80-M006PNB006SA*-K614* datasheet MiniSKiiP® PIM 0 600 V / 6 A MiniSKiiP®0 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT's for low saturation losses ● Optional 2- and 3-leg rectifier Target Applications Schematic ● Industrial Drives ● Embedded Drives Types 80-M006PNB006SA01-K614D, 2-leg rectifier 80-M006PNB006SA-K614C, 3-leg rectifier Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 25 25 A 220 A 240 A2s 46 70 W 150 °C 600 V 10 10 A 18 A 18 A 40 60 W Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge (non-repetitive) forward current I FSM 2 t p = 10 ms T j = 25 °C 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T s = 80 °C T c = 80 °C T jmax Inverter Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 T s = 80 °C T c = 80 °C ±20 V 6 360 µs V 175 °C 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V T s = 80 °C T c = 80 °C 10 10 A 22 A T s = 80 °C T c = 80 °C 31 47 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j = T jmax t p limited by T jmax T j = T jmax Thermal Properties Isolation Properties Insulation voltage V is DC Voltage Creepage distance Clearance Comparative Tracking Index copyright Vincotech CTI t p=2s 4000 V min 12,7 mm min 12,7 mm <200 2 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,43 1,44 0,92 0,79 20,29 26,11 1,64 Rectifier Diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance junction to sink 1500 R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK V GE(th) V CE = V GE 25 125 25 125 25 125 25 125 V V mΩ 0,05 1,5 mA K/W Inverter Switch Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,00009 15 6 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 5 5,8 6,5 1,24 1,59 1,84 2,04 0,0004 300 R goff = 64 Ω R gon = 64 Ω 300 ±15 6 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω none tr t d(off) 25 150 25 150 25 150 25 150 105 102,4 21,8 27,8 142,2 163,6 102,7 132,4 0,15 0,22 0,15 0,19 ns mWs 368 f = 1 MHz 25 25 0 pF 28 11 15 480 6 25 62 Thermal grease thickness≤50um λ = 1 W/mK 42 2,4 nC K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink 6 R gon = 64 Ω ±15 300 ( di rf/dt )max E rec R th(j-s) 6 25 150 25 150 25 150 25 150 25 150 25 150 1,42 1,36 3,92 5,82 182,7 288,1 0,32 0,77 45 57 0,06 0,16 Thermal grease thickness≤50um λ = 1 W/mK V A ns µC A/µs mWs 3 K/W Thermistor Rated resistance R 25 R 25 = 1000 Ω R 100 = 1670 Ω 25 100 1000 -3 -2 Ω 3 2 Deviation of R Δ R/R R100 R 100 25 1670 Ω 0,76 % /K A-value B (25/50) 25 7,635*10-3 1/K B-value B (25/100) 25 1,731*10-5 1/K² Temperature coefficient Vincotech PTC Reference copyright Vincotech % E 3 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 20 IC (A) IC (A) 20 16 16 12 12 8 8 4 4 0 0 0 tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V 2 3 4 V CE (V) 6 20 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) IF (A) IGBT IC (A) Figure 3 Typical transfer characteristics I C = f(V GE) 1 FWD Tj = 25°C 5 16 4 12 3 8 2 4 1 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0,0 tp = µs V 4 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) E (mWs) 0,6 0,5 0,6 0,5 Eon High T Eon High T 0,4 0,4 Eon Low T Eon Low T 0,3 0,3 Eoff High T Eoff Low T 0,2 Eoff High T 0,2 Eoff Low T 0,1 0,1 0,0 0,0 0 3 inductive Tj = V CE = V GE = R gon = R goff = 6 load 25/150 25/150 300 ±15 °C V V 64 64 Ω Ω 9 I C (A) Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) 12 0 FWD 64 128 inductive Tj = V CE = V GE = load 25/150 25/150 300 ±15 °C V V IC = 6 A 192 RG( Ω ) 256 Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) FWD 0,25 E (mWs) E (mWs) 0,3 320 Erec 0,2 0,20 Tj = Tjmax -25°C 0,2 0,15 Tj = Tjmax -25°C Erec Erec 0,1 0,10 Tj = 25°C 0,1 0,05 Erec Tj = 25°C 0,0 0,00 0 inductive Tj = V CE = V GE = R gon = 3 load 25/150 25/150 300 ±15 64 copyright Vincotech 6 9 I C (A) 12 0 inductive Tj = V CE = V GE = IC = °C V V Ω 5 64 load 25/150 25/150 300 ±15 6 128 192 256 RG( Ω ) 320 °C V V A 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) t ( µs) 1,00 t ( µs) 1,00 tdoff tdoff tf tf 0,10 0,10 tdon tr tr tdon 0,01 0,01 0,00 0,00 0 3 inductive Tj = V CE = V GE = R gon = R goff = 6 load 150 300 ±15 °C V V 64 64 Ω Ω 9 I C (A) Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) 12 0 FWD 64 128 inductive Tj = V CE = V GE = load 150 300 ±15 °C V V IC = 6 A 192 256 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 320 FWD 0,5 t rr( µs) t rr( µs) 0,5 RG( Ω ) 0,4 trr 0,4 trr Tj = Tjmax -25°C 0,3 0,3 trr trr Tj = Tjmax -25°C 0,2 0,2 Tj = 25°C 0,1 0,1 Tj = 25°C 0,0 0,0 0 Tj = V CE = V GE = R gon = 3 25/150 25/150 300 ±15 64 copyright Vincotech 6 9 I C (A) 12 0 Tj = VR= IF= V GE = °C V V Ω 6 64 25/150 25/150 300 6 ±15 128 192 256 R g on ( Ω ) 320 °C V A V 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr( µC) 1,2 Qrr( µC) 1,2 Qrr 1,0 1,0 0,8 Tj = Tjmax -25°C 0,8 Qrr 0,6 0,6 Tj = Tjmax -25°C Qrr Tj = 25°C 0,4 0,4 Qrr Tj = 25°C 0,2 0,2 0,0 0,0 0 At 3 Tj = V CE = V GE = R gon = 6 9 I C (A) 12 0 64 128 25/150 25/150 300 °C V Tj = VR= 25/150 25/150 300 °C V ±15 64 V Ω IF= V GE = 6 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 192 R g on ( Ω) 320 256 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 8 Tj = Tjmax - 25°C IrrM (A) IrrM (A) 8 FWD 6 6 IRRM Tj = Tjmax -25°C IRRM IRRM 4 4 Tj = 25°C Tj = 25°C IRRM 2 2 0 0 0 Tj = V CE = V GE = R gon = 3 25/150 25/150 300 ±15 64 copyright Vincotech 6 9 I C (A) 12 0 Tj = VR= IF= V GE = °C V V Ω 7 64 25/150 25/150 300 6 ±15 128 192 256 R gon ( Ω ) 320 °C V A V 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 17 FWD Figure 18 FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 900 direc / dt (A/ µs) direc / dt (A/µ s) 400 dI0/dt dIrec/dt 320 dI0/dt dIrec/dt 750 dIo/dtLow T 600 dIo/dtLow T 240 450 di0/dtHigh T 160 300 dIrec/dtHigh T 80 150 di0/dtHigh T dIrec/dtLow T dIrec/dtHigh T 0 Tj = V CE = V GE = R gon = 3 6 I C (A) 9 0 12 64 128 25/150 25/150 300 °C V Tj = VR= 25/150 25/150 300 °C V ±15 64 V Ω IF= V GE = 6 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) IGBT 192 256 320 R gon ( Ω ) Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) FWD Zth(j-s)(K/W) 101 Zth(j-s) (K/W) 101 100 100 10 dIrec/dtLow T 0 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 tp/T 2,40 K/W D = R th(j-s) = 1,95 10-4 10-3 10-2 10-1 100 3 K/W 2,47 FWD thermal model values Thermal grease Phase change interface R (K/W) 0,08 0,18 0,82 0,59 0,43 0,30 R (K/W) 0,17 0,87 0,95 0,56 0,50 copyright Vincotech R (K/W) 0,00 0,00 0,00 0,00 0,00 0,00 Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 8 10110 tp/T IGBT thermal model values Thermal grease Phase change interface τ (s) 9,7E+00 4,8E-01 7,5E-02 1,5E-02 2,9E-03 3,0E-04 t p (s) τ (s) 1,2E+00 1,1E-01 2,6E-02 4,6E-03 8,4E-04 R (K/W) 0,00 0,00 0,00 0,00 0,00 Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 12 Ptot (W) IC (A) 80 10 60 8 40 6 4 20 2 0 0 0 Tj = 50 175 100 150 T s ( o C) 200 0 Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T s) FWD 50 175 15 100 150 T s ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T s) FWD 12 IF (A) Ptot (W) 60 200 10 40 8 6 20 4 2 0 0 0 Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 Tj = °C 9 50 175 100 150 T s ( o C) 200 °C 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Inverter Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q G) 102 IGBT IC (A) VGE (V) 18 10mS 1mS 16 10uS 100uS 100mS DC 120V 14 101 12 480V 10 100 8 6 10-1 4 2 0 100 101 D = single pulse Ts = 80 ±15 T jmax V GE = Tj = V CE (V) 102 0 103 IC = 11 6 22 33 44 Q G (nC) 55 A ºC V ºC Figure 27 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) IGBT Typical short circuit collector current as a function of gate-emitter voltage I sc = f(V GE) 250 250 1000 IC(sc)/INOMII(%) tsc (µS) tsc (µS) C(sc) C(sc) 17,5 17,5 225 225 1515 200 200 800 12,5 12,5 175 175 150 150 600 1010 125 125 7,5 7,5 5 100 100 400 75 75 5 50 50 200 2,5 2,5 25 25 0 0 12 12 V CE = Tj ≤ 13 12,6 14 13 14 15 13,2 15 300 V 175 ºC copyright Vincotech 16 16 13,817 17 1814,4 18 00 0 12 1212 15 20 V19 GE (V) (V) 20 19VVGEGE(V) V CE ≤ Tj = 10 13 13 14 14 14 300 V 175 ºC 15 15 16 16 16 17 17 18 18 18 19 20 19 V (V) 20 20 V GEGE (V) V GE (V) 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Rectifier Diode Figure 1 Rectifier Diode Figure 2 Rectifier Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 75 IF (A) Zth(j-s) (K/W) 101 60 100 45 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 30 10-1 15 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0,0 0,5 1,0 tp = 250 µs 1,5 2,0 V F (V) 3,0 10-5 D = R th(j-s) = Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Rectifier Diode 10-4 10-3 10-2 10-1 t p (s) 10110 tp/T 1,5 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) 120 100 Rectifier Diode 30 IF (A) Ptot (W) 2,5 25 90 20 60 15 10 30 5 0 0 0 Tj = 30 150 copyright Vincotech 60 90 o 120 T s ( C) 150 0 Tj = ºC 11 30 150 60 90 120 T s ( o C) 150 ºC 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Thermistor Figure 1 Thermistor Thermistor Equation of PTC resistance temperature dependency Typical PTC characteristic as a function of temperature R T = f(T ) PTC-typical temperature characteristic 2000 2 R/Ω R (T ) = 1000 Ω[1+ A *(T -25°C) +B *(T -25°C) ] [Ω] 1800 1600 1400 1200 1000 25 45 copyright Vincotech 65 85 105 T (°C) 125 12 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Switching Definitions Inverter General conditions Tj = 150 °C R gon R goff = = 64 Ω 64 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 250 140 % % 120 tdoff 200 IC VCE 100 VGE 90% VCE 90% 150 80 VCE IC 100 60 tdon tEoff 40 VGE 50 20 IC 1% VGE IC10% VGE10% 0 VCE 3% 0 tEon -50 -20 -0,2 -0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 0,1 0,2 0,3 0,4 2,8 0,5 time (µs) 2,9 3 3,1 -15 15 300 V V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 300 V V V 6 0,16 0,52 A µs µs I C (100%) = t don = t E on = 6 0,10 0,27 A µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,2 3,3 time(µs) 3,4 Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 250 % % 120 fitted IC Ic 200 VCE 100 IC 90% 150 80 IC 60% 60 VCE 100 IC90% tr 40 IC 40% 50 20 IC10% IC10% 0 -20 -0,05 0 tf -50 0 0,05 0,1 0,15 0,2 0,25 0,3 3 3,05 3,1 3,15 time (µs) V C (100%) = I C (100%) = tf = copyright Vincotech 300 6 0,13 3,2 3,25 time(µs) V A µs V C (100%) = I C (100%) = tr = 13 300 6 0,03 V A µs 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 180 % Pon % Eoff 100 150 Poff 80 120 Eon 60 90 40 60 20 30 VGE 90% IC 1% 0 tEoff -20 -0,2 VCE 3% VGE 10% 0 tEon -30 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 2,9 time (µs) P off (100%) = E off (100%) = t E off = 1,80 0,19 0,52 kW mJ µs 3 P on (100%) = E on (100%) = t E on = 3,1 1,80 0,23 0,27 3,2 3,3 time(µs) 3,4 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 Id % 80 trr 40 Vd fitted 0 IRRM10% -40 -80 IRRM90% IRRM100% -120 2,95 3,1 3,25 3,4 3,55 3,7 time(µs) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 14 300 6 -6 0,29 V A A µs 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 % Qrr Id Erec % 100 100 tQrr 80 tErec 50 60 0 40 -50 20 Prec -100 0 -150 -20 3 3,2 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,4 6 0,78 1,00 3,6 3,8 4 time(µs) 4,2 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(µs) A µC µs P rec (100%) = E rec (100%) = t E rec = 15 1,80 0,16 1,00 kW mJ µs 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Ordering Code and Marking - Outline - Pinout - Identification Ordering Code & Marking Version Ordering Code with 2-leg rectifier, std lid (black V23990-K02-T-PM) 80-M006PNB006SA01-K614D-/0A/ with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12 80-M006PNB006SA01-K614D-/1A/ with 2-leg rectifier, thin lid (white V23990-K03-T-PM) 80-M006PNB006SA01-K614D-/0B/ with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 80-M006PNB006SA01-K614D-/1B/ with 3-leg rectifier, std lid (black V23990-K02-T-PM) 80-M006PNB006SA-K614C-/0A/ with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12 80-M006PNB006SA-K614C-/1A/ with 3-leg rectifier, thin lid (white V23990-K03-T-PM) 80-M006PNB006SA-K614C-/0B/ with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 80-M006PNB006SA-K614C-/1B/ Text Datamatrix Name Type&Ver Date code Vinco&Lot Serial&UL NN-NNNNNNNNNNNNNN TTTTTTTVV WWYY Vinco LLLLL SSSS UL Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Outline Pinout Identification ID Component Voltage Current Function T1-T6 D1-D6 D7-D12 PTC IGBT FWD Rectifier Diode PTC 600 V 600 V 1600 V - 6A 6A 25 A - Inverter Switch Inverter Diode Rectifier Diode Thermistor copyright Vincotech 16 Comment 13 Jan. 2016 / Revision 3 80-M006PNB006SA*-K614* datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 198 Standard <SPQ Sample Handling instruction Handling instructions for MiniSkiiP ® 0 packages see vincotech.com website. Package data Package data for MiniSkiiP ® 0 packages see vincotech.com website. Document No.: Date: 80-M006PNB010SAx-K614x-D3-14 12 Jan. 2016 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in la 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 13 Jan. 2016 / Revision 3