V23990-P629-L99-PM datasheet flow BOOST 0 1200V/40A Features flow 0 17mm housing ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V SiC diode ● Antiparallel IGBT protection diode with high current Target Applications ● solar inverter Schematic Types ● V23990-P629-L99-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 45 45 A 200 A 200 A2s 68 102 W Tjmax 150 °C VCES 1200 V 55 55 A tp limited by Tjmax 160 A Tj≤150°C VCE<=VCES 160 A 202 306 W 25 V 10 600 µs V 150 °C D7,D8 Repetitive peak reverse voltage VRRM Forward average current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=150°C Tj=Tjmax Th=80°C Tc=80°C T1,T2 Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Tc=80°C 54 55 A Tj=25°C 213 A 141 A 154 234 W 175 °C 1200 V 12 15 A 28 A D1,D2,D3,D4,D5,D6 * Peak Repetitive Reverse Voltage VRRM Th=80°C Forward average current IFAV Tj=Tjmax Surge forward current IFSM tp=10ms Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax * The values was measured on 3 diodes in paralell D9,D10 VRRM Tc=25°C Forward average current IFAV Tj=Tjmax Surge non repetitive forward current IFSM tp=10ms half sine wave Power dissipation per Diode Ptot Tj=Tjmax Peak Repetitive Reverse Voltage Th=80°C Tc=80°C Th=80°C Tc=80°C 33 49 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech t=2s DC voltage 2 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,13 1,09 0,93 0,80 0,008 0,011 1,9 D7,D8 Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 25 1500 V Ω 0,05 Thermal foil thickness=76um Kunze foil KUALF5 V mA K/W 1,04 T1,T2 Gate emitter threshold voltage VGE(th) 15 VCE(sat) 15 Collector-emitter cut-off ICES 0 Gate-emitter leakage current IGES 25 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 40 1200 tf Eon Turn-off energy loss per pulse Eoff Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,5 5,5 7,5 1 2,74 3,01 3,5 1 300 none tr td(off) Turn-on energy loss per pulse Rgoff=4 Ω Rgon=4 Ω Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate f=1MHz RthJH Thermal foil thickness=76um Kunze foil KUALF5 Thermal resistance chip to heatsink per chip 0,00025 700 15 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 23,2 22,6 10 11,2 186,4 215,8 11,1 32,3 0,542 0,630 0,850 1,679 ns mWs 3200 30 f=1MHz 370 Tj=25°C pF 125 30 Tj=25°C 220 330 nC K/W 0,35 D1,D2,D3,D4,D5,D6 * Forward voltage VF Reverse leakage current Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 30 700 Rgon=4 Ω 15 700 40 di(rec)max /dt RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,49 1,77 1,9 750 29,24 28,42 11,7 12,5 0,187 0,19 0,026 0,028 7553 7097 Thermal foil thickness=76um Kunze foil KUALF5 V µA A ns µC mWs A/µs 0,62 K/W 1,98 1,82 V 2,15 K/W D9,D10 Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 4 Tj=25°C Tj=125°C Thermal foil thickness=76um Kunze foil KUALF5 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant +4,5 % T=25°C 210 mW T=25°C 3,5 mW/K K B-value B(25/50) T=25°C 3884 B-value B(25/100) T=25°C 3964 Vincotech NTC Reference Ω 21511 -4,5 K F ** Values are calculated for Phase change material Copyright by Vincotech 3 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet D9,D10 Figure 25 Figure 26 D9,D10 D9,D10 Typical diode forward current as Diode transient thermal impedance a function of forward voltage IF = f(VF) as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 12 9 100 6 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 3 0 0 0,5 At tp = 1 1,5 2 2,5 3 10-2 V F (V) 3,5 10-5 10-3 tp / T 2,15 K/W 10-2 10-1 t p (s) 100 101 10 At µs 250 Tj = °C 25/125 Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) D= RthJH = Phase change material RthJH = 1,49 K/W Figure 28 Forward current as a function of heatsink temperature IF = f(Th) IF (A) D9,D10 70 Ptot (W) 10-4 D9,D10 15 60 12 50 9 40 30 6 20 3 10 0 0 0 At Tj = 30 150 60 90 120 Th ( o C) 150 0 At Tj = ºC Copyright by Vincotech 4 30 150 60 90 120 Th ( o C) 150 ºC 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 1 Figure 2 T1,T2 T1,T2 Typical output characteristics ID = f(VDS) 120 120 IC(A) IC (A) Typical output characteristics ID = f(VDS) 90 90 60 60 30 30 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 5 D1,D2,D3,D4,D5,D6 120 IF (A) ID (A) 40 V CE (V) µs 250 126 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) T1,T2 4 30 90 20 60 10 30 0 0 0 At tp = VDS = 2 100 10 4 µs V Copyright by Vincotech 6 Tj = 8 25/125 0 V GS (V) 10 At tp = °C 5 1 250 2 µs 3 Tj = 4 25/125 V F (V) 5 °C 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 5 Figure 6 T1,T2 T1,T2 Typical switching energy losses Typical switching energy losses as a function of collector current E = f(ID) as a function of gate resistor E = f(RG) 3 E (mWs) E (mWs) 3 Eoff High T 2,5 2,5 2 2 Eoff High T Eoff Low T 1,5 Eon High T 1,5 Eoff Low T Eon High T Eon Low T 1 1 Eon Low T 0,5 0,5 0 0 0 20 40 60 80 0 I C (A) With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 0,06 E (mWs) E (mWs) 0,06 0,05 0,05 0,04 0,04 0,03 0,03 Erec High T Erec Low T Erec High T 0,02 0,02 Erec Low T 0,01 0,01 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω Copyright by Vincotech 4 8 12 16 R G ( Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = 40 A 6 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 9 Figure 10 T1,T2 T1,T2 Typical switching times as a Typical switching times as a function of collector current t = f(ID) function of gate resistor t = f(RG) 1 t ( ms) t ( ms) 1 tdoff tdoff 0,1 0,1 tf tdon tr tdon tf 0,01 0,01 tr 0,001 0,001 0 20 40 60 I D (A) 0 80 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) D1,D2,D3,D4,D5,D6 t rr( ms) t rr( ms) 0,02 0,016 D1,D2,D3,D4,D5,D6 0,02 0,016 trr High T trr Low T trr High T 0,012 0,012 trr Low T 0,008 0,008 0,004 0,004 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 40 60 I C (A) 0 80 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 7 4 25/125 700 40 15 8 12 16 R Gon (W) 20 °C V A V 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 13 Figure 14 D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Qrr = f(IC) function of IGBT turn on gate resistor Qrr = f(Rgon) 0,3 Qrr ( µC) Qrr ( µC) 0,3 0,25 0,25 Qrr Low T 0,2 0,2 Qrr High T Qrr High T 0,15 0,15 0,1 0,1 0,05 0,05 0 0 0 At At Tj = VCE = VGE = Rgon = Qrr Low T 20 40 60 I C (A) 80 0 4 8 12 16 R Gon ( Ω) 20 At 25/125 700 15 4 Tj = VR = IF = VGS = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 700 40 15 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) D1,D2,D3,D4,D5,D6 50 IrrM (A) IrrM (A) 50 D1,D2,D3,D4,D5,D6 40 40 IRRM Low T IRRM High T 30 30 20 20 10 10 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 40 60 I C (A) 80 °C V V Ω Copyright by Vincotech 8 0 4 At Tj = VR = IF = VGS = 25/125 700 40 15 8 12 16 R Gon (W) 20 °C V A V 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 17 Figure 18 D1,D2,D3,D4,D5,D6 D1,D2,D3,D4,D5,D6 Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 15000 15000 dIrec/dt direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dtLow T 12000 dI0/dt dIrec/dtLow T dIrec/dt 12000 dIrec/dtHigh T 9000 9000 dIrec/dtHigh T di0/dtHigh T 6000 dI0/dtLow T 6000 di0/dtLow T 3000 3000 dI0/dtHigh T 0 0 0 20 40 60 80 I C (A) 0 At Tj = VCE = 25/125 700 °C V Tj = VR = VGE = Rgon = 15 4 V Ω IF = VGS = 4 8 12 R Gon ( Ω) 16 20 At Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 700 40 15 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) T1,T2 100 ZthJH (K/W) ZthJH (K/W) 100 D1,D2,D3,D4,D5,D6 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 10-4 10-3 10-2 10-1 100 t p (s) 10-5 101 10 At 10-4 10-3 10-2 10-1 100 t p (s) 101 10 At D= RthJH = tp / T 0,35 D= RthJH = K/W tp / T 0,62 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,080 0,161 0,072 0,035 R (C/W) 0,042 0,072 0,218 0,128 0,125 Tau (s) 0,780 0,100 0,030 0,002 Copyright by Vincotech 9 Tau (s) 2,693 0,483 0,064 0,017 0,004 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 21 Figure 22 T1,T2 T1,T2 Power dissipation as a Collector/Drain current as a function of heatsink temperature Ptot = f(Th) function of heatsink temperature IC = f(Th) 60 IC (A) Ptot (W) 500 400 45 300 30 200 15 100 0 0 0 At Tj = 30 60 150 90 120 Th ( o C) 150 0 At Tj = VGS = ºC Figure 23 Power dissipation as a 30 60 150 15 function of heatsink temperature Ptot = f(Th) D1,D2,D3,D4,D5,D6 60 IF (A) Ptot (W) 300 150 ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) D1,D2,D3,D4,D5,D6 120 Th ( o C) 90 250 45 200 150 30 100 15 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 ºC 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet T1/(D1,D2,D3) , T2/(D4,D5,D6) Figure 25 Safe operating area as a function Figure 26 Gate voltage vs Gate charge of drain-source voltage ID = f(VDS) VGS = f(Qg) T1,T2 T1,T2 IC (A) UGE (V) 16 10 200V 14 600V 3 12 10 102 400V 10uS 8 10 1 6 100uS 1mS 10mS 4 100mS 2 100 DC 0 10-1 100 101 At D= Th = VGE = 103 102 0 V CE (V) At IC = single pulse ºC 80 V 15 Tjmax ºC Tj = Figure 29 Reverse bias safe operating area 50 40 100 150 200 Qg (nC) 250 A T1,T2 IC = f(VCE) IC (A) 180 IC MAX 160 Ic CHIP 140 120 MODULE 100 80 Ic 60 VCE MAX 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tvj = 150 ºC Copyright by Vincotech 11 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet D7,D8 Figure 1 Figure 2 D7,D8 D7,D8 Typical diode forward current as Diode transient thermal impedance a function of forward voltage IF= f(VF) as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 75 60 100 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10-1 15 0 0 0,4 At Tj = tp = 0,8 1,2 V F (V) 10-2 1,6 10-5 10-4 D= RthJH = tp / T 10-3 10-2 10-1 100 t p (s) 10110 At 25/125 250 °C µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 1,04 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) D7,D8 150 D7,D8 Ptot (W) IF (A) 50 120 40 90 30 60 20 30 10 0 0 0 At Tj = 30 150 60 90 120 o T h ( C) 150 0 At Tj = ºC Copyright by Vincotech 12 30 150 60 90 120 o T h ( C) 150 ºC 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 13 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Switching Definitions Boost General conditions Tj = 125 °C Rgon Rgoff = = 4Ω 4Ω Figure 1 Figure 2 IGBT IGBT Turn-off Switching Waveforms & definition of tdoff, tEoff Turn-on Switching Waveforms & definition of tdon, tEon (tEoff = integrating time for Eoff) (tEon = integrating time for Eon) 175 % 140 % 120 IC 150 tdoff VCE 125 100 VCE 90% VGE 90% VCE 100 80 IC 75 60 tdon tEoff 40 VGE 50 20 25 0 0 tEon VGE -20 -0,15 -0,05 0,05 0,15 0,25 0,35 0,45 -25 2,95 0,55 0,65 time (us) 3 VGE (0%) = VGE (100%) = VC (100%) = 0 15 700 V V V VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 40 0,216 0,583 A µs µs IC (100%) = tdon = tEon = Figure 3 VCE 3% IC 10% VGE 10% IC 1% 3,05 3,1 0 15 V V 700 40 0,023 0,088 V A µs µs 3,15 Figure 4 IGBT Turn-off Switching Waveforms & definition of tf time(us) 3,2 IGBT Turn-on Switching Waveforms & definition of tr 140 % 175 IC % 120 150 fitted VCE IC 100 125 IC 90% VCE 80 100 IC 90% IC 60% 60 75 IC 40% 40 20 25 IC10% -20 0,09 VC (100%) = IC (100%) = tf = IC 10% tf 0 0,14 0,19 700 40 0,032 Copyright by Vincotech tr 50 0 0,24 -25 2,975 0,29 time (us) VC (100%) = IC (100%) = tr = V A µs 14 3 3,025 700 40 0,011 3,05 3,075 time(us) 3,1 V A µs 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Switching Definitions Boost Figure 5 Figure 6 IGBT Turn-off Switching Waveforms & definition of tEoff IGBT Turn-on Switching Waveforms & definition of tEon 120 % 125 % Eoff Pon Eon Poff 100 100 80 75 60 50 40 25 20 VCE 3% VGE 10% VGE 90% 0 0 tEoff tEon IC 1% -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 27,92 1,68 0,583 0,3 0,4 0,5 -25 2,95 0,6 time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 3 3,05 27,92 0,63 0,0877 3,1 3,15 time(us) 3,2 kW mJ µs IGBT Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 IRRM 10% fitted -50 IRRM 90% IRRM 100% -100 3,02 Vd (100%) = Id (100%) = IRRM (100%) = trr = 3,03 3,04 3,05 700 40 -28 0,013 V A A µs Copyright by Vincotech 3,06 3,07 3,08 time(us) 15 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Switching Definitions Boost Figure 8 Figure 9 FWD Turn-on Switching Waveforms & definition of tQrr FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 150 175 % % 150 Id 100 Qrr Erec 125 100 50 tQrr tErec 75 0 50 Prec 25 -50 0 -100 3,01 3,025 3,04 3,055 3,07 3,085 -25 3,01 3,1 3,025 3,04 3,055 time(us) Id (100%) = Qrr (100%) = tQrr = 40 0,19 0,02 Copyright by Vincotech 3,07 3,085 3,1 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 16 27,92 0,03 0,02 kW mJ µs 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code V23990-P629-L99-PM in DataMatrix as P629-L99 in packaging barcode as P629-L99 Outline Pinout Copyright by Vincotech 17 03.06.2014 / .Revision: 5 V23990-P629-L99-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 03.06.2014 / .Revision: 5