10 xZ062PA100SA P994F08x 14

10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
flow PHASE0
600 V / 100 A
Features
flow 0 housing
● Trench Fieldstop IGBT3 technology
● 2-clip housing in 12mm height
● Compact and low inductance design
solder pins
Press-fit pins
Target Applications
Schematic
● Motor Drive
● UPS
Types
● 10-FZ062PA100SA-P994F08
● 10-PZ062PA100SA-P994F08Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Output Inverter Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
600
V
T s=80°C
T c=80°C
87
113
A
300
A
T s=80°C
T c=80°C
152
231
W
t p limited by T jmax
T j=T jmax
T j≤150°C
V GE=15V
T jmax
±20
V
6
360
µs
V
175
°C
600
V
71
95
A
300
A
94
143
W
175
°C
Output Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j=25°C
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T jmax
1
T s=80°C
T c=80°C
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
solder pins / Press-fit pins
Clearance
copyright Vincotech
2
4000
V
min 12,7
mm
9,88 / 8,93
mm
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5
5,8
6,5
1
1,63
1,84
2,1
Output Inverter Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0016
15
100
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
0,66
700
2
tr
t d(off)
25
150
25
150
25
150
25
150
R goff=4 Ω
R gon=4 Ω
±15
300
100
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
156
162
20
27
212
242
99
116
0,92
1,4
2,68
3,55
ns
mWs
6160
f=1MHz
25
0
25
384
pF
183
25
±15
phase-change
material
λ = 3,4 W/mK
620
nC
0,62
K/W
Output Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance junction to sink
copyright Vincotech
100
R gon=4 Ω
±15
300
( di rf/dt )max
E rec
R th(j-s)
phase-change
material
λ = 3,4 W/mK
100
25
150
25
150
25
150
25
150
25
150
25
150
1
1,58
1,53
105,29
131,1
116
138
4,92
9,11
4869
3253
1,13
2,15
1,01
3
2,2
V
A
ns
µC
A/µs
mWs
K/W
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IC (A)
300
IC (A)
300
Output inverter IGBT
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
V CE (V)
4
5
0
At
Tj =
V GE from
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
4
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
100
V CE (V)
Output inverter FWD
IC (A)
IF (A)
300
250
80
200
60
150
Tj = Tjmax-25°C
40
100
Tj = 25°C
Tj = Tjmax-25°C
20
50
Tj = 25°C
0
0
0
2
V CE =
350
10
At
tp =
copyright Vincotech
4
6
8
10 V GE (V)
12
0
At
tp =
µs
V
4
0,5
1
350
µs
1,5
2
2,5
V F (V)
3
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 5
Typical switching energy losses
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
as a function of gate resistor
E = f(R G)
E (mWs)
6
E (mWs)
6
Eoff High T
Eon High T
4,5
4,5
Eoff High T
Eon Low T
Eoff Low T
Eoff Low T
3
3
Eon High T
1,5
1,5
Eon Low T
0
0
0
50
100
I C (A)
150
0
200
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
With an inductive load at
Tj =
°C
25/150
V CE =
300
V
V GE =
±15
V
IC =
100
A
Figure 7
Output inverter IGBT
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Figure 8
Output inverter IGBT
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
3
E (mWs)
3
Erec
Tj = Tjmax -25°C
2,25
2,25
Tj = Tjmax -25°C
Erec
Tj = 25°C
Erec
1,5
1,5
0,75
0,75
Tj = 25°C
Erec
0
0
0
20
40
60
80
100
120
140
160
I C (A)
180
200
0
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
25/150
°C
V CE =
300
V
V GE =
±15
V
IC =
100
A
5
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 9
Typical switching times as a
Output inverter IGBT
Figure 10
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdon
tdoff
tdon
tf
tf
0,1
0,1
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
100
120
140
160
I C 180
(A)
200
0
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
RG( Ω )
16
20
With an inductive load at
Tj =
150
°C
V CE =
300
V
V GE =
±15
V
IC =
100
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Output inverter FWD
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,4
t rr( µs)
t rr( µs)
0,2
0,16
trr
0,3
Tj = Tjmax -25°C
Tj = Tjmax -25°C
trr
trr
0,12
0,2
Tj = 25°C
0,08
Tj = 25°C
trr
0,1
0,04
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
25/150
300
±15
°C
V
V
4
Ω
copyright Vincotech
80
100
120
140
160
I C 180
(A)
0
200
At
Tj =
VR=
IF=
V GE =
6
4
8
25/150
300
100
°C
V
A
±15
V
12
16
R g on ( Ω ) 20
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
function of IGBT turn on gate resistor
Q rr = f(R gon)
12
20
Qrr( µC)
Qrr( µC)
Qrr
Tj = Tjmax -25°C
16
8
12
Qrr
Tj = 25°C
Tj = Tjmax -25°C
Qrr
8
4
Tj = 25°C
Qrr
4
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
40
60
25/150
300
°C
V
±15
4
V
Ω
80
100
120
140
160
I C (A) 200
180
0
4
At
Tj =
VR=
IF=
V GE =
Figure 15
Output inverter FWD
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
8
25/150
300
°C
V
100
±15
A
V
12
R g on ( Ω)
16
20
Figure 16
Output inverter FWD
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
200
IrrM (A)
IrrM (A)
200
IRRM
160
160
Tj = Tjmax -25°C
IRRM
120
120
Tj = Tjmax - 25°C
Tj = 25°C
IRRM
80
80
IRRM
Tj = 25°C
40
40
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
25/150
300
±15
°C
V
V
4
Ω
copyright Vincotech
80
100
120
140
160
I C 180
(A)
0
200
At
Tj =
VR=
IF=
V GE =
7
4
8
25/150
300
100
°C
V
A
±15
V
12
16
R gon ( Ω )
20
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
dI0/dt
direc / dt (A/ µs)
10000
direc / dt (A/µ s)
8000
dIo/dtLow T
dIrec/dt
di0/dtHigh T
dI0/dt
dIrec/dt
8000
6000
dIrec/dtLow T
6000
4000
4000
dIrec/dtHigh T
Tj = 25°C
2000
2000
Tj = Tjmax - 25°C
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
25/150
300
°C
V
±15
4
V
Ω
80
100
120
140
160
I C180
(A)
200
0
At
Tj =
VR=
IF=
V GE =
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
4
8
25/150
300
°C
V
100
±15
A
V
12
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
20
Output inverter FWD
101
ZthJH (K/W)
Zth-JH (K/W)
100
R gon ( Ω )
16
100
10
-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10-3
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
1
1010
10-5
At
D =
R thJH =
tp/T
0,62
K/W
10-4
10-3
1,01
R (K/W)
0,09
0,17
0,27
0,06
0,02
0,01
R (K/W)
0,07
0,17
0,51
0,16
0,07
0,03
8
100
t p (s)
1
1010
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
1,6E+00
2,3E-01
6,4E-02
9,5E-03
9,1E-04
2,2E-04
10-2
Tau (s)
3,0E+00
4,1E-01
9,0E-02
2,0E-02
4,8E-03
5,6E-04
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 21
Power dissipation as a
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
function of heatsink temperature
I C = f(T h)
150
IC (A)
Ptot (W)
300
250
120
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
120
Ptot (W)
IF (A)
200
150
160
90
120
60
80
30
40
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Output Inverter
Figure 25
Safe operating area as a function
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
Output inverter IGBT
V GE = f(Q GE)
IC (A)
VGE (V)
22
20
10uS
18
103
16
100uS
120V
100mS
10
10mS
1mS
480V
14
DC
2
12
10
101
8
6
4
100
2
0
10-1 0
10
At
D =
Th =
V GE =
Tj =
101
102
V CE (V)
0
103
copyright Vincotech
200
300
400
500
600
700
800
Q g (nC)
At
IC =
single pulse
80
±15
T jmax
100
100
A
ºC
V
ºC
10
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
R gon
= 4Ω
R goff
= 4Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
140
250
%
%
120
tdoff
VCE
IC
210
100
VGE 90%
VCE 90%
170
80
60
130
IC
VCE
tEoff
40
90
VGE
tdon
20
50
0
VGE
IC 1%
VGE10%
10
-20
IC10%
VCE 3%
tEon
-40
-0,2
-0,05
0,1
0,25
0,4
0,55
-30
0,7
2,8
time (us)
2,95
3,1
3,25
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
300
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
300
V
V
V
I C (100%) =
t doff =
t E off =
99
0,24
0,62
A
µs
µs
I C (100%) =
t don =
t E on =
99
0,16
0,31
A
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,4
3,55
time(us)
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
250
%
fitted
%
120
IC
210
VCE
100
170
IC 90%
80
130
VCE
IC 60%
60
IC90%
90
IC 40%
40
tr
50
20
IC10%
0
Ic
10
tf
-20
0,1
0,15
0,2
0,25
0,3
0,35
-30
2,95
0,4
time (us)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
300
99
0,11
IC10%
3,1
3,25
3,4
3,55
3,7
time(us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
11
300
99
0,03
V
A
µs
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
120
%
Poff
Eon
%
Eoff
100
100
80
80
60
60
40
40
20
20
Pon
VGE 10%
VCE 3%
VGE 90%
0
0
tEoff
tEon
IC 1%
-20
-0,2
-20
-0,05
0,1
0,25
0,4
0,55
2,9
0,7
3
3,1
3,2
3,3
3,4
P off (100%) =
E off (100%) =
t E off =
3,5
time(us)
time (us)
29,81
kW
P on (100%) =
29,81
kW
3,59
0,62
mJ
µs
E on (100%) =
t E on =
1,40
0,31
mJ
µs
Figure 7
Output inverter FWD
Gate voltage vs Gate charge (measured)
Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
120
VGE (V)
20
%
15
Id
80
trr
10
fitted
40
5
0
Vd
0
IRRM10%
-40
-5
-80
-10
IRRM90%
-120
-15
-20
-200
IRRM100%
-160
0
200
400
600
800
1000
3
1200
3,1
3,2
3,3
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
-15
15
300
99
6643,47
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
12
300
99
-130
0,14
3,4
3,5
time(us)
3,6
V
A
A
µs
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Switching Definitions Output Inverter
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
%
Erec
%
Qrr
100
100
Id
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
-150
2,95
0
3,1
3,25
3,4
3,55
3,7
3,85
-20
2,95
4
3,1
3,25
3,4
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
99
A
P rec (100%) =
29,81
kW
8,86
0,53
µC
µs
E rec (100%) =
t E rec =
2,07
0,53
mJ
µs
13
3,55
3,7
3,85
time(us)
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 12mm housing solder pins
10-FZ062PA100SA-P994F08
with thermal paste 12mm housing solder pins
10-FZ062PA100SA-P994F08-/3/
with thermal paste 12mm housing Press-fit pins
10-PZ062PA100SA-P994F08Y-/3/
Name
Date code
UL & Vinco
Lot
Serial
NN-NNNNNNNNNNNNNN-TTTTTTTVV
WWYY
UL Vinco
LLLLL
SSSS
Text
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Datamatrix
Outline
Pin table
Pin
X
Y
Function
1
0
0
DC-
2
0
2,3
DC-
3
0
4,6
DC-
4
0
6,9
DC-
5
0
15,6
DC+
6
0
17,9
DC+
7
0
20,2
DC+
8
0
22,5
DC+
9
13,85
16,45
G1
10
16,75
16,45
S1
11
33,5
11,5
OUT
12
33,5
9,2
OUT
13
33,5
6,9
OUT
14
33,5
4,6
OUT
15
33,5
2,3
OUT
16
33,5
0
OUT
17
13,85
13,55
OUT
18
19,55
4,95
S2
19
19,55
7,85
G2
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2
IGBT
600 V
100 A
Half-bridge Switch
D1,D2
FWD
600 V
100 A
Half-bridge Diode
copyright Vincotech
14
Comment
02 Dec. 2015 / Revision 2
10-FZ062PA100SA-P994F08
10-PZ062PA100SA-P994F08Y
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
Document No.:
Date:
Modification:
10-xx062PA100SA-P994F0xx-D2-14
02 Dec. 2015
Pages
Product status definition
Datasheet Status
Product Status
Definition
Target
Formative or In Design
This datasheet contains the design specifications for product
development. Specifications may change in any manner without
notice. The data contained is exclusively intended for technically
trained staff.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
02 Dec. 2015 / Revision 2