)
0,780
0,100
0,030
0,002
Copyright by Vincotech
9
Tau (s)
2,693
0,483
0,064
0,017
0,004
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 21
Figure 22
T1,T2
T1,T2
Power dissipation as a
Collector/Drain current as a
function of heatsink temperature
Ptot = f(Th)
function of heatsink temperature
IC = f(Th)
60
IC (A)
Ptot (W)
500
400
45
300
30
200
15
100
0
0
0
At
Tj =
30
60
150
90
120
Th ( o C)
150
0
At
Tj =
VGS =
ºC
Figure 23
Power dissipation as a
30
60
150
15
function of heatsink temperature
Ptot = f(Th)
D1,D2,D3,D4,D5,D6
60
IF (A)
Ptot (W)
300
150
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
D1,D2,D3,D4,D5,D6
120 Th ( o C)
90
250
45
200
150
30
100
15
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
ºC
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
T1/(D1,D2,D3) , T2/(D4,D5,D6)
Figure 25
Safe operating area as a function
Figure 26
Gate voltage vs Gate charge
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
T1,T2
T1,T2
IC (A)
UGE (V)
16
10
200V
14
600V
3
12
10
102
400V
10uS
8
10
1
6
100uS
1mS
10mS
4
100mS
2
100
DC
0
10-1
100
101
At
D=
Th =
VGE =
103
102
0
V CE (V)
At
IC =
single pulse
ºC
80
V
15
Tjmax
ºC
Tj =
Figure 29
Reverse bias safe operating area
50
40
100
150
200
Qg (nC) 250
A
T1,T2
IC = f(VCE)
IC (A)
180
IC MAX
160
Ic CHIP
140
120
MODULE
100
80
Ic
60
VCE MAX
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tvj =
150
ºC
Copyright by Vincotech
11
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
D7,D8
Figure 1
Figure 2
D7,D8
D7,D8
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
IF= f(VF)
as a function of pulse width
ZthJH = f(tp)
101
ZthJC (K/W)
IF (A)
75
60
100
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10-1
15
0
0
0,4
At
Tj =
tp =
0,8
1,2
V F (V)
10-2
1,6
10-5
10-4
D=
RthJH =
tp / T
10-3
10-2
10-1
100
t p (s)
10110
At
25/125
250
°C
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
1,04
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D7,D8
150
D7,D8
Ptot (W)
IF (A)
50
120
40
90
30
60
20
30
10
0
0
0
At
Tj =
30
150
60
90
120
o
T h ( C)
150
0
At
Tj =
ºC
Copyright by Vincotech
12
30
150
60
90
120
o
T h ( C)
150
ºC
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
13
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Switching Definitions Boost
General conditions
Tj
=
125 °C
Rgon
Rgoff
=
=
4Ω
4Ω
Figure 1
Figure 2
IGBT
IGBT
Turn-off Switching Waveforms & definition of tdoff, tEoff
Turn-on Switching Waveforms & definition of tdon, tEon
(tEoff = integrating time for Eoff)
(tEon = integrating time for Eon)
175
%
140
%
120
IC
150
tdoff
VCE
125
100
VCE 90%
VGE 90%
VCE
100
80
IC
75
60
tdon
tEoff
40
VGE
50
20
25
0
0
tEon
VGE
-20
-0,15
-0,05
0,05
0,15
0,25
0,35
0,45
-25
2,95
0,55
0,65
time (us)
3
VGE (0%) =
VGE (100%) =
VC (100%) =
0
15
700
V
V
V
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
40
0,216
0,583
A
µs
µs
IC (100%) =
tdon =
tEon =
Figure 3
VCE 3%
IC 10%
VGE 10%
IC 1%
3,05
3,1
0
15
V
V
700
40
0,023
0,088
V
A
µs
µs
3,15
Figure 4
IGBT
Turn-off Switching Waveforms & definition of tf
time(us)
3,2
IGBT
Turn-on Switching Waveforms & definition of tr
140
%
175
IC
%
120
150
fitted
VCE
IC
100
125
IC 90%
VCE
80
100
IC 90%
IC 60%
60
75
IC 40%
40
20
25
IC10%
-20
0,09
VC (100%) =
IC (100%) =
tf =
IC 10%
tf
0
0,14
0,19
700
40
0,032
Copyright by Vincotech
tr
50
0
0,24
-25
2,975
0,29
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
14
3
3,025
700
40
0,011
3,05
3,075
time(us) 3,1
V
A
µs
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Switching Definitions Boost
Figure 5
Figure 6
IGBT
Turn-off Switching Waveforms & definition of tEoff
IGBT
Turn-on Switching Waveforms & definition of tEon
120
%
125
%
Eoff
Pon
Eon
Poff
100
100
80
75
60
50
40
25
20
VCE 3%
VGE 10%
VGE 90%
0
0
tEoff
tEon
IC 1%
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
27,92
1,68
0,583
0,3
0,4
0,5
-25
2,95
0,6
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
3
3,05
27,92
0,63
0,0877
3,1
3,15
time(us)
3,2
kW
mJ
µs
IGBT
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
fitted
-50
IRRM 90%
IRRM 100%
-100
3,02
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
3,03
3,04
3,05
700
40
-28
0,013
V
A
A
µs
Copyright by Vincotech
3,06
3,07
3,08
time(us)
15
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Switching Definitions Boost
Figure 8
Figure 9
FWD
Turn-on Switching Waveforms & definition of tQrr
FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
(tQrr = integrating time for Qrr)
150
175
%
%
150
Id
100
Qrr
Erec
125
100
50
tQrr
tErec
75
0
50
Prec
25
-50
0
-100
3,01
3,025
3,04
3,055
3,07
3,085
-25
3,01
3,1
3,025
3,04
3,055
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
40
0,19
0,02
Copyright by Vincotech
3,07
3,085
3,1
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
27,92
0,03
0,02
kW
mJ
µs
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
V23990-P629-L99-PM
in DataMatrix as
P629-L99
in packaging barcode as
P629-L99
Outline
Pinout
Copyright by Vincotech
17
03.06.2014 / .Revision: 5
V23990-P629-L99-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
03.06.2014 / .Revision: 5