10-FZ06NIA030SA-P924F33 Maximum Ratings

10-FZ06NIA030SA-P924F33
preliminary datasheet
flowNPC0
600V/30A
Features
flow0 housing
Ɣ Neutral-point-Clamped inverter
Ɣ Clip-In PCB mounting
Ɣ Low Inductance Layout
Target Applications
Schematic
Ɣ UPS and Solar
Types
Ɣ 10-FZ06NIA030SA-P924F33
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
30
40
A
90
A
56
85
W
±20
V
6
360
μs
V
175
°C
60
A
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
=80°C
Th=80
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj”150°C
VGE=15V
Tjmax
Tj”150°C
Turn off safe operating area
VCE<=VCES
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
27
36
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
90
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
44
67
W
175
°C
Maximum Junction Temperature
copyright E\Vincotech
Tjmax
1
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCES
IC
Tj=Tjmax
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
30
Tc=80°C
39
90
Th=80°C
Tc=80°C
Tj”150°C
VGE=15V
Tjmax
Tj”150°C
VCE<=VCES
Turn off safe operating area
56
85
A
A
W
±20
V
6
μs
360
V
175
°C
60
A
600
V
Buck and Boost Inverse FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tc=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
26
Tc=80°C
36
90
Th=80°C
44
Tc=80°C
67
A
A
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright E\Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,54
1,73
1,95
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00043
30
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
30
350
Rgoff=16 ȍ
Rgon=16 ȍ
350
±15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
μA
nA
ȍ
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
98
101
11
16
155
174
93
107
0,47
0,62
0,80
1,02
ns
mWs
1630
f=1MHz
pF
108
Tj=25°C
25
0
50
480
±15
30
Tj=25°C
Thermal grease
thickness”50um
Ȝ = 1 W/mK
167
nC
1,69
K/W
Buck FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright E\Vincotech
VF
30
IRRM
trr
Qrr
Rgon=16 ȍ
±15
350
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness”50um
Ȝ = 1 W/mK
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,75
1,73
36
39
127
183
1,41
2,29
4073
2293
0,33
0,55
2,15
3
2,05
V
A
ns
μC
A/μs
mWs
K/W
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,54
1,73
1,95
Boost IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,00043
30
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
30
350
none
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=16 ȍ
Rgon=16 ȍ
350
±15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
μA
nA
ȍ
102
102
15
18
158
177
88
105
0,45
0,59
0,81
1,04
ns
mWs
1630
f=1MHz
25
0
108
Tj=25°C
pF
50
480
±15
30
Tj=25°C
Thermal grease
thickness”50um
Ȝ = 1 W/mK
167
nC
1,69
K/W
Buck and Boost Inverse FWD
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
30
Tj=25°C
Tj=125°C
1
Thermal grease
thickness”50um
Ȝ = 1 W/mK
1,75
1,73
2,05
V
2,15
K/W
22000
ȍ
Thermistor
Rated resistance
R
Deviation of R100
ǻR/R
Power dissipation
P
T=25°C
T=100°C
R100=1486 ȍ
Power dissipation constant
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
Vincotech NTC Reference
copyright E\Vincotech
5
%
T=25°C
200
mW
T=25°C
2
mW/K
T=25°C
3950
K
T=25°C
3996
T=25°C
4
-5
K
B
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
90
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
VCE (V)
5
0
At
tp =
Tj =
VGE from
250
ȝs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
250
ȝs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
90
IF (A)
IC (A)
30
5
VCE (V)
25
Tj = 25ƒC
75
Tj = Tjmax-25ƒC
20
60
Tj = Tjmax-25ƒC
15
45
10
30
Tj = 25ƒC
5
15
0
0
0
At
tp =
VCE =
2
250
10
copyright E\Vincotech
4
6
8
VGE (V)
10
0
At
tp =
ȝs
V
5
0,5
250
1
1,5
2
2,5
VF (V)
3
ȝs
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,0
E (mWs)
E (mWs)
2,0
1,6
Eon High T
1,6
Eoff High T
Eon Low T
Eon High T
1,2
1,2
Eoff High T
Eoff Low T
Eoff Low T
Eon Low T
0,8
0,8
0,4
0,4
0,0
0,0
0
10
20
30
40
50
0
60
IC(A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
Rgoff =
16
ȍ
32
48
64
RG(W)
80
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
31
A
FWD
Figure 7
Typical reverse recovery energy loss
FWD
Figure 8
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
as a function of gate resistor
Erec = f(RG)
0,9
E (mWs)
0,9
E (mWs)
16
0,8
0,8
Erec High T
0,6
0,6
0,5
0,5
Erec High T
Erec Low T
0,3
0,3
0,2
0,2
0,0
Erec Low T
0,0
0
10
20
30
40
50
IC(A)
60
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
copyright E\Vincotech
16
32
48
64
RG(W)
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
31
A
6
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdon
tdoff
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
50
60
IC(A)
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
Rgoff =
16
ȍ
16
32
48
64
80
RG(W)
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
31
A
FWD
Figure 11
Typical reverse recovery time as a
FWD
Figure 12
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
function of IGBT turn on gate resistor
trr = f(Rgon)
0,30
t rr(ms)
t rr(ms)
0,40
0,25
trr High T
trr High T
0,32
0,20
trr Low T
0,24
trr Low T
0,15
0,16
0,10
0,08
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
copyright E\Vincotech
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
7
16
25/125
350
31
±15
32
48
64
Rgon(W)
80
°C
V
A
V
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4,0
Qrr (mC)
Qrr (mC)
3,0
Qrr High T
2,5
Qrr High T
3,2
2,0
2,4
Qrr Low T
1,5
Qrr Low T
1,6
1,0
0,8
0,5
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
20
30
40
50
60
IC(A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
FWD
Figure 15
Typical reverse recovery current as a
16
25/125
350
31
±15
32
48
64
Rgon(Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
80
function of IGBT turn on gate resistor
IRRM = f(Rgon)
50
90
IrrM (A)
IrrM (A)
IRRM High T
75
40
IRRM Low T
60
30
45
20
30
IRRM High T
IRRM Low T
10
15
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
copyright E\Vincotech
20
30
40
50
IC(A)
60
°C
V
V
ȍ
8
0
16
At
Tj =
VR =
IF =
VGE =
25/125
350
31
±15
32
48
64
Rgon(W)
80
°C
V
A
V
IA
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
6000
18000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
5000
15000
dIrec/dtLow T
4000
12000
di0/dtHigh T
3000
9000
dIo/dtLow T
dIrec/dtHigh T
2000
dIrec/dtLow T
dI0/dtLow T
6000
1000
3000
dI0/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
IGBT
Figure 19
IGBT transient thermal impedance
48
64
80
Rgon(W)
°C
V
A
V
FWD
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
At
D=
RthJH =
25/125
350
31
±15
32
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10-5
16
10-4
10-3
10-2
10-1
100
tp (s)
10-5
1021
At
D=
RthJH =
tp / T
1,69
K/W
10-4
10-3
R (C/W)
0,05
0,23
0,62
0,50
0,18
0,11
R (C/W)
0,05
0,23
0,72
0,63
0,32
0,19
9
100
tp (s)
1021
K/W
FWD thermal model values
copyright E\Vincotech
10-1
tp / T
2,15
IGBT thermal model values
Tau (s)
7,4E+00
1,0E+00
1,4E-01
2,6E-02
4,3E-03
3,2E-04
10-2
Tau (s)
6,8E+00
1,0E+00
1,3E-01
3,2E-02
5,4E-03
4,3E-04
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
50
100
40
80
30
60
20
40
10
20
0
0
0
50
At
Tj =
175
100
150
Th (oC)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
Th (oC)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
175
copyright E\Vincotech
100
150
Th (oC)
200
0
At
Tj =
°C
10
50
175
100
150
Th (oC)
200
°C
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck & Boost
IGBT
Figure 25
Turn on safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
103
15
102
120V
10
101
480V
100
5
10-1
0
0
50
100
150
200
Qg (nC)
100
At
Tj =
101
Tjmax
copyright E\Vincotech
102
VCE(V)
103
At
IC =
ºC
11
31
A
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
90
IC (A)
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
VCE (V)
5
0
At
tp =
Tj =
VGE from
250
ȝs
25
°C
7 V to 17 V in steps of 1 V
1
2
3
4
VCE (V)
5
250
ȝs
125
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
IC (A)
30
Tj = Tjmax-25ƒC
25
20
15
10
Tj = 25ƒC
5
0
0
At
tp =
VCE =
2
250
10
copyright E\Vincotech
4
6
8
VGE (V)
10
ȝs
V
12
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
IGBT
Figure 4
Typical switching energy losses
as a function of collector current
E = f(IC)
2
E (mWs)
2
E (mWs)
IGBT
Figure 5
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
1,6
Eon High T
1,6
Eon Low T
Eoff Low T
1,2
Eoff High T
1,2
Eon High T
Eoff Low T
0,8
0,8
Eon Low T
0,4
0,4
0
0
0
10
20
30
40
50
60
0
16
32
48
64
IC(A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
Rgoff =
16
ȍ
80
RG(Ω )
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
29
A
IGBT
Figure 6
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
1
E (mWs)
E (mWs)
1
Erec High T
0,8
0,8
0,6
0,6
Erec High T
0,4
0,4
Erec Low T
Erec Low T
0,2
0,2
0
0
0
10
20
30
40
50
IC (A)
60
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
copyright E\Vincotech
16
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
29
A
13
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
IGBT
Figure 8
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 9
Typical switching times as a
function of gate resistor
t = f(RG)
t (μs)
1
t (μs)
1
tdoff
tdon
0,1
tdoff
tdon
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
IC(A)
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
16
ȍ
Rgoff =
16
ȍ
16
32
48
64
RG(Ω )
80
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
29
A
FWD
Figure 10
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 11
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,30
trr High T
t rr(ms)
t rr(ms)
0,40
trr High T
0,25
0,32
0,20
trr Low T
0,24
trr Low T
0,15
0,16
0,10
0,08
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
copyright E\Vincotech
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
14
16
25/125
350
29
±15
32
48
64
Rgon(W)
80
°C
V
A
V
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
FWD
Figure 12
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 13
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
4,0
Qrr (mC)
Qrr (mC)
4,0
Qrr High T
3,2
3,2
2,4
2,4
Qrr High T
Qrr Low T
1,6
1,6
Qrr Low T
0,8
0,8
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
20
30
40
50
60
IC(A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
FWD
Figure 14
Typical reverse recovery current as a
16
25/125
350
29
±15
32
48
64
Rgon(Ω)
°C
V
A
V
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
80
function of IGBT turn on gate resistor
IRRM = f(Rgon)
60
IrrM (A)
IrrM (A)
40
IRRM High T
50
32
IRRM Low T
40
24
30
16
20
IRRM High T
IRRM Low T
8
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
copyright E\Vincotech
20
30
40
50
IC(A)
60
°C
V
V
ȍ
15
0
16
At
Tj =
VR =
IF =
VGE =
25/125
350
29
±15
32
48
64
Rgon(W)
80
°C
V
A
V
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
FWD
Figure 16
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
4000
3200
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7500
6000
di0/dtHigh T
2400
dIo/dtLow T
4500
1600
dIrec/dtLow T
3000
800
dI0/dtLow T
1500
dI0/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
16
20
30
40
50
IC(A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
ȍ
16
25/125
350
29
±15
32
48
64
Rgon(W) 80
°C
V
A
V
IGBT
Figure 18
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
10-4
10-3
At
D=
RthJH =
tp / T
1,69
K/W
R (C/W)
0,05
0,23
0,62
0,50
0,18
0,11
Tau (s)
7,4E+00
1,0E+00
1,4E-01
2,6E-02
4,3E-03
3,2E-04
copyright E\Vincotech
10-2
10-1
100
tp (s)
1021
16
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Boost
IGBT
IGBT
Figure 20
Collector current as a
function of heatsink temperature
IC = f(Th)
120
50
IC (A)
Ptot (W)
Figure 19
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright E\Vincotech
100
150
Th(oC)
200
0
At
Tj =
VGE =
ºC
17
50
175
15
100
150
Th(oC)
200
ºC
V
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Buck and Boost Inverse Diode
Buck and Boost Inverse Diode
Buck and Boost Inverse Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
75
60
100
IF (A)
90
ZthJC (K/W)
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
15
Tj = Tjmax-25ƒC
Tj = 25ƒC
0
0
At
tp =
0,5
1
350
1,5
2
2,5
VF (V)
10-2
3
10-5
At
D=
RthJH =
ȝs
Buck and Boost Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
2,15
10-2
tp (s)
100
1021
K/W
Buck and Boost Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
10-1
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
copyright E\Vincotech
100
150
Th (oC)
200
0
At
Tj =
ºC
18
50
175
100
150
Th (oC)
200
ºC
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values
NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R/ȍ
25000
§
§
··
¨ B25/100⋅¨ 1 − 1 ¸ ¸
¨T
¨
T25 ¸¹ ¸¹
©
©
[Ω]
20000
15000
10000
5000
0
25
50
copyright E\Vincotech
75
100
T (°C)
125
19
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Switching Definitions BUCK IGBT
General conditions
= 125 °C
Tj
= 16 ȍ
Rgon
Rgoff
= 16 ȍ
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
%
%
120
tdoff
IC
200
VCE
100
VGE 90%
VCE 90%
150
80
IC
VCE
100
60
VGE
tEoff
40
tdon
50
20
VGE 10%
VGE
0
IC 1%
-20
-0,2
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
-15
15
350
31
0,17
0,41
0,2
0,3
tEon
-50
0,4
0,5
time (us)
2,8
2,9
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
ȝs
ȝs
Output inverter IGBT
Figure 3
VCE 3%
IC 10%
0
3,1
-15
15
350
31
0,10
0,21
3,2
3,4
3,5
time(us)
V
V
V
A
ȝs
ȝs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,3
Turn-on Switching Waveforms & definition of tr
140
%
240
%
120
fitted
IC
100
Ic
200
VCE
160
IC 90%
80
120
VCE
IC 60%
60
IC 90%
80
tr
IC 40%
40
40
20
IC 10%
0
IC 10%
0
tf
-20
-40
0
0,05
VC (100%) =
IC (100%) =
tf =
copyright E\Vincotech
0,1
350
31
0,11
0,15
0,2
0,25
time (us)
0,3
3
VC (100%) =
IC (100%) =
tr =
V
A
ȝs
20
3,05
3,1
350
31
0,02
3,15
3,2
time(us)
3,25
V
A
ȝs
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Switching Definitions BUCK IGBT
Output inverter IGBT
Figure 5
Turn-on Switching Waveforms & definition of tEon
120
%
160
%
IC 1%
100
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Eoff
Pon
140
Poff
120
80
Eon
100
60
80
40
60
40
20
VGE90%
20
VGE 10%
0
-20
-0,2
-0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,1
10,70
1,02
0,41
0,2
0,3
tEon
-20
0,4
0,5
time (us)
2,9
3
3,1
3,2
3,3
3,4
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
ȝs
Figure 7
Gate voltage vs Gate charge (measured)
VG
GE (V)
VCE3%
0
tEoff
Output inverter FWD
10,70
0,62
0,21
kW
mJ
ȝs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
Id
%
15
80
trr
10
40
5
fitted
Vd
0
IRRM 10%
0
-40
-5
-80
-10
IRRM 90%
-120
-15
-20
-50
0
50
100
150
200
250
-160
300
3
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright E\Vincotech
-15
15
350
31
261,94
IRRM 100%
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
3,1
3,2
350
31
-39
0,18
3,3
3,4
3,5
time(us)
3,6
V
A
A
ȝs
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Switching Definitions BUCK IGBT
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
%
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
125
Id
%
Qrr
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
-150
2,95
3,15
Id (100%) =
Qrr (100%) =
tQrr =
3,35
31
2,29
0,67
3,55
3,75
time(us)
-25
2,95
3,95
Prec (100%) =
Erec (100%) =
tErec =
A
ȝC
ȝs
tErec
Prec
3,15
3,35
10,70
0,55
0,67
3,55
3,75
time(us)
3,95
kW
mJ
ȝs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright E\Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
Standard in flow0 12mm housing
10-FZ06NIA030SA-P924F33
P924F33
P924F33
Outline
Pinout
copyright E\Vincotech
23
Revision: 1
10-FZ06NIA030SA-P924F33
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright E\Vincotech
24
Revision: 1