80 M006PNB010SAx K614x D3 14

80-M006PNB006SA*-K614*
datasheet
MiniSKiiP® PIM 0
600 V / 6 A
MiniSKiiP®0 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT's for low saturation losses
● Optional 2- and 3-leg rectifier
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
80-M006PNB006SA01-K614D, 2-leg rectifier
80-M006PNB006SA-K614C, 3-leg rectifier
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
25
25
A
220
A
240
A2s
46
70
W
150
°C
600
V
10
10
A
18
A
18
A
40
60
W
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge (non-repetitive) forward current
I FSM
2
t p = 10 ms
T j = 25 °C
2
I t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T s = 80 °C
T c = 80 °C
T jmax
Inverter Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
1
T s = 80 °C
T c = 80 °C
±20
V
6
360
µs
V
175
°C
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
T s = 80 °C
T c = 80 °C
10
10
A
22
A
T s = 80 °C
T c = 80 °C
31
47
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j = T jmax
t p limited by T jmax
T j = T jmax
Thermal Properties
Isolation Properties
Insulation voltage
V is
DC Voltage
Creepage distance
Clearance
Comparative Tracking Index
copyright Vincotech
CTI
t p=2s
4000
V
min 12,7
mm
min 12,7
mm
<200
2
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,43
1,44
0,92
0,79
20,29
26,11
1,64
Rectifier Diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance junction to sink
1500
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
V GE(th)
V CE = V GE
25
125
25
125
25
125
25
125
V
V
mΩ
0,05
1,5
mA
K/W
Inverter Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,00009
15
6
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
5
5,8
6,5
1,24
1,59
1,84
2,04
0,0004
300
R goff = 64 Ω
R gon = 64 Ω
300
±15
6
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
none
tr
t d(off)
25
150
25
150
25
150
25
150
105
102,4
21,8
27,8
142,2
163,6
102,7
132,4
0,15
0,22
0,15
0,19
ns
mWs
368
f = 1 MHz
25
25
0
pF
28
11
15
480
6
25
62
Thermal grease
thickness≤50um
λ = 1 W/mK
42
2,4
nC
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance junction to sink
6
R gon = 64 Ω
±15
300
( di rf/dt )max
E rec
R th(j-s)
6
25
150
25
150
25
150
25
150
25
150
25
150
1,42
1,36
3,92
5,82
182,7
288,1
0,32
0,77
45
57
0,06
0,16
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
µC
A/µs
mWs
3
K/W
Thermistor
Rated resistance
R
25
R 25 = 1000 Ω
R 100 = 1670 Ω
25
100
1000
-3
-2
Ω
3
2
Deviation of R
Δ R/R
R100
R 100
25
1670
Ω
0,76
% /K
A-value
B (25/50)
25
7,635*10-3
1/K
B-value
B (25/100)
25
1,731*10-5
1/K²
Temperature coefficient
Vincotech PTC Reference
copyright Vincotech
%
E
3
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
20
IC (A)
IC (A)
20
16
16
12
12
8
8
4
4
0
0
0
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
2
3
4
V CE (V)
6
20
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
IF (A)
IGBT
IC (A)
Figure 3
Typical transfer characteristics
I C = f(V GE)
1
FWD
Tj = 25°C
5
16
4
12
3
8
2
4
1
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0,0
tp =
µs
V
4
0,5
250
1,0
1,5
2,0
V F (V)
2,5
µs
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
E (mWs)
E (mWs)
0,6
0,5
0,6
0,5
Eon High T
Eon High T
0,4
0,4
Eon Low T
Eon Low T
0,3
0,3
Eoff High T
Eoff Low T
0,2
Eoff High T
0,2
Eoff Low T
0,1
0,1
0,0
0,0
0
3
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
6
load
25/150
25/150
300
±15
°C
V
V
64
64
Ω
Ω
9
I C (A)
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
12
0
FWD
64
128
inductive
Tj =
V CE =
V GE =
load
25/150
25/150
300
±15
°C
V
V
IC =
6
A
192
RG( Ω )
256
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
FWD
0,25
E (mWs)
E (mWs)
0,3
320
Erec
0,2
0,20
Tj = Tjmax -25°C
0,2
0,15
Tj = Tjmax -25°C
Erec
Erec
0,1
0,10
Tj = 25°C
0,1
0,05
Erec
Tj = 25°C
0,0
0,00
0
inductive
Tj =
V CE =
V GE =
R gon =
3
load
25/150
25/150
300
±15
64
copyright Vincotech
6
9
I C (A)
12
0
inductive
Tj =
V CE =
V GE =
IC =
°C
V
V
Ω
5
64
load
25/150
25/150
300
±15
6
128
192
256
RG( Ω )
320
°C
V
V
A
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
t ( µs)
1,00
t ( µs)
1,00
tdoff
tdoff
tf
tf
0,10
0,10
tdon
tr
tr
tdon
0,01
0,01
0,00
0,00
0
3
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
6
load
150
300
±15
°C
V
V
64
64
Ω
Ω
9
I C (A)
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
12
0
FWD
64
128
inductive
Tj =
V CE =
V GE =
load
150
300
±15
°C
V
V
IC =
6
A
192
256
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
320
FWD
0,5
t rr( µs)
t rr( µs)
0,5
RG( Ω )
0,4
trr
0,4
trr
Tj = Tjmax -25°C
0,3
0,3
trr
trr
Tj = Tjmax -25°C
0,2
0,2
Tj = 25°C
0,1
0,1
Tj = 25°C
0,0
0,0
0
Tj =
V CE =
V GE =
R gon =
3
25/150
25/150
300
±15
64
copyright Vincotech
6
9
I C (A)
12
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
64
25/150
25/150
300
6
±15
128
192
256
R g on ( Ω ) 320
°C
V
A
V
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr( µC)
1,2
Qrr( µC)
1,2
Qrr
1,0
1,0
0,8
Tj = Tjmax -25°C
0,8
Qrr
0,6
0,6
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,4
0,4
Qrr
Tj = 25°C
0,2
0,2
0,0
0,0
0
At
3
Tj =
V CE =
V GE =
R gon =
6
9
I C (A)
12
0
64
128
25/150
25/150
300
°C
V
Tj =
VR=
25/150
25/150
300
°C
V
±15
64
V
Ω
IF=
V GE =
6
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
192
R g on ( Ω) 320
256
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
8
Tj = Tjmax - 25°C
IrrM (A)
IrrM (A)
8
FWD
6
6
IRRM
Tj = Tjmax -25°C
IRRM
IRRM
4
4
Tj = 25°C
Tj = 25°C
IRRM
2
2
0
0
0
Tj =
V CE =
V GE =
R gon =
3
25/150
25/150
300
±15
64
copyright Vincotech
6
9
I C (A)
12
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
64
25/150
25/150
300
6
±15
128
192
256
R gon ( Ω )
320
°C
V
A
V
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
900
direc / dt (A/ µs)
direc / dt (A/µ s)
400
dI0/dt
dIrec/dt
320
dI0/dt
dIrec/dt
750
dIo/dtLow T
600
dIo/dtLow T
240
450
di0/dtHigh T
160
300
dIrec/dtHigh T
80
150
di0/dtHigh T
dIrec/dtLow T
dIrec/dtHigh T
0
Tj =
V CE =
V GE =
R gon =
3
6
I C (A)
9
0
12
64
128
25/150
25/150
300
°C
V
Tj =
VR=
25/150
25/150
300
°C
V
±15
64
V
Ω
IF=
V GE =
6
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
IGBT
192
256
320
R gon ( Ω )
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
FWD
Zth(j-s)(K/W)
101
Zth(j-s) (K/W)
101
100
100
10
dIrec/dtLow T
0
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
tp/T
2,40
K/W
D =
R th(j-s) =
1,95
10-4
10-3
10-2
10-1
100
3
K/W
2,47
FWD thermal model values
Thermal grease
Phase change interface
R (K/W)
0,08
0,18
0,82
0,59
0,43
0,30
R (K/W)
0,17
0,87
0,95
0,56
0,50
copyright Vincotech
R (K/W)
0,00
0,00
0,00
0,00
0,00
0,00
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
8
10110
tp/T
IGBT thermal model values
Thermal grease
Phase change interface
τ (s)
9,7E+00
4,8E-01
7,5E-02
1,5E-02
2,9E-03
3,0E-04
t p (s)
τ (s)
1,2E+00
1,1E-01
2,6E-02
4,6E-03
8,4E-04
R (K/W)
0,00
0,00
0,00
0,00
0,00
Tau (s)
0,0E+00
0,0E+00
0,0E+00
0,0E+00
0,0E+00
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
12
Ptot (W)
IC (A)
80
10
60
8
40
6
4
20
2
0
0
0
Tj =
50
175
100
150
T s ( o C)
200
0
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
FWD
50
175
15
100
150
T s ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T s)
FWD
12
IF (A)
Ptot (W)
60
200
10
40
8
6
20
4
2
0
0
0
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
Tj =
°C
9
50
175
100
150
T s ( o C)
200
°C
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Inverter
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q G)
102
IGBT
IC (A)
VGE (V)
18
10mS
1mS
16
10uS
100uS
100mS
DC
120V
14
101
12
480V
10
100
8
6
10-1
4
2
0
100
101
D =
single pulse
Ts =
80
±15
T jmax
V GE =
Tj =
V CE (V)
102
0
103
IC =
11
6
22
33
44
Q G (nC)
55
A
ºC
V
ºC
Figure 27
IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
I sc = f(V GE)
250
250
1000
IC(sc)/INOMII(%)
tsc (µS)
tsc (µS)
C(sc)
C(sc)
17,5
17,5
225
225
1515
200
200
800
12,5
12,5
175
175
150
150
600
1010
125
125
7,5
7,5
5
100
100
400
75
75
5
50
50
200
2,5
2,5
25
25
0
0
12
12
V CE =
Tj ≤
13 12,6 14
13
14
15
13,2
15
300
V
175
ºC
copyright Vincotech
16
16
13,817
17
1814,4
18
00
0
12
1212
15
20
V19
GE (V)
(V) 20
19VVGEGE(V)
V CE ≤
Tj =
10
13
13
14
14
14
300
V
175
ºC
15
15
16
16
16
17
17
18
18
18
19
20
19 V (V) 20
20
V GEGE
(V)
V GE (V)
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Rectifier Diode
Figure 1
Rectifier Diode
Figure 2
Rectifier Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
75
IF (A)
Zth(j-s) (K/W)
101
60
100
45
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
30
10-1
15
Tj = Tjmax-25°C
Tj = 25°C
0
10-2
0,0
0,5
1,0
tp =
250
µs
1,5
2,0
V F (V)
3,0
10-5
D =
R th(j-s) =
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Rectifier Diode
10-4
10-3
10-2
10-1
t p (s)
10110
tp/T
1,5
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T s)
120
100
Rectifier Diode
30
IF (A)
Ptot (W)
2,5
25
90
20
60
15
10
30
5
0
0
0
Tj =
30
150
copyright Vincotech
60
90
o
120 T s ( C)
150
0
Tj =
ºC
11
30
150
60
90
120
T s ( o C)
150
ºC
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Thermistor
Figure 1
Thermistor
Thermistor
Equation of PTC resistance temperature dependency
Typical PTC characteristic
as a function of temperature
R T = f(T )
PTC-typical temperature characteristic
2000
2
R/Ω
R (T ) = 1000 Ω[1+ A *(T -25°C) +B *(T -25°C) ]
[Ω]
1800
1600
1400
1200
1000
25
45
copyright Vincotech
65
85
105
T (°C)
125
12
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Switching Definitions Inverter
General conditions
Tj
=
150 °C
R gon
R goff
=
=
64 Ω
64 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
250
140
%
%
120
tdoff
200
IC
VCE
100
VGE 90%
VCE 90%
150
80
VCE
IC
100
60
tdon
tEoff
40
VGE
50
20
IC 1%
VGE
IC10%
VGE10%
0
VCE 3%
0
tEon
-50
-20
-0,2
-0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
0,1
0,2
0,3
0,4
2,8
0,5
time (µs)
2,9
3
3,1
-15
15
300
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
-15
15
300
V
V
V
6
0,16
0,52
A
µs
µs
I C (100%) =
t don =
t E on =
6
0,10
0,27
A
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,2
3,3
time(µs)
3,4
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
250
%
%
120
fitted
IC
Ic
200
VCE
100
IC 90%
150
80
IC 60%
60
VCE
100
IC90%
tr
40
IC 40%
50
20
IC10%
IC10%
0
-20
-0,05
0
tf
-50
0
0,05
0,1
0,15
0,2
0,25
0,3
3
3,05
3,1
3,15
time (µs)
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
300
6
0,13
3,2
3,25
time(µs)
V
A
µs
V C (100%) =
I C (100%) =
tr =
13
300
6
0,03
V
A
µs
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
180
%
Pon
%
Eoff
100
150
Poff
80
120
Eon
60
90
40
60
20
30
VGE 90%
IC 1%
0
tEoff
-20
-0,2
VCE 3%
VGE 10%
0
tEon
-30
-0,1
0
0,1
0,2
0,3
0,4
0,5
0,6
2,9
time (µs)
P off (100%) =
E off (100%) =
t E off =
1,80
0,19
0,52
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
3,1
1,80
0,23
0,27
3,2
3,3
time(µs)
3,4
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
Vd
fitted
0
IRRM10%
-40
-80
IRRM90%
IRRM100%
-120
2,95
3,1
3,25
3,4
3,55
3,7
time(µs)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
14
300
6
-6
0,29
V
A
A
µs
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
%
Qrr
Id
Erec
%
100
100
tQrr
80
tErec
50
60
0
40
-50
20
Prec
-100
0
-150
-20
3
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,4
6
0,78
1,00
3,6
3,8
4
time(µs)
4,2
2,9
3,1
3,3
3,5
3,7
3,9
4,1
4,3
time(µs)
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
15
1,80
0,16
1,00
kW
mJ
µs
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Ordering Code and Marking - Outline - Pinout - Identification
Ordering Code & Marking
Version
Ordering Code
with 2-leg rectifier, std lid (black V23990-K02-T-PM)
80-M006PNB006SA01-K614D-/0A/
with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12
80-M006PNB006SA01-K614D-/1A/
with 2-leg rectifier, thin lid (white V23990-K03-T-PM)
80-M006PNB006SA01-K614D-/0B/
with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
80-M006PNB006SA01-K614D-/1B/
with 3-leg rectifier, std lid (black V23990-K02-T-PM)
80-M006PNB006SA-K614C-/0A/
with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12
80-M006PNB006SA-K614C-/1A/
with 3-leg rectifier, thin lid (white V23990-K03-T-PM)
80-M006PNB006SA-K614C-/0B/
with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12
80-M006PNB006SA-K614C-/1B/
Text
Datamatrix
Name
Type&Ver
Date code
Vinco&Lot
Serial&UL
NN-NNNNNNNNNNNNNN
TTTTTTTVV
WWYY
Vinco LLLLL
SSSS UL
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Outline
Pinout
Identification
ID
Component
Voltage
Current
Function
T1-T6
D1-D6
D7-D12
PTC
IGBT
FWD
Rectifier Diode
PTC
600 V
600 V
1600 V
-
6A
6A
25 A
-
Inverter Switch
Inverter Diode
Rectifier Diode
Thermistor
copyright Vincotech
16
Comment
13 Jan. 2016 / Revision 3
80-M006PNB006SA*-K614*
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
198
Standard
<SPQ
Sample
Handling instruction
Handling instructions for MiniSkiiP
®
0 packages see vincotech.com website.
Package data
Package data for MiniSkiiP ® 0 packages see vincotech.com website.
Document No.:
Date:
80-M006PNB010SAx-K614x-D3-14
12 Jan. 2016
Modification:
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in la
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
13 Jan. 2016 / Revision 3