10-FZ07NBA100SM10-M305L68 datasheet Maximum

10-FZ07NBA100SM10-M305L68
datasheet
flowBoost 0
650 V / 100 A
Features
flow0 12mm housing
● symmetric booster
● ultra high switching frequency
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ07NBA100SM10-M305L68
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
80
80
A
tp limited by Tjmax
300
A
Tj≤150°C
VCE<=VCES
200
A
136
206
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
650
V
18
24
A
20
A
33
50
W
175
°C
Boost IGBT (T1, T2)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpuls
Turn off safe operating area
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Boost Inverse Diode (D10, D20)
Peak Repetitive Reverse Voltage
Forward average current
IFAV
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
70
70
A
700
A
2450
As
200
A
102
155
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,33
mm
Boost FWD (D1, D2)
Peak Repetitive Reverse Voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
Th=80°C
Tj=Tjmax
Tc=80°C
tp=10ms
I2t-value
Tj=25°C
I2t
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
2
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
2
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,3
4
4,7
1
1,63
1,78
2,5
Boost IGBT (T1, T2)
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,001
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
40
Rgoff=4 Ω
Rgon=4 Ω
±15
350
70
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
0,080
V
24
23
10
11
135
156
5
9
0,700
1,160
0,310
0,560
ns
mWs
6000
f=1MHz
0
Tj=25°C
25
100
pF
22
15
520
100
Tj=25°C
Phase-Change
Material
240
nC
0,70
K/W
1,73
1,60
V
2,87
K/W
Boost Inverse Diode (D10, D20)
Diode forward voltage
Thermal resistance chip to heatsink
VF
RthJH
20
Tj=25°C
Tj=125°C
Phase-Change
Material
Boost FWD (D1, D2)
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
650
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
100
Rgon=4 Ω
±15
350
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
70
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,29
1,69
2,5
20
73
121
26,4
68,4
1,3
3,9
10424
5304
0,23
0,79
Phase-Change
Material
V
µA
A
ns
µC
A/µs
mWs
0,93
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=100°C
Power dissipation constant
-12
+14
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100) Tol. ±3%
Tj=25°C
3996
K
B
Vincotech NTC Reference
copyright Vincotech
3
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
T1, T2
Figure 1
Typical output characteristics
IC = f(VCE)
T1, T2
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
5 V to 15 V in steps of 1 V
T1, T2
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
5 V to 15 V in steps of 1 V
D1,D2
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
V CE (V)
IC (A)
IF (A)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
tp =
VCE =
2
25/125
250
10
copyright Vincotech
4
6
8
V GE (V)
0
10
At
Tj =
tp =
°C
µs
V
4
0,8
25/125
250
1,6
2,4
3,2
V F (V)
4
°C
µs
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
T1, T2
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1, T2
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
E (mWs)
E (mWs)
2,5
2
Eon High T
2
Eon High T
Eon Low T
1,5
1,5
Eon Low T
Eoff High T
1
1
Eoff High T
Eoff Low T
Eoff Low T
0,5
0,5
0
0
0
25
50
75
100
125
150
0
4
8
12
16
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
RG(Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
A
70
D1,D2
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
1,5
E (mWs)
D1,D2
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
1,5
1,2
1,2
0,9
0,9
0,6
0,6
Erec High T
Erec Low T
0,3
0,3
Erec Low T
0
0
0
25
50
75
100
125
0
150
4
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
copyright Vincotech
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
15
V
IC =
70
A
5
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
T1, T2
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1, T2
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
0,1
0,1
tdon
tdon
tr
tr
tf
tf
0,01
0,01
0,001
0,001
0
25
50
75
100
125
0
150
4
8
12
16
20
RG(Ω )
I C (A)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
IC =
70
A
D1,D2
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
D1,D2
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,15
t rr(ms)
0,15
0,12
trr High T
0,12
trr High T
0,09
0,09
0,06
0,06
trr Low T
0,03
0,03
0,00
trr Low T
0,00
0
25
50
75
100
125
150
0
4
8
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
15
4
copyright Vincotech
12
16
20
R gon ( Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
25/125
350
70
15
°C
V
A
V
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
D1,D2
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
6
Qrr (µC)
Qrr (µC)
Qrr High T
5
5
4
4
Qrr High T
3
3
Qrr Low T
2
2
1
1
Qrr Low T
0
0
25
0
50
75
100
125
4
8
12
16
25/125
350
15
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
D1,D2
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
20
R gon ( Ω)
I C (A)
At
At
Tj =
VCE =
VGE =
Rgon =
°C
V
A
V
25/125
350
70
15
D1,D2
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
175
175
IrrM (A)
IrrM (A)
0
150
IRRM High T
150
150
125
125
100
100
IRRM Low T
75
75
IRRM High T
50
50
25
25
0
0
0
25
50
75
100
125
150
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
IRRM Low T
25/125
350
15
4
copyright Vincotech
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
4
25/125
350
70
15
8
12
16
R gon ( Ω)
20
°C
V
A
V
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
D1,D2
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
16000
14000
16000
14000
12000
12000
10000
10000
8000
D1,D2
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
8000
dIrec/dtLow T
dIo/dtLow T
6000
6000
dIrec/dtLow T
di0/dtHigh T
4000
4000
dIrec/dtHigh T
dI0/dtLow T
dI0/dtHigh T
2000
2000
0
0
dIrec/dtHigh T
0
25
50
75
100
125
150
0
4
8
12
16
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
15
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1, T2
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-3
D1,D2
ZthJH (K/W)
ZthJH (K/W)
10
°C
V
A
V
100
10-1
-2
25/125
350
70
15
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
20
R gon ( Ω)
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
tp / T
0,70
10-3
10-2
10-1
100
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
101 10
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,93
10-3
FWD thermal model values
R (C/W)
0,07
0,12
0,29
0,13
0,06
0,04
R (C/W)
0,07
0,16
0,50
0,08
0,07
0,04
copyright Vincotech
8
10-1
100
t p (s)
101 10
K/W
IGBT thermal model values
Tau (s)
1,4E+00
2,4E-01
6,5E-02
1,7E-02
4,6E-03
5,2E-04
10-2
Tau (s)
3,0E+00
4,8E-01
9,7E-02
2,5E-02
4,9E-03
1,0E-03
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost IGBT (T1, T2) / Boost FWD (D1, D2)
T1, T2
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1, T2
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
300
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
D1,D2
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
D1,D2
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
Ptot (W)
IF (A)
200
200
160
60
120
40
80
20
40
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
9
50
175
100
150
Th ( o C)
200
ºC
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Boost Inverse Diode (D10, D20)
D10,D20
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D10,D20
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
1
ZthJC (K/W)
IF (A)
10
25
20
10
0
10
-1
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
5
0
0
At
Tj =
tp =
0,5
1
1,5
2
2,5
V F (V)
10-2
3
°C
µs
25/125
250
D10,D20
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
2,87
10-3
10-2
10-1
100
10110
K/W
D10,D20
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
80
t p (s)
Ptot (W)
IF (A)
25
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
Th ( o C)
200
ºC
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
11
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Switching Definitions
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
T1, T2
Figure 1
T1, T2
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
300
%
%
VCE
125
IC
250
tdoff
100
200
VCE 90%
VGE 90%
75
150
IC
VGE
50
VCE
100
tEoff
VGE
tdon
25
50
IC 1%
VGE 10%
0
IC 10%
0
-25
-0,2
VCE 3%
tEon
-50
-0,1
0
0,1
0,2
0,3
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
15
350
75
0,16
0,20
2,95
T1, T2
Figure 3
3
3,05
0
15
350
75
0,02
0,11
3,15
time(us)
3,2
V
V
V
A
µs
µs
T1, T2
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
300
%
140
%
120
3,1
fitted
IC
IC
250
VCE
100
200
IC 90%
80
150
IC 60%
60
VCE
100
IC 40%
40
IC 90%
tr
50
20
IC10%
-20
0,06
IC 10%
0
tf
0
-50
0,08
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,1
0,12
350
75
0,009
V
A
µs
0,14
0,16
0,18
time (us)
2,9
VC (100%) =
IC (100%) =
tr =
12
2,95
3
350
75
0,011
3,05
3,1
time(us)
3,15
V
A
µs
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Switching Definitions
T1, T2
Figure 5
T1, T2
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
160
120
%
Pon
%
140
Eoff
100
Poff
120
Eon
80
100
60
80
60
40
40
20
VGE 90%
20
IC 1%
0
tEoff
-20
-0,16
-0,11
-0,06
Poff (100%) =
Eoff (100%) =
tEoff =
-0,01
0,04
26,25
0,56
0,20
VCE 3%
VGE 10%
0
0,09
0,14
-20
2,95
0,19
0,24
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
tEon
2,98
3,01
26,25
1,16
0,11
3,04
3,07
3,1
3,13
3,16
time(us)
kW
mJ
µs
T1, T2
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
80
Id
trr
40
Vd
0
IRRM 10%
-40
fitted
-80
-120
IRRM 90%
-160
IRRM 100%
-200
2,97
3
3,03
3,06
3,09
3,12
3,15
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
350
75
-121
0,07
V
A
A
µs
13
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Switching Definitions
D1,D2
Figure 8
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
Id
%
D1,D2
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Prec
Qrr
100
125
Erec
tQrr
50
100
0
75
-50
50
-100
25
-150
0
-200
2,95
3
3,05
3,1
3,15
3,2
-25
2,95
3,25
tErec
3
3,05
3,1
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
75
3,91
0,14
3,15
3,2
3,25
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
14
26,25
0,79
0,14
kW
mJ
µs
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ07NBA100SM10-M305L68
in DataMatrix as
M305L68
in packaging barcode as
M305L68
Outline
Pinout
copyright Vincotech
15
27 Okt 2014 / Revision: 2
10-FZ07NBA100SM10-M305L68
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
16
27 Okt 2014 / Revision: 2