10-FZ07NBA100SM10-M305L68 datasheet flowBoost 0 650 V / 100 A Features flow0 12mm housing ● symmetric booster ● ultra high switching frequency ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ07NBA100SM10-M305L68 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 80 80 A tp limited by Tjmax 300 A Tj≤150°C VCE<=VCES 200 A 136 206 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 650 V 18 24 A 20 A 33 50 W 175 °C Boost IGBT (T1, T2) Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpuls Turn off safe operating area Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Boost Inverse Diode (D10, D20) Peak Repetitive Reverse Voltage Forward average current IFAV Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 70 70 A 700 A 2450 As 200 A 102 155 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,33 mm Boost FWD (D1, D2) Peak Repetitive Reverse Voltage VRRM Forward average current IFAV Surge forward current IFSM Th=80°C Tj=Tjmax Tc=80°C tp=10ms I2t-value Tj=25°C I2t Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 2 Thermal Properties Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 2 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,3 4 4,7 1 1,63 1,78 2,5 Boost IGBT (T1, T2) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,001 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH 40 Rgoff=4 Ω Rgon=4 Ω ±15 350 70 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) 0,080 V 24 23 10 11 135 156 5 9 0,700 1,160 0,310 0,560 ns mWs 6000 f=1MHz 0 Tj=25°C 25 100 pF 22 15 520 100 Tj=25°C Phase-Change Material 240 nC 0,70 K/W 1,73 1,60 V 2,87 K/W Boost Inverse Diode (D10, D20) Diode forward voltage Thermal resistance chip to heatsink VF RthJH 20 Tj=25°C Tj=125°C Phase-Change Material Boost FWD (D1, D2) Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current 650 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 100 Rgon=4 Ω ±15 350 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink RthJH 70 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,29 1,69 2,5 20 73 121 26,4 68,4 1,3 3,9 10424 5304 0,23 0,79 Phase-Change Material V µA A ns µC A/µs mWs 0,93 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tj=100°C Power dissipation constant -12 +14 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K B Vincotech NTC Reference copyright Vincotech 3 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) T1, T2 Figure 1 Typical output characteristics IC = f(VCE) T1, T2 Figure 2 Typical output characteristics IC = f(VCE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from µs 250 25 °C 5 V to 15 V in steps of 1 V T1, T2 Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 5 V to 15 V in steps of 1 V D1,D2 Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 V CE (V) IC (A) IF (A) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = tp = VCE = 2 25/125 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At Tj = tp = °C µs V 4 0,8 25/125 250 1,6 2,4 3,2 V F (V) 4 °C µs 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) T1, T2 Figure 5 Typical switching energy losses as a function of collector current E = f(IC) T1, T2 Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 E (mWs) E (mWs) 2,5 2 Eon High T 2 Eon High T Eon Low T 1,5 1,5 Eon Low T Eoff High T 1 1 Eoff High T Eoff Low T Eoff Low T 0,5 0,5 0 0 0 25 50 75 100 125 150 0 4 8 12 16 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 15 V Rgon = 4 Ω Rgoff = 4 Ω RG(Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = A 70 D1,D2 Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 1,5 E (mWs) D1,D2 Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 1,5 1,2 1,2 0,9 0,9 0,6 0,6 Erec High T Erec Low T 0,3 0,3 Erec Low T 0 0 0 25 50 75 100 125 0 150 4 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 15 V Rgon = 4 Ω copyright Vincotech 8 12 16 RG (Ω ) 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 15 V IC = 70 A 5 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) T1, T2 Figure 9 Typical switching times as a function of collector current t = f(IC) T1, T2 Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff 0,1 0,1 tdon tdon tr tr tf tf 0,01 0,01 0,001 0,001 0 25 50 75 100 125 0 150 4 8 12 16 20 RG(Ω ) I C (A) With an inductive load at Tj = °C 125 VCE = 350 V VGE = 15 V Rgon = 4 Ω Rgoff = 4 Ω With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V IC = 70 A D1,D2 Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) D1,D2 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,15 t rr(ms) 0,15 0,12 trr High T 0,12 trr High T 0,09 0,09 0,06 0,06 trr Low T 0,03 0,03 0,00 trr Low T 0,00 0 25 50 75 100 125 150 0 4 8 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 15 4 copyright Vincotech 12 16 20 R gon ( Ω) At Tj = VR = IF = VGE = °C V V Ω 6 25/125 350 70 15 °C V A V 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) D1,D2 Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) D1,D2 Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 6 Qrr (µC) Qrr (µC) Qrr High T 5 5 4 4 Qrr High T 3 3 Qrr Low T 2 2 1 1 Qrr Low T 0 0 25 0 50 75 100 125 4 8 12 16 25/125 350 15 4 At Tj = VR = IF = VGE = °C V V Ω D1,D2 Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 20 R gon ( Ω) I C (A) At At Tj = VCE = VGE = Rgon = °C V A V 25/125 350 70 15 D1,D2 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 175 175 IrrM (A) IrrM (A) 0 150 IRRM High T 150 150 125 125 100 100 IRRM Low T 75 75 IRRM High T 50 50 25 25 0 0 0 25 50 75 100 125 150 0 I C (A) At Tj = VCE = VGE = Rgon = IRRM Low T 25/125 350 15 4 copyright Vincotech At Tj = VR = IF = VGE = °C V V Ω 7 4 25/125 350 70 15 8 12 16 R gon ( Ω) 20 °C V A V 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) D1,D2 Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 16000 14000 16000 14000 12000 12000 10000 10000 8000 D1,D2 Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 dIrec/dtLow T dIo/dtLow T 6000 6000 dIrec/dtLow T di0/dtHigh T 4000 4000 dIrec/dtHigh T dI0/dtLow T dI0/dtHigh T 2000 2000 0 0 dIrec/dtHigh T 0 25 50 75 100 125 150 0 4 8 12 16 I C (A) At Tj = VCE = VGE = Rgon = 25/125 350 15 4 At Tj = VR = IF = VGE = °C V V Ω T1, T2 Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) -3 D1,D2 ZthJH (K/W) ZthJH (K/W) 10 °C V A V 100 10-1 -2 25/125 350 70 15 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 20 R gon ( Ω) 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 tp / T 0,70 10-3 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 101 10 10-5 At D= RthJH = K/W 10-4 tp / T 0,93 10-3 FWD thermal model values R (C/W) 0,07 0,12 0,29 0,13 0,06 0,04 R (C/W) 0,07 0,16 0,50 0,08 0,07 0,04 copyright Vincotech 8 10-1 100 t p (s) 101 10 K/W IGBT thermal model values Tau (s) 1,4E+00 2,4E-01 6,5E-02 1,7E-02 4,6E-03 5,2E-04 10-2 Tau (s) 3,0E+00 4,8E-01 9,7E-02 2,5E-02 4,9E-03 1,0E-03 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost IGBT (T1, T2) / Boost FWD (D1, D2) T1, T2 Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) T1, T2 Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 300 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 D1,D2 Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V D1,D2 Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 80 Ptot (W) IF (A) 200 200 160 60 120 40 80 20 40 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 9 50 175 100 150 Th ( o C) 200 ºC 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Boost Inverse Diode (D10, D20) D10,D20 Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) D10,D20 Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 1 ZthJC (K/W) IF (A) 10 25 20 10 0 10 -1 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 5 0 0 At Tj = tp = 0,5 1 1,5 2 2,5 V F (V) 10-2 3 °C µs 25/125 250 D10,D20 Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 2,87 10-3 10-2 10-1 100 10110 K/W D10,D20 Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 80 t p (s) Ptot (W) IF (A) 25 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 10 50 175 100 150 Th ( o C) 200 ºC 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 11 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Switching Definitions General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω T1, T2 Figure 1 T1, T2 Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 300 % % VCE 125 IC 250 tdoff 100 200 VCE 90% VGE 90% 75 150 IC VGE 50 VCE 100 tEoff VGE tdon 25 50 IC 1% VGE 10% 0 IC 10% 0 -25 -0,2 VCE 3% tEon -50 -0,1 0 0,1 0,2 0,3 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs 0 15 350 75 0,16 0,20 2,95 T1, T2 Figure 3 3 3,05 0 15 350 75 0,02 0,11 3,15 time(us) 3,2 V V V A µs µs T1, T2 Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 300 % 140 % 120 3,1 fitted IC IC 250 VCE 100 200 IC 90% 80 150 IC 60% 60 VCE 100 IC 40% 40 IC 90% tr 50 20 IC10% -20 0,06 IC 10% 0 tf 0 -50 0,08 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,12 350 75 0,009 V A µs 0,14 0,16 0,18 time (us) 2,9 VC (100%) = IC (100%) = tr = 12 2,95 3 350 75 0,011 3,05 3,1 time(us) 3,15 V A µs 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Switching Definitions T1, T2 Figure 5 T1, T2 Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 160 120 % Pon % 140 Eoff 100 Poff 120 Eon 80 100 60 80 60 40 40 20 VGE 90% 20 IC 1% 0 tEoff -20 -0,16 -0,11 -0,06 Poff (100%) = Eoff (100%) = tEoff = -0,01 0,04 26,25 0,56 0,20 VCE 3% VGE 10% 0 0,09 0,14 -20 2,95 0,19 0,24 time (us) Pon (100%) = Eon (100%) = tEon = kW mJ µs tEon 2,98 3,01 26,25 1,16 0,11 3,04 3,07 3,1 3,13 3,16 time(us) kW mJ µs T1, T2 Figure 7 Turn-off Switching Waveforms & definition of trr 120 % 80 Id trr 40 Vd 0 IRRM 10% -40 fitted -80 -120 IRRM 90% -160 IRRM 100% -200 2,97 3 3,03 3,06 3,09 3,12 3,15 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 350 75 -121 0,07 V A A µs 13 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Switching Definitions D1,D2 Figure 8 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % Id % D1,D2 Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Prec Qrr 100 125 Erec tQrr 50 100 0 75 -50 50 -100 25 -150 0 -200 2,95 3 3,05 3,1 3,15 3,2 -25 2,95 3,25 tErec 3 3,05 3,1 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 75 3,91 0,14 3,15 3,2 3,25 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 14 26,25 0,79 0,14 kW mJ µs 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ07NBA100SM10-M305L68 in DataMatrix as M305L68 in packaging barcode as M305L68 Outline Pinout copyright Vincotech 15 27 Okt 2014 / Revision: 2 10-FZ07NBA100SM10-M305L68 datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 16 27 Okt 2014 / Revision: 2