70-W206NBA400SA-M786L Maximum Ratings

70-W206NBA400SA-M786L
flowBOOST 4w
600V/400A
Features
FlowSCREW 4w
● Symmetrical Booster
● Integrated DC-capacitor
● Low DC Inductance (<5nH)
● Transient Interface for optional
regeneration of switching losses
● Temperature Sensor
Target Applications
● UPS (3 Phase PFC)
● Solar inverter (Booster)
Schematic
Types
● 70-W206NBA400SA-M786L
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj≤150°C
VCE<=VCES
Turn off safe operating area
391
500
1200
A
A
1200
A
639
968
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
600
V
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
Forward average current
I2t-value
IFAV
Tj=Tjmax
Th=80°C
Tc=80°C
40
81
A
I2t
tp=10ms
Tj=25°C
45
A 2s
40
A
113
160
W
175
°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Revision: 1.1
70-W206NBA400SA-M786L
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
296
393
A
tbd.
A
tbd.
A2s
1200
A
419
634
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Input Boost FWD
Peak Repetitive Reverse Voltage
VRRM
Forward average current
IFAV
Surge forward current
IFSM
Th=80°C
Tj=Tjmax
Tc=80°C
tp=10ms
Tj=25°C
2
I2t-value
It
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
t=2s
DC voltage
2
Revision: 1.1
70-W206NBA400SA-M786L
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,46
1,59
2,1
Input Boost IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
400
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
0,0204
2400
0,5
tr
td(off)
tf
Fall time
0,0064
Rgoff=8 Ω
Rgon=8 Ω
±15/8
400
414
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
155
157
35
38
367
389
23
54,3
4,278
6,321
14,361
18,949
ns
mWs
24640
f=1MHz
0
25
pF
1536
Tj=25°C
732
±15
480
400
nC
2480
Tj=25°C
0,15
Phase-Change
Material
K/W
0,10
Input Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
20
Tj=25°C
Tj=125°C
1
1,45
1,28
2,1
V
0,84
Phase-Change
Material
K/W
0,56
Input Boost FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
400
600
Rgon=8 Ω
±15/8
Erec
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
400
414
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,57
1,58
V
108
314
398
153
200
16,44
30,70
5,49
10,48
9573
6028
µA
A
ns
µC
mWs
A/µs
0,23
Phase-Change
Material
K/W
0,15
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
R100=1486 Ω
T=25°C
Power dissipation constant
Ω
22000
T=25°C
-12
+14
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
B
3
Revision: 1.1
70-W206NBA400SA-M786L
Boost Inverse Diode
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
IF (A)
100
ZthJC (K/W)
Tj = Tjmax-25°C
Tj = 25°C
80
60
10
-1
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
0
0
At
tp =
0,5
1
1,5
2
2,5
10-2
V F (V) 3
10-5
At
D=
RthJH =
µs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
0,84
10-2
100
t p (s)
1012
10
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
250
10-1
IF (A)
Ptot (W)
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
4
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
1200
IC(A)
IC (A)
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGS from
µs
350
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
5
µs
350
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
1200
IF (A)
ID (A)
400
V CE (V)
Tj = 25°C
Tj = Tjmax-25°C
1000
320
800
Tj = Tjmax-25°C
240
600
160
400
Tj = 25°C
80
200
0
0
0
At
tp =
VDS =
2
350
10
4
6
8
10
0
V GS (V) 12
At
tp =
µs
V
Copyright by Vincotech
5
0,5
350
1
1,5
2
2,5
3
V F (V)
3,5
µs
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
E (mWs)
35
E (mWs)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
30
60
Eon High T
Eon Low T
50
Eoff Low T
25
40
Eoff Low T
Eoff High T
20
30
15
20
10
Eon High T
10
5
Eon Low T
0
0
0
0
100
200
300
400
500
600
2
4
6
8
I C (A)700
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1
Ω
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+15/-8
V
ID =
414
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
E (mWs)
12
E (mWs)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
12
10
10
8
8
6
6
Erec Low T
4
4
2
2
0
Erec High T
Erec Low T
0
0
100
200
300
400
500
600
I C (A)
700
0
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1
Ω
Copyright by Vincotech
2
4
6
8
R G ( Ω ) 10
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+15/-8
V
ID =
414
A
6
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( ms)
t ( ms)
10
tdoff
1
1
tdoff
tdon
tdon
0,1
tr
0,1
tr
tf
tf
0,01
0,01
0,001
0,001
0
100
200
300
400
500
600
0
700
I D (A)
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+15/-8
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
R G (W)
10
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+15/-8
V
IC =
414
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( ms)
t rr( ms)
0,3
0,3
0,25
0,25
0,2
0,2
trr High T
trr Low T
trr High T
0,15
0,15
trr Low T
0,1
0,1
0,05
0,05
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A) 700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
7
2
25/125
400
414
+15/-8
4
6
8
10
R Gon (W)
°C
V
A
V
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr ( µC)
35
Qrr ( µC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr High T
35
30
30
25
25
Qrr High T
20
20
Qrr Low T
15
15
Qrr Low T
10
10
5
5
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A)700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25/125
400
414
+15/-8
4
6
8
10
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
600
IrrM (A)
600
R Gon ( Ω)
IRRM High T
500
500
400
400
IRRM Low T
300
300
200
200
100
100
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
0
I C (A) 700
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
8
2
25/125
400
414
+15/-8
4
6
8
R Gon (W)
10
°C
V
A
V
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
20000
direc / dt (A/ µs)
direc / dt (A/ µs)
20000
dI0/dt
dIrec/dt
16000
dI0/dt
dIrec/dt
16000
di0/dtHigh T
12000
12000
di0/dtLow T
dIrec/dtLow T
8000
8000
dIrec/dtHigh T
dI0/dtHigh T
4000
dI0/dtLow T
4000
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
400
+15/-8
1
200
300
400
500
600
I C (A)700
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
400
414
+15/-8
4
6
R Gon ( Ω)10
8
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
2
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
-1
10
-2
10
-3
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
101 10
At
D=
RthJH =
tp / T
0,15
10
K/W
10-4
10-3
R (C/W)
2,71E-02
2,75E-02
5,51E-02
3,39E-02
5,10E-03
0,00E+00
R (C/W)
2,60E-02
2,94E-02
6,05E-02
8,30E-02
1,76E-02
1,05E-02
9
100
t p (s)
101
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
0,23
IGBT thermal model values
Tau (s)
2,96E+00
4,85E-01
6,48E-02
1,60E-02
1,36E-03
0,00E+00
10-2
Tau (s)
4,70E+00
8,50E-01
1,28E-01
2,59E-02
5,35E-03
5,51E-04
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
600
IC (A)
Ptot (W)
1200
500
900
400
600
300
200
300
100
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
800
Th ( o C)
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
103
ID (A)
UGS (V)
15
120V
12,5
102
10uS
10
10
480V
1
7,5
100uS
10
0
5
1mS
10mS
100mS
10-1
2,5
DC
0
10
0
101
At
D=
Th =
VGS =
0
3
V CE (V) 10
102
At
ID =
Output inverter IGBT
Figure 27
800
1200
1600
2000
2400
2800
Qg (nC)
single pulse
ºC
80
V
+15/-8
Tjmax
ºC
Tj =
400
400
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
14
6000
12
4500
10
8
3000
6
4
1500
2
0
0
10
11
12
13
14
15
12
V GE (V)
14
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
150
ºC
Tj =
150
ºC
Copyright by Vincotech
11
16
18
V GE (V)
20
Revision: 1.1
70-W206NBA400SA-M786L
INPUT BOOST
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
900
IC MAX
800
MODULE
700
Ic
600
Ic CHIP
500
400
300
200
VCE MAX
100
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Rgon =
Rgoff =
Ω
Ω
0
0
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 1.1
70-W206NBA400SA-M786L
Switching Definitions Boost IGBT
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Boost IGBT
Figure 1
Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
%
160
%
140
IC
175
120
tdoff
150
VCE
100
VGE 90%
125
VCE 90%
VCE
80
100
IC
60
75
tEoff
40
VGE
tdon
50
20
IC 1%
25
0
VGE 10%
tEon
0
-20
VCE 3%
IC 10%
VGE
-40
-0,1
0,1
0,3
0,5
0,7
0,9
-25
2,95
1,1
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
23
400
413
0,39
0,79
3,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Boost IGBT
Figure 3
3,1
3,15
0
23
400
413
0,16
0,30
3,2
3,25
3,3
3,35
3,4
time(us)
V
V
V
A
µs
µs
Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
150
%
3
Turn-on Switching Waveforms & definition of tr
200
%
fitted
IC
175
125
VCE
IC
150
100
125
IC 90%
VCE
75
100
IC 90%
IC 60%
75
50
tr
IC 40%
50
25
25
IC10%
IC 10%
0
0
tf
-25
-25
0,4
VC (100%) =
IC (100%) =
tf =
0,45
0,5
0,55
400
413
0,05
V
A
µs
Copyright by Vincotech
0,6
0,65
3
0,7
time (us)
VC (100%) =
IC (100%) =
tr =
13
3,05
3,1
400
413
0,04
3,15
3,2
3,25
3,3
3,35
time(us)
V
A
µs
Revision: 1.1
70-W206NBA400SA-M786L
Switching Definitions Boost IGBT
Boost IGBT
Figure 5
Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
Poff
%
%
Eoff
100
100
75
75
50
50
Eon
Pon
25
25
VGE 90%
VGE 10%
IC 1%
VCE 3%
0
0
tEon
tEoff
-25
-0,1
0,1
0,3
Poff (100%) =
Eoff (100%) =
tEoff =
0,5
165,28
18,95
0,79
0,7
-25
2,95
0,9 time (us)1,1
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3,02
3,09
165,28
6,32
0,30
3,16
3,23
3,3
time(us)
3,37
kW
mJ
µs
Boost IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
fitted
-150
3,1
3,15
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
3,2
3,25
400
413
-398
0,20
Copyright by Vincotech
3,3
3,35
3,4
3,45
3,5
time(us)
V
A
A
µs
14
Revision: 1.1
70-W206NBA400SA-M786L
Switching Definitions Boost IGBT
Boost FWD
Figure 8
Boost FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
%
Qrr
Id
125
Erec
100
100
Prec
tQrr
50
75
tErec
50
0
25
-50
0
-100
3,05
Id (100%) =
Qrr (100%) =
tQrr =
3,15
3,25
413
30,70
0,39
Copyright by Vincotech
3,35
3,45
3,55
-25
3,05
3,65
3,75
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
3,15
3,25
165,28
10,48
0,39
3,35
3,45
3,55
3,65
3,75
time(us)
kW
mJ
µs
Revision: 1.1
70-W206NBA400SA-M786L
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
70-W206NBA400SA-M786L
in DataMatrix as
M786L
in packaging barcode as
M786L
Outline
Copyright by Vincotech
16
Revision: 1.1
70-W206NBA400SA-M786L
Ordering Code and Marking - Outline - Pinout
Pinout
70-W206NBA400SA-M786L
Copyright by Vincotech
17
Revision: 1.1
70-W206NBA400SA-M786L
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
18
Revision: 1.1