70-W206NBA400SA-M786L flowBOOST 4w 600V/400A Features FlowSCREW 4w ● Symmetrical Booster ● Integrated DC-capacitor ● Low DC Inductance (<5nH) ● Transient Interface for optional regeneration of switching losses ● Temperature Sensor Target Applications ● UPS (3 Phase PFC) ● Solar inverter (Booster) Schematic Types ● 70-W206NBA400SA-M786L Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Th=80°C Tc=80°C tp limited by Tjmax Tj≤150°C VCE<=VCES Turn off safe operating area 391 500 1200 A A 1200 A 639 968 W ±20 V 6 360 µs V Tjmax 175 °C VRRM 600 V Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Input Boost Inverse Diode Peak Repetitive Reverse Voltage Forward average current I2t-value IFAV Tj=Tjmax Th=80°C Tc=80°C 40 81 A I2t tp=10ms Tj=25°C 45 A 2s 40 A 113 160 W 175 °C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Revision: 1.1 70-W206NBA400SA-M786L Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 296 393 A tbd. A tbd. A2s 1200 A 419 634 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Input Boost FWD Peak Repetitive Reverse Voltage VRRM Forward average current IFAV Surge forward current IFSM Th=80°C Tj=Tjmax Tc=80°C tp=10ms Tj=25°C 2 I2t-value It Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech t=2s DC voltage 2 Revision: 1.1 70-W206NBA400SA-M786L Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,46 1,59 2,1 Input Boost IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time 400 Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 0,0204 2400 0,5 tr td(off) tf Fall time 0,0064 Rgoff=8 Ω Rgon=8 Ω ±15/8 400 414 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 155 157 35 38 367 389 23 54,3 4,278 6,321 14,361 18,949 ns mWs 24640 f=1MHz 0 25 pF 1536 Tj=25°C 732 ±15 480 400 nC 2480 Tj=25°C 0,15 Phase-Change Material K/W 0,10 Input Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 20 Tj=25°C Tj=125°C 1 1,45 1,28 2,1 V 0,84 Phase-Change Material K/W 0,56 Input Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current 400 600 Rgon=8 Ω ±15/8 Erec di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 400 414 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,57 1,58 V 108 314 398 153 200 16,44 30,70 5,49 10,48 9573 6028 µA A ns µC mWs A/µs 0,23 Phase-Change Material K/W 0,15 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P R100=1486 Ω T=25°C Power dissipation constant Ω 22000 T=25°C -12 +14 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech B 3 Revision: 1.1 70-W206NBA400SA-M786L Boost Inverse Diode Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 IF (A) 100 ZthJC (K/W) Tj = Tjmax-25°C Tj = 25°C 80 60 10 -1 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 0 0 At tp = 0,5 1 1,5 2 2,5 10-2 V F (V) 3 10-5 At D= RthJH = µs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 0,84 10-2 100 t p (s) 1012 10 K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 250 10-1 IF (A) Ptot (W) 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 4 50 175 100 150 Th ( o C) 200 ºC Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 1200 IC(A) IC (A) 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGS from µs 350 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VGS) 1 2 3 4 5 µs 350 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 1200 IF (A) ID (A) 400 V CE (V) Tj = 25°C Tj = Tjmax-25°C 1000 320 800 Tj = Tjmax-25°C 240 600 160 400 Tj = 25°C 80 200 0 0 0 At tp = VDS = 2 350 10 4 6 8 10 0 V GS (V) 12 At tp = µs V Copyright by Vincotech 5 0,5 350 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(ID) E (mWs) 35 E (mWs) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 30 60 Eon High T Eon Low T 50 Eoff Low T 25 40 Eoff Low T Eoff High T 20 30 15 20 10 Eon High T 10 5 Eon Low T 0 0 0 0 100 200 300 400 500 600 2 4 6 8 I C (A)700 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1 Ω RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +15/-8 V ID = 414 A BOOST FWD Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) E (mWs) 12 E (mWs) BOOST FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 12 10 10 8 8 6 6 Erec Low T 4 4 2 2 0 Erec High T Erec Low T 0 0 100 200 300 400 500 600 I C (A) 700 0 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1 Ω Copyright by Vincotech 2 4 6 8 R G ( Ω ) 10 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +15/-8 V ID = 414 A 6 Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(ID) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( ms) t ( ms) 10 tdoff 1 1 tdoff tdon tdon 0,1 tr 0,1 tr tf tf 0,01 0,01 0,001 0,001 0 100 200 300 400 500 600 0 700 I D (A) With an inductive load at Tj = 125 °C VDS = 400 V VGS = +15/-8 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 R G (W) 10 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +15/-8 V IC = 414 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( ms) t rr( ms) 0,3 0,3 0,25 0,25 0,2 0,2 trr High T trr Low T trr High T 0,15 0,15 trr Low T 0,1 0,1 0,05 0,05 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A) 700 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 7 2 25/125 400 414 +15/-8 4 6 8 10 R Gon (W) °C V A V Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr ( µC) 35 Qrr ( µC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr High T 35 30 30 25 25 Qrr High T 20 20 Qrr Low T 15 15 Qrr Low T 10 10 5 5 0 0 At At Tj = VCE = VGE = Rgon = 0 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A)700 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 400 414 +15/-8 4 6 8 10 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 600 IrrM (A) 600 R Gon ( Ω) IRRM High T 500 500 400 400 IRRM Low T 300 300 200 200 100 100 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 0 I C (A) 700 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 8 2 25/125 400 414 +15/-8 4 6 8 R Gon (W) 10 °C V A V Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 20000 direc / dt (A/ µs) direc / dt (A/ µs) 20000 dI0/dt dIrec/dt 16000 dI0/dt dIrec/dt 16000 di0/dtHigh T 12000 12000 di0/dtLow T dIrec/dtLow T 8000 8000 dIrec/dtHigh T dI0/dtHigh T 4000 dI0/dtLow T 4000 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 400 +15/-8 1 200 300 400 500 600 I C (A)700 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 400 414 +15/-8 4 6 R Gon ( Ω)10 8 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 2 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) -1 10 -2 10 -3 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 101 10 At D= RthJH = tp / T 0,15 10 K/W 10-4 10-3 R (C/W) 2,71E-02 2,75E-02 5,51E-02 3,39E-02 5,10E-03 0,00E+00 R (C/W) 2,60E-02 2,94E-02 6,05E-02 8,30E-02 1,76E-02 1,05E-02 9 100 t p (s) 101 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T 0,23 IGBT thermal model values Tau (s) 2,96E+00 4,85E-01 6,48E-02 1,60E-02 1,36E-03 0,00E+00 10-2 Tau (s) 4,70E+00 8,50E-01 1,28E-01 2,59E-02 5,35E-03 5,51E-04 Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 600 IC (A) Ptot (W) 1200 500 900 400 600 300 200 300 100 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 IF (A) Ptot (W) 800 Th ( o C) 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 ºC Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) BOOST IGBT Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 103 ID (A) UGS (V) 15 120V 12,5 102 10uS 10 10 480V 1 7,5 100uS 10 0 5 1mS 10mS 100mS 10-1 2,5 DC 0 10 0 101 At D= Th = VGS = 0 3 V CE (V) 10 102 At ID = Output inverter IGBT Figure 27 800 1200 1600 2000 2400 2800 Qg (nC) single pulse ºC 80 V +15/-8 Tjmax ºC Tj = 400 400 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 14 6000 12 4500 10 8 3000 6 4 1500 2 0 0 10 11 12 13 14 15 12 V GE (V) 14 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 150 ºC Tj = 150 ºC Copyright by Vincotech 11 16 18 V GE (V) 20 Revision: 1.1 70-W206NBA400SA-M786L INPUT BOOST IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 900 IC MAX 800 MODULE 700 Ic 600 Ic CHIP 500 400 300 200 VCE MAX 100 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Rgon = Rgoff = Ω Ω 0 0 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 1.1 70-W206NBA400SA-M786L Switching Definitions Boost IGBT General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Boost IGBT Figure 1 Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 % 160 % 140 IC 175 120 tdoff 150 VCE 100 VGE 90% 125 VCE 90% VCE 80 100 IC 60 75 tEoff 40 VGE tdon 50 20 IC 1% 25 0 VGE 10% tEon 0 -20 VCE 3% IC 10% VGE -40 -0,1 0,1 0,3 0,5 0,7 0,9 -25 2,95 1,1 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 23 400 413 0,39 0,79 3,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Boost IGBT Figure 3 3,1 3,15 0 23 400 413 0,16 0,30 3,2 3,25 3,3 3,35 3,4 time(us) V V V A µs µs Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 150 % 3 Turn-on Switching Waveforms & definition of tr 200 % fitted IC 175 125 VCE IC 150 100 125 IC 90% VCE 75 100 IC 90% IC 60% 75 50 tr IC 40% 50 25 25 IC10% IC 10% 0 0 tf -25 -25 0,4 VC (100%) = IC (100%) = tf = 0,45 0,5 0,55 400 413 0,05 V A µs Copyright by Vincotech 0,6 0,65 3 0,7 time (us) VC (100%) = IC (100%) = tr = 13 3,05 3,1 400 413 0,04 3,15 3,2 3,25 3,3 3,35 time(us) V A µs Revision: 1.1 70-W206NBA400SA-M786L Switching Definitions Boost IGBT Boost IGBT Figure 5 Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 Poff % % Eoff 100 100 75 75 50 50 Eon Pon 25 25 VGE 90% VGE 10% IC 1% VCE 3% 0 0 tEon tEoff -25 -0,1 0,1 0,3 Poff (100%) = Eoff (100%) = tEoff = 0,5 165,28 18,95 0,79 0,7 -25 2,95 0,9 time (us)1,1 Pon (100%) = Eon (100%) = tEon = kW mJ µs 3,02 3,09 165,28 6,32 0,30 3,16 3,23 3,3 time(us) 3,37 kW mJ µs Boost IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 fitted -150 3,1 3,15 Vd (100%) = Id (100%) = IRRM (100%) = trr = 3,2 3,25 400 413 -398 0,20 Copyright by Vincotech 3,3 3,35 3,4 3,45 3,5 time(us) V A A µs 14 Revision: 1.1 70-W206NBA400SA-M786L Switching Definitions Boost IGBT Boost FWD Figure 8 Boost FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % % Qrr Id 125 Erec 100 100 Prec tQrr 50 75 tErec 50 0 25 -50 0 -100 3,05 Id (100%) = Qrr (100%) = tQrr = 3,15 3,25 413 30,70 0,39 Copyright by Vincotech 3,35 3,45 3,55 -25 3,05 3,65 3,75 time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 15 3,15 3,25 165,28 10,48 0,39 3,35 3,45 3,55 3,65 3,75 time(us) kW mJ µs Revision: 1.1 70-W206NBA400SA-M786L Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 70-W206NBA400SA-M786L in DataMatrix as M786L in packaging barcode as M786L Outline Copyright by Vincotech 16 Revision: 1.1 70-W206NBA400SA-M786L Ordering Code and Marking - Outline - Pinout Pinout 70-W206NBA400SA-M786L Copyright by Vincotech 17 Revision: 1.1 70-W206NBA400SA-M786L DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 18 Revision: 1.1