10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet flow PHASE0 600 V / 100 A Features flow 0 housing ● Trench Fieldstop IGBT3 technology ● 2-clip housing in 12mm height ● Compact and low inductance design solder pins Press-fit pins Target Applications Schematic ● Motor Drive ● UPS Types ● 10-FZ062PA100SA-P994F08 ● 10-PZ062PA100SA-P994F08Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Output Inverter Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax 600 V T s=80°C T c=80°C 87 113 A 300 A T s=80°C T c=80°C 152 231 W t p limited by T jmax T j=T jmax T j≤150°C V GE=15V T jmax ±20 V 6 360 µs V 175 °C 600 V 71 95 A 300 A 94 143 W 175 °C Output Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j=25°C T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T jmax 1 T s=80°C T c=80°C 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance solder pins / Press-fit pins Clearance copyright Vincotech 2 4000 V min 12,7 mm 9,88 / 8,93 mm 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5 5,8 6,5 1 1,63 1,84 2,1 Output Inverter Switch Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0016 15 100 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 0,66 700 2 tr t d(off) 25 150 25 150 25 150 25 150 R goff=4 Ω R gon=4 Ω ±15 300 100 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 156 162 20 27 212 242 99 116 0,92 1,4 2,68 3,55 ns mWs 6160 f=1MHz 25 0 25 384 pF 183 25 ±15 phase-change material λ = 3,4 W/mK 620 nC 0,62 K/W Output Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink copyright Vincotech 100 R gon=4 Ω ±15 300 ( di rf/dt )max E rec R th(j-s) phase-change material λ = 3,4 W/mK 100 25 150 25 150 25 150 25 150 25 150 25 150 1 1,58 1,53 105,29 131,1 116 138 4,92 9,11 4869 3253 1,13 2,15 1,01 3 2,2 V A ns µC A/µs mWs K/W 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) IC (A) 300 IC (A) 300 Output inverter IGBT 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 V CE (V) 4 5 0 At Tj = V GE from At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 4 5 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 100 V CE (V) Output inverter FWD IC (A) IF (A) 300 250 80 200 60 150 Tj = Tjmax-25°C 40 100 Tj = 25°C Tj = Tjmax-25°C 20 50 Tj = 25°C 0 0 0 2 V CE = 350 10 At tp = copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 4 0,5 1 350 µs 1,5 2 2,5 V F (V) 3 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 5 Typical switching energy losses Output inverter IGBT Figure 6 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT as a function of gate resistor E = f(R G) E (mWs) 6 E (mWs) 6 Eoff High T Eon High T 4,5 4,5 Eoff High T Eon Low T Eoff Low T Eoff Low T 3 3 Eon High T 1,5 1,5 Eon Low T 0 0 0 50 100 I C (A) 150 0 200 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω With an inductive load at Tj = °C 25/150 V CE = 300 V V GE = ±15 V IC = 100 A Figure 7 Output inverter IGBT Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Figure 8 Output inverter IGBT Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 3 E (mWs) 3 Erec Tj = Tjmax -25°C 2,25 2,25 Tj = Tjmax -25°C Erec Tj = 25°C Erec 1,5 1,5 0,75 0,75 Tj = 25°C Erec 0 0 0 20 40 60 80 100 120 140 160 I C (A) 180 200 0 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 RG( Ω ) 20 With an inductive load at Tj = 25/150 °C V CE = 300 V V GE = ±15 V IC = 100 A 5 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 9 Typical switching times as a Output inverter IGBT Figure 10 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdon tdoff tdon tf tf 0,1 0,1 tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 100 120 140 160 I C 180 (A) 200 0 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 RG( Ω ) 16 20 With an inductive load at Tj = 150 °C V CE = 300 V V GE = ±15 V IC = 100 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Output inverter FWD Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,4 t rr( µs) t rr( µs) 0,2 0,16 trr 0,3 Tj = Tjmax -25°C Tj = Tjmax -25°C trr trr 0,12 0,2 Tj = 25°C 0,08 Tj = 25°C trr 0,1 0,04 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 25/150 300 ±15 °C V V 4 Ω copyright Vincotech 80 100 120 140 160 I C 180 (A) 0 200 At Tj = VR= IF= V GE = 6 4 8 25/150 300 100 °C V A ±15 V 12 16 R g on ( Ω ) 20 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 13 Typical reverse recovery charge as a Output inverter FWD Figure 14 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD function of IGBT turn on gate resistor Q rr = f(R gon) 12 20 Qrr( µC) Qrr( µC) Qrr Tj = Tjmax -25°C 16 8 12 Qrr Tj = 25°C Tj = Tjmax -25°C Qrr 8 4 Tj = 25°C Qrr 4 0 0 0 At At Tj = V CE = V GE = R gon = 20 40 60 25/150 300 °C V ±15 4 V Ω 80 100 120 140 160 I C (A) 200 180 0 4 At Tj = VR= IF= V GE = Figure 15 Output inverter FWD Typical reverse recovery current as a function of collector current I RRM = f(I C) 8 25/150 300 °C V 100 ±15 A V 12 R g on ( Ω) 16 20 Figure 16 Output inverter FWD Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 200 IrrM (A) IrrM (A) 200 IRRM 160 160 Tj = Tjmax -25°C IRRM 120 120 Tj = Tjmax - 25°C Tj = 25°C IRRM 80 80 IRRM Tj = 25°C 40 40 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 25/150 300 ±15 °C V V 4 Ω copyright Vincotech 80 100 120 140 160 I C 180 (A) 0 200 At Tj = VR= IF= V GE = 7 4 8 25/150 300 100 °C V A ±15 V 12 16 R gon ( Ω ) 20 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 17 Typical rate of fall of forward Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) dI0/dt direc / dt (A/ µs) 10000 direc / dt (A/µ s) 8000 dIo/dtLow T dIrec/dt di0/dtHigh T dI0/dt dIrec/dt 8000 6000 dIrec/dtLow T 6000 4000 4000 dIrec/dtHigh T Tj = 25°C 2000 2000 Tj = Tjmax - 25°C 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 25/150 300 °C V ±15 4 V Ω 80 100 120 140 160 I C180 (A) 200 0 At Tj = VR= IF= V GE = Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 4 8 25/150 300 °C V 100 ±15 A V 12 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 20 Output inverter FWD 101 ZthJH (K/W) Zth-JH (K/W) 100 R gon ( Ω ) 16 100 10 -1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10-3 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 1 1010 10-5 At D = R thJH = tp/T 0,62 K/W 10-4 10-3 1,01 R (K/W) 0,09 0,17 0,27 0,06 0,02 0,01 R (K/W) 0,07 0,17 0,51 0,16 0,07 0,03 8 100 t p (s) 1 1010 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 1,6E+00 2,3E-01 6,4E-02 9,5E-03 9,1E-04 2,2E-04 10-2 Tau (s) 3,0E+00 4,1E-01 9,0E-02 2,0E-02 4,8E-03 5,6E-04 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 21 Power dissipation as a Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature P tot = f(T h) Output inverter IGBT function of heatsink temperature I C = f(T h) 150 IC (A) Ptot (W) 300 250 120 200 90 150 60 100 30 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 120 Ptot (W) IF (A) 200 150 160 90 120 60 80 30 40 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Output Inverter Figure 25 Safe operating area as a function Output inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) Output inverter IGBT V GE = f(Q GE) IC (A) VGE (V) 22 20 10uS 18 103 16 100uS 120V 100mS 10 10mS 1mS 480V 14 DC 2 12 10 101 8 6 4 100 2 0 10-1 0 10 At D = Th = V GE = Tj = 101 102 V CE (V) 0 103 copyright Vincotech 200 300 400 500 600 700 800 Q g (nC) At IC = single pulse 80 ±15 T jmax 100 100 A ºC V ºC 10 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C R gon = 4Ω R goff = 4Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 140 250 % % 120 tdoff VCE IC 210 100 VGE 90% VCE 90% 170 80 60 130 IC VCE tEoff 40 90 VGE tdon 20 50 0 VGE IC 1% VGE10% 10 -20 IC10% VCE 3% tEon -40 -0,2 -0,05 0,1 0,25 0,4 0,55 -30 0,7 2,8 time (us) 2,95 3,1 3,25 V GE (0%) = V GE (100%) = V C (100%) = -15 15 300 V V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 300 V V V I C (100%) = t doff = t E off = 99 0,24 0,62 A µs µs I C (100%) = t don = t E on = 99 0,16 0,31 A µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,4 3,55 time(us) Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 250 % fitted % 120 IC 210 VCE 100 170 IC 90% 80 130 VCE IC 60% 60 IC90% 90 IC 40% 40 tr 50 20 IC10% 0 Ic 10 tf -20 0,1 0,15 0,2 0,25 0,3 0,35 -30 2,95 0,4 time (us) V C (100%) = I C (100%) = tf = copyright Vincotech 300 99 0,11 IC10% 3,1 3,25 3,4 3,55 3,7 time(us) V A µs V C (100%) = I C (100%) = tr = 11 300 99 0,03 V A µs 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 120 % Poff Eon % Eoff 100 100 80 80 60 60 40 40 20 20 Pon VGE 10% VCE 3% VGE 90% 0 0 tEoff tEon IC 1% -20 -0,2 -20 -0,05 0,1 0,25 0,4 0,55 2,9 0,7 3 3,1 3,2 3,3 3,4 P off (100%) = E off (100%) = t E off = 3,5 time(us) time (us) 29,81 kW P on (100%) = 29,81 kW 3,59 0,62 mJ µs E on (100%) = t E on = 1,40 0,31 mJ µs Figure 7 Output inverter FWD Gate voltage vs Gate charge (measured) Figure 8 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr 120 VGE (V) 20 % 15 Id 80 trr 10 fitted 40 5 0 Vd 0 IRRM10% -40 -5 -80 -10 IRRM90% -120 -15 -20 -200 IRRM100% -160 0 200 400 600 800 1000 3 1200 3,1 3,2 3,3 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech -15 15 300 99 6643,47 V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 12 300 99 -130 0,14 3,4 3,5 time(us) 3,6 V A A µs 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Switching Definitions Output Inverter Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 % Erec % Qrr 100 100 Id 80 50 tQrr tErec 60 0 40 -50 20 Prec -100 -150 2,95 0 3,1 3,25 3,4 3,55 3,7 3,85 -20 2,95 4 3,1 3,25 3,4 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 99 A P rec (100%) = 29,81 kW 8,86 0,53 µC µs E rec (100%) = t E rec = 2,07 0,53 mJ µs 13 3,55 3,7 3,85 time(us) 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 12mm housing solder pins 10-FZ062PA100SA-P994F08 with thermal paste 12mm housing solder pins 10-FZ062PA100SA-P994F08-/3/ with thermal paste 12mm housing Press-fit pins 10-PZ062PA100SA-P994F08Y-/3/ Name Date code UL & Vinco Lot Serial NN-NNNNNNNNNNNNNN-TTTTTTTVV WWYY UL Vinco LLLLL SSSS Text Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Datamatrix Outline Pin table Pin X Y Function 1 0 0 DC- 2 0 2,3 DC- 3 0 4,6 DC- 4 0 6,9 DC- 5 0 15,6 DC+ 6 0 17,9 DC+ 7 0 20,2 DC+ 8 0 22,5 DC+ 9 13,85 16,45 G1 10 16,75 16,45 S1 11 33,5 11,5 OUT 12 33,5 9,2 OUT 13 33,5 6,9 OUT 14 33,5 4,6 OUT 15 33,5 2,3 OUT 16 33,5 0 OUT 17 13,85 13,55 OUT 18 19,55 4,95 S2 19 19,55 7,85 G2 Pinout Identification ID Component Voltage Current Function T1,T2 IGBT 600 V 100 A Half-bridge Switch D1,D2 FWD 600 V 100 A Half-bridge Diode copyright Vincotech 14 Comment 02 Dec. 2015 / Revision 2 10-FZ062PA100SA-P994F08 10-PZ062PA100SA-P994F08Y datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. Document No.: Date: Modification: 10-xx062PA100SA-P994F0xx-D2-14 02 Dec. 2015 Pages Product status definition Datasheet Status Product Status Definition Target Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 02 Dec. 2015 / Revision 2