10-FZ06NIA030SA-P924F33 preliminary datasheet flowNPC0 600V/30A Features flow0 housing Ɣ Neutral-point-Clamped inverter Ɣ Clip-In PCB mounting Ɣ Low Inductance Layout Target Applications Schematic Ɣ UPS and Solar Types Ɣ 10-FZ06NIA030SA-P924F33 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 30 40 A 90 A 56 85 W ±20 V 6 360 μs V 175 °C 60 A 600 V Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax =80°C Th=80 Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj150°C VGE=15V Tjmax Tj150°C Turn off safe operating area VCE<=VCES Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C 27 36 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 90 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 44 67 W 175 °C Maximum Junction Temperature copyright E\Vincotech Tjmax 1 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Boost IGBT Collector-emitter break down voltage DC collector current VCES IC Tj=Tjmax Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C 30 Tc=80°C 39 90 Th=80°C Tc=80°C Tj150°C VGE=15V Tjmax Tj150°C VCE<=VCES Turn off safe operating area 56 85 A A W ±20 V 6 μs 360 V 175 °C 60 A 600 V Buck and Boost Inverse FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tc=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Th=80°C 26 Tc=80°C 36 90 Th=80°C 44 Tc=80°C 67 A A W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright E\Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,54 1,73 1,95 Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00043 30 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 30 350 Rgoff=16 ȍ Rgon=16 ȍ 350 ±15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V μA nA ȍ none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 98 101 11 16 155 174 93 107 0,47 0,62 0,80 1,02 ns mWs 1630 f=1MHz pF 108 Tj=25°C 25 0 50 480 ±15 30 Tj=25°C Thermal grease thickness50um Ȝ = 1 W/mK 167 nC 1,69 K/W Buck FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip copyright E\Vincotech VF 30 IRRM trr Qrr Rgon=16 ȍ ±15 350 di(rec)max /dt Erec RthJH Thermal grease thickness50um Ȝ = 1 W/mK 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,75 1,73 36 39 127 183 1,41 2,29 4073 2293 0,33 0,55 2,15 3 2,05 V A ns μC A/μs mWs K/W Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,54 1,73 1,95 Boost IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,00043 30 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 30 350 none td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=16 ȍ Rgon=16 ȍ 350 ±15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V μA nA ȍ 102 102 15 18 158 177 88 105 0,45 0,59 0,81 1,04 ns mWs 1630 f=1MHz 25 0 108 Tj=25°C pF 50 480 ±15 30 Tj=25°C Thermal grease thickness50um Ȝ = 1 W/mK 167 nC 1,69 K/W Buck and Boost Inverse FWD Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 30 Tj=25°C Tj=125°C 1 Thermal grease thickness50um Ȝ = 1 W/mK 1,75 1,73 2,05 V 2,15 K/W 22000 ȍ Thermistor Rated resistance R Deviation of R100 ǻR/R Power dissipation P T=25°C T=100°C R100=1486 ȍ Power dissipation constant B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% Vincotech NTC Reference copyright E\Vincotech 5 % T=25°C 200 mW T=25°C 2 mW/K T=25°C 3950 K T=25°C 3996 T=25°C 4 -5 K B Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 90 IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 4 VCE (V) 5 0 At tp = Tj = VGE from 250 ȝs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 250 ȝs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 90 IF (A) IC (A) 30 5 VCE (V) 25 Tj = 25C 75 Tj = Tjmax-25C 20 60 Tj = Tjmax-25C 15 45 10 30 Tj = 25C 5 15 0 0 0 At tp = VCE = 2 250 10 copyright E\Vincotech 4 6 8 VGE (V) 10 0 At tp = ȝs V 5 0,5 250 1 1,5 2 2,5 VF (V) 3 ȝs Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,0 E (mWs) E (mWs) 2,0 1,6 Eon High T 1,6 Eoff High T Eon Low T Eon High T 1,2 1,2 Eoff High T Eoff Low T Eoff Low T Eon Low T 0,8 0,8 0,4 0,4 0,0 0,0 0 10 20 30 40 50 0 60 IC(A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 16 ȍ Rgoff = 16 ȍ 32 48 64 RG(W) 80 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 31 A FWD Figure 7 Typical reverse recovery energy loss FWD Figure 8 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) as a function of gate resistor Erec = f(RG) 0,9 E (mWs) 0,9 E (mWs) 16 0,8 0,8 Erec High T 0,6 0,6 0,5 0,5 Erec High T Erec Low T 0,3 0,3 0,2 0,2 0,0 Erec Low T 0,0 0 10 20 30 40 50 IC(A) 60 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 16 ȍ copyright E\Vincotech 16 32 48 64 RG(W) 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 31 A 6 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdon tdoff tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 50 60 IC(A) 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 16 ȍ Rgoff = 16 ȍ 16 32 48 64 80 RG(W) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 31 A FWD Figure 11 Typical reverse recovery time as a FWD Figure 12 Typical reverse recovery time as a function of collector current trr = f(Ic) function of IGBT turn on gate resistor trr = f(Rgon) 0,30 t rr(ms) t rr(ms) 0,40 0,25 trr High T trr High T 0,32 0,20 trr Low T 0,24 trr Low T 0,15 0,16 0,10 0,08 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 copyright E\Vincotech 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V ȍ 7 16 25/125 350 31 ±15 32 48 64 Rgon(W) 80 °C V A V Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4,0 Qrr (mC) Qrr (mC) 3,0 Qrr High T 2,5 Qrr High T 3,2 2,0 2,4 Qrr Low T 1,5 Qrr Low T 1,6 1,0 0,8 0,5 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 20 30 40 50 60 IC(A) 0 At Tj = VR = IF = VGE = °C V V ȍ FWD Figure 15 Typical reverse recovery current as a 16 25/125 350 31 ±15 32 48 64 Rgon(Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of collector current IRRM = f(IC) 80 function of IGBT turn on gate resistor IRRM = f(Rgon) 50 90 IrrM (A) IrrM (A) IRRM High T 75 40 IRRM Low T 60 30 45 20 30 IRRM High T IRRM Low T 10 15 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 copyright E\Vincotech 20 30 40 50 IC(A) 60 °C V V ȍ 8 0 16 At Tj = VR = IF = VGE = 25/125 350 31 ±15 32 48 64 Rgon(W) 80 °C V A V IA Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 18000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 5000 15000 dIrec/dtLow T 4000 12000 di0/dtHigh T 3000 9000 dIo/dtLow T dIrec/dtHigh T 2000 dIrec/dtLow T dI0/dtLow T 6000 1000 3000 dI0/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V ȍ IGBT Figure 19 IGBT transient thermal impedance 48 64 80 Rgon(W) °C V A V FWD as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 At D= RthJH = 25/125 350 31 ±15 32 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 10-5 16 10-4 10-3 10-2 10-1 100 tp (s) 10-5 1021 At D= RthJH = tp / T 1,69 K/W 10-4 10-3 R (C/W) 0,05 0,23 0,62 0,50 0,18 0,11 R (C/W) 0,05 0,23 0,72 0,63 0,32 0,19 9 100 tp (s) 1021 K/W FWD thermal model values copyright E\Vincotech 10-1 tp / T 2,15 IGBT thermal model values Tau (s) 7,4E+00 1,0E+00 1,4E-01 2,6E-02 4,3E-03 3,2E-04 10-2 Tau (s) 6,8E+00 1,0E+00 1,3E-01 3,2E-02 5,4E-03 4,3E-04 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 120 IC (A) Ptot (W) 50 100 40 80 30 60 20 40 10 20 0 0 0 50 At Tj = 175 100 150 Th (oC) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 Th (oC) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 50 175 copyright E\Vincotech 100 150 Th (oC) 200 0 At Tj = °C 10 50 175 100 150 Th (oC) 200 °C Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck & Boost IGBT Figure 25 Turn on safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) IC (A) VGE (V) 103 15 102 120V 10 101 480V 100 5 10-1 0 0 50 100 150 200 Qg (nC) 100 At Tj = 101 Tjmax copyright E\Vincotech 102 VCE(V) 103 At IC = ºC 11 31 A Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 90 IC (A) IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 4 VCE (V) 5 0 At tp = Tj = VGE from 250 ȝs 25 °C 7 V to 17 V in steps of 1 V 1 2 3 4 VCE (V) 5 250 ȝs 125 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) IC (A) 30 Tj = Tjmax-25C 25 20 15 10 Tj = 25C 5 0 0 At tp = VCE = 2 250 10 copyright E\Vincotech 4 6 8 VGE (V) 10 ȝs V 12 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost IGBT Figure 4 Typical switching energy losses as a function of collector current E = f(IC) 2 E (mWs) 2 E (mWs) IGBT Figure 5 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 1,6 Eon High T 1,6 Eon Low T Eoff Low T 1,2 Eoff High T 1,2 Eon High T Eoff Low T 0,8 0,8 Eon Low T 0,4 0,4 0 0 0 10 20 30 40 50 60 0 16 32 48 64 IC(A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 16 ȍ Rgoff = 16 ȍ 80 RG(Ω ) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 29 A IGBT Figure 6 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 7 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1 E (mWs) E (mWs) 1 Erec High T 0,8 0,8 0,6 0,6 Erec High T 0,4 0,4 Erec Low T Erec Low T 0,2 0,2 0 0 0 10 20 30 40 50 IC (A) 60 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 16 ȍ copyright E\Vincotech 16 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 29 A 13 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost IGBT Figure 8 Typical switching times as a function of collector current t = f(IC) IGBT Figure 9 Typical switching times as a function of gate resistor t = f(RG) t (μs) 1 t (μs) 1 tdoff tdon 0,1 tdoff tdon tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 IC(A) 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 16 ȍ Rgoff = 16 ȍ 16 32 48 64 RG(Ω ) 80 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 29 A FWD Figure 10 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 11 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,30 trr High T t rr(ms) t rr(ms) 0,40 trr High T 0,25 0,32 0,20 trr Low T 0,24 trr Low T 0,15 0,16 0,10 0,08 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 copyright E\Vincotech 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V ȍ 14 16 25/125 350 29 ±15 32 48 64 Rgon(W) 80 °C V A V Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost FWD Figure 12 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 13 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 4,0 Qrr (mC) Qrr (mC) 4,0 Qrr High T 3,2 3,2 2,4 2,4 Qrr High T Qrr Low T 1,6 1,6 Qrr Low T 0,8 0,8 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 20 30 40 50 60 IC(A) 0 At Tj = VR = IF = VGE = °C V V ȍ FWD Figure 14 Typical reverse recovery current as a 16 25/125 350 29 ±15 32 48 64 Rgon(Ω) °C V A V FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 80 function of IGBT turn on gate resistor IRRM = f(Rgon) 60 IrrM (A) IrrM (A) 40 IRRM High T 50 32 IRRM Low T 40 24 30 16 20 IRRM High T IRRM Low T 8 10 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 copyright E\Vincotech 20 30 40 50 IC(A) 60 °C V V ȍ 15 0 16 At Tj = VR = IF = VGE = 25/125 350 29 ±15 32 48 64 Rgon(W) 80 °C V A V Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost FWD Figure 16 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 4000 3200 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7500 6000 di0/dtHigh T 2400 dIo/dtLow T 4500 1600 dIrec/dtLow T 3000 800 dI0/dtLow T 1500 dI0/dtHigh T dIrec/dtLow T dIrec/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 16 20 30 40 50 IC(A) 60 0 At Tj = VR = IF = VGE = °C V V ȍ 16 25/125 350 29 ±15 32 48 64 Rgon(W) 80 °C V A V IGBT Figure 18 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 10-3 At D= RthJH = tp / T 1,69 K/W R (C/W) 0,05 0,23 0,62 0,50 0,18 0,11 Tau (s) 7,4E+00 1,0E+00 1,4E-01 2,6E-02 4,3E-03 3,2E-04 copyright E\Vincotech 10-2 10-1 100 tp (s) 1021 16 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Boost IGBT IGBT Figure 20 Collector current as a function of heatsink temperature IC = f(Th) 120 50 IC (A) Ptot (W) Figure 19 Power dissipation as a function of heatsink temperature Ptot = f(Th) 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 copyright E\Vincotech 100 150 Th(oC) 200 0 At Tj = VGE = ºC 17 50 175 15 100 150 Th(oC) 200 ºC V Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Buck and Boost Inverse Diode Buck and Boost Inverse Diode Buck and Boost Inverse Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 75 60 100 IF (A) 90 ZthJC (K/W) Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 15 Tj = Tjmax-25C Tj = 25C 0 0 At tp = 0,5 1 350 1,5 2 2,5 VF (V) 10-2 3 10-5 At D= RthJH = ȝs Buck and Boost Inverse Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 2,15 10-2 tp (s) 100 1021 K/W Buck and Boost Inverse Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 10-1 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 copyright E\Vincotech 100 150 Th (oC) 200 0 At Tj = ºC 18 50 175 100 150 Th (oC) 200 ºC Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values NTC-typical temperature characteristic R(T ) = R25 ⋅ e R/ȍ 25000 § § ·· ¨ B25/100⋅¨ 1 − 1 ¸ ¸ ¨T ¨ T25 ¸¹ ¸¹ © © [Ω] 20000 15000 10000 5000 0 25 50 copyright E\Vincotech 75 100 T (°C) 125 19 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Switching Definitions BUCK IGBT General conditions = 125 °C Tj = 16 ȍ Rgon Rgoff = 16 ȍ Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 140 % % 120 tdoff IC 200 VCE 100 VGE 90% VCE 90% 150 80 IC VCE 100 60 VGE tEoff 40 tdon 50 20 VGE 10% VGE 0 IC 1% -20 -0,2 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 -15 15 350 31 0,17 0,41 0,2 0,3 tEon -50 0,4 0,5 time (us) 2,8 2,9 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A ȝs ȝs Output inverter IGBT Figure 3 VCE 3% IC 10% 0 3,1 -15 15 350 31 0,10 0,21 3,2 3,4 3,5 time(us) V V V A ȝs ȝs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,3 Turn-on Switching Waveforms & definition of tr 140 % 240 % 120 fitted IC 100 Ic 200 VCE 160 IC 90% 80 120 VCE IC 60% 60 IC 90% 80 tr IC 40% 40 40 20 IC 10% 0 IC 10% 0 tf -20 -40 0 0,05 VC (100%) = IC (100%) = tf = copyright E\Vincotech 0,1 350 31 0,11 0,15 0,2 0,25 time (us) 0,3 3 VC (100%) = IC (100%) = tr = V A ȝs 20 3,05 3,1 350 31 0,02 3,15 3,2 time(us) 3,25 V A ȝs Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Switching Definitions BUCK IGBT Output inverter IGBT Figure 5 Turn-on Switching Waveforms & definition of tEon 120 % 160 % IC 1% 100 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Eoff Pon 140 Poff 120 80 Eon 100 60 80 40 60 40 20 VGE90% 20 VGE 10% 0 -20 -0,2 -0,1 Poff (100%) = Eoff (100%) = tEoff = 0 0,1 10,70 1,02 0,41 0,2 0,3 tEon -20 0,4 0,5 time (us) 2,9 3 3,1 3,2 3,3 3,4 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ ȝs Figure 7 Gate voltage vs Gate charge (measured) VG GE (V) VCE3% 0 tEoff Output inverter FWD 10,70 0,62 0,21 kW mJ ȝs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 Id % 15 80 trr 10 40 5 fitted Vd 0 IRRM 10% 0 -40 -5 -80 -10 IRRM 90% -120 -15 -20 -50 0 50 100 150 200 250 -160 300 3 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright E\Vincotech -15 15 350 31 261,94 IRRM 100% Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 3,1 3,2 350 31 -39 0,18 3,3 3,4 3,5 time(us) 3,6 V A A ȝs Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Switching Definitions BUCK IGBT Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 % Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 125 Id % Qrr 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 -150 2,95 3,15 Id (100%) = Qrr (100%) = tQrr = 3,35 31 2,29 0,67 3,55 3,75 time(us) -25 2,95 3,95 Prec (100%) = Erec (100%) = tErec = A ȝC ȝs tErec Prec 3,15 3,35 10,70 0,55 0,67 3,55 3,75 time(us) 3,95 kW mJ ȝs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright E\Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as Standard in flow0 12mm housing 10-FZ06NIA030SA-P924F33 P924F33 P924F33 Outline Pinout copyright E\Vincotech 23 Revision: 1 10-FZ06NIA030SA-P924F33 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright E\Vincotech 24 Revision: 1