FZ06 / F0062PA100SA Maximum Ratings

FZ06 / F0062PA100SA
preliminary datasheet
flowPHASE0
600V/100A
Features
flow0 housing
● Trench Fieldstop IGBT technology
● 2-clip housing in 12mm and 17mm height
● Compact and low inductance design
3
Target Applications
Schematic
● Motor Drive
● UPS
Types
● FZ062PA100SA
● F0062PA100SA
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
77
101
A
300
A
127
192
W
±20
V
6
360
μs
V
175
°C
600
V
64
86
A
300
A
82
124
W
175
°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,63
1,84
2,1
Inverter Transistor
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0016
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,66
700
Rgoff=4 Ω
Rgon=4 Ω
±15
300
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
2
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
156
162
20
27
212
242
99
116
0,92
1,4
2,68
3,55
ns
mWs
6160
f=1MHz
0
Tj=25°C
25
384
pF
183
±15
Tj=25°C
nC
620
Thermal grease
thickness≤50um
λ = 1 W/mK
0,75
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgon=4 Ω
300
±15
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
50
Thermal grease
thickness≤50um
λ = 1 W/mK
100
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,58
1,53
105,29
131,1
116
138
4,92
9,11
4869
3253
1,13
2,15
2,2
V
A
ns
μC
A/μs
mWs
1,16
K/W
3
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
300
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
350
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
350
μs
150
°C
7 V to 17 V in steps of 1 V
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
V CE (V)
IC (A)
IF (A)
300
250
80
200
60
150
Tj = Tjmax-25°C
40
100
Tj = 25°C
Tj = Tjmax-25°C
20
50
Tj = 25°C
0
0
0
At
tp =
VCE =
2
350
10
4
6
8
10 V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
0,5
350
1
1,5
2
2,5
V F (V)
3
μs
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
6
E (mWs)
E (mWs)
6
Eoff High T
Eon High T
4,5
4,5
Eoff High T
Eoff Low T
Eon Low T
Eoff Low T
3
3
Eon High T
1,5
1,5
Eon Low T
0
0
0
50
100
I C (A)
150
0
200
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
°C
25/150
VCE =
300
V
VGE =
±15
V
IC =
100
A
Output inverter IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
3
E (mWs)
3
Erec
Tj = Tjmax -25°C
2,25
2,25
Tj = Tjmax -25°C
Erec
Tj = 25°C
Erec
1,5
1,5
0,75
0,75
Tj = 25°C
Erec
0
0
0
20
40
60
80
100
120
140
160
I C (A)
180
200
0
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG( Ω )
20
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
5
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdon
tdoff
tdon
tf
tf
0,1
0,1
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
100
120
140
160
I C 180
(A)
200
0
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG( Ω )
16
20
With an inductive load at
Tj =
150
°C
VCE =
300
V
VGE =
±15
V
IC =
100
A
Output inverter FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( μs)
t rr( μs)
0,2
0,16
trr
Tj = Tjmax -25°C
0,3
Tj = Tjmax -25°C
trr
trr
0,12
0,2
Tj = 25°C
0,08
Tj = 25°C
trr
0,1
0,04
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/150
300
±15
4
60
80
100
120
140
160
I C 180
(A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
4
25/150
300
100
±15
8
12
16
R g on ( Ω )
20
°C
V
A
V
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
12
20
Qrr( μC)
Qrr( μC)
Qrr
Tj = Tjmax -25°C
16
8
12
Qrr
Tj = 25°C
Tj = Tjmax -25°C
Qrr
8
4
Tj = 25°C
Qrr
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/150
300
±15
4
60
80
100
120
140
160
I C (A)
180
200
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/150
300
100
±15
12
16
R g on ( Ω)
20
°C
V
A
V
Output inverter FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
200
IrrM (A)
IrrM (A)
200
IRRM
160
160
Tj = Tjmax -25°C
IRRM
120
120
Tj = Tjmax - 25°C
Tj = 25°C
IRRM
80
80
IRRM
Tj = 25°C
40
40
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/150
300
±15
4
60
80
100
120
140
160
I C 180
(A)
0
200
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/150
300
100
±15
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Output inverter FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
direc / dt (A/ μs)
10000
direc / dt (A/μ s)
8000
dIo/dtLow T
dIrec/dt
di0/dtHigh T
dI0/dt
dIrec/dt
8000
6000
Tj = Tjmax - 25°C
dIrec/dtLow T
Tj = 25°C
6000
4000
4000
dIrec/dtHigh T
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
40
25/150
300
±15
4
60
80
100
120
140
160
(A)
I C 180
200
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/150
300
100
±15
8
12
20
°C
V
A
V
Output inverter FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
Zth-JH (K/W)
101
R gon ( Ω )
16
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,75
K/W
10-4
10-3
1,16
R (C/W)
0,02
0,12
0,37
0,16
0,04
0,03
R (C/W)
0,03
0,16
0,55
0,27
0,09
0,06
8
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9,9E+00
1,2E+00
1,8E-01
3,6E-02
5,1E-03
4,2E-04
10-2
Tau (s)
9,5E+00
1,0E+00
1,7E-01
3,2E-02
5,6E-03
3,7E-04
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
120
IC (A)
Ptot (W)
250
200
90
150
60
100
30
50
0
0
0
At
Tj =
50
175
100
°C
150
T h ( o C)
200
0
At
Tj =
VGE =
single heating
overall heating
Output inverter FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
120
Ptot (W)
IF (A)
160
150
120
90
80
60
40
30
0
0
0
At
Tj =
50
175
100
°C
Copyright by Vincotech
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
9
50
175
100
150
T h ( o C)
200
°C
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
22
20
10uS
18
103
16
100uS
120V
DC
10
100mS
1mS
10mS
480V
14
2
12
10
101
8
6
4
100
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
3
10
200
300
400
500
600
700
800
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
100
10
100
A
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
250
%
%
120
tdoff
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
VCE
IC
210
100
VGE 90%
VCE 90%
170
80
60
130
IC
VCE
tEoff
40
90
VGE
tdon
20
50
0
VGE
IC 1%
IC10%
VGE10%
10
-20
VCE 3%
tEon
-40
-0,2
-0,05
0,1
0,25
0,4
0,55
-30
0,7
2,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
300
99
0,24
0,62
2,95
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
-15
15
300
99
0,16
0,31
3,25
3,55
time(us)
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,4
Turn-on Switching Waveforms & definition of tr
140
250
%
fitted
%
120
IC
210
VCE
100
170
IC 90%
80
130
VCE
IC 60%
60
IC90%
90
IC 40%
40
tr
50
20
IC10%
0
Ic
tf
-20
0,1
0,15
0,2
0,25
0,3
0,35
-30
2,95
0,4
time (us)
VC (100%) =
IC (100%) =
tf =
300
99
0,11
Copyright by Vincotech
IC10%
10
3,1
3,25
3,4
3,55
3,7
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
11
300
99
0,03
V
A
μs
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
120
%
Poff
Eon
%
Eoff
100
100
80
80
60
60
40
40
20
20
Pon
VGE 10%
VCE 3%
VGE 90%
0
0
tEoff
tEon
IC 1%
-20
-0,2
-20
-0,05
0,1
0,25
0,4
0,55
2,9
0,7
3
3,1
3,2
3,3
3,4
Poff (100%) =
Eoff (100%) =
tEoff =
29,81
3,59
0,62
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3,5
time(us)
time (us)
Output inverter FRED
29,81
1,40
0,31
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
120
%
15
Id
80
trr
10
fitted
40
5
0
Vd
0
IRRM10%
-40
-5
-80
-10
IRRM90%
-120
-15
IRRM100%
-20
-200
-160
0
200
400
600
800
1000
3
1200
3,1
3,2
3,3
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
300
99
6643,47
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
12
300
99
-130
0,14
3,4
3,5
time(us)
3,6
V
A
A
μs
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
Erec
%
Qrr
100
100
Id
80
50
tQrr
tErec
60
0
40
-50
20
Prec
-100
0
-150
2,95
3,1
3,25
3,4
3,55
3,7
3,85
-20
2,95
4
3,1
3,25
3,4
29,81
2,07
0,53
kW
mJ
μs
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
99
8,86
0,53
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
13
3,55
3,7
3,85
time(us)
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste 12mm housing
without thermal paste 17mm housing
10-FZ062PA100SA-P994F08
10-F0062PA100SA-P994F09
P994F08
P994F09
P994F08
P994F09
Outline
Pinout
Copyright by Vincotech
14
Revision: 1
FZ06 / F0062PA100SA
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
15
Revision: 1