V23990-P864-F49-PM V23990-P864-F48-PM Maximum

V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
flow PACK 0 3rd gen
600 V / 30 A
Features
flow 0 housing
● 2 clip housing in 12mm and 17mm height
● Trench Fieldstop IGBT3 technology
● Compact and low inductance design
● Built-in NTC
Target Applications
Schematic
● Motor Drives
● Power Generation
● UPS
Types
● V23990-P864-F49-PM: 17mm height
● V23990-P864-F48-PM: 12mm height
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
31
A
90
A
60
W
±20
V
6
360
µs
V
175
°C
Inverter Transistor
Collector-emitter voltage
DC collector current
V CE
IC
Tj=Tjmax
Repetitive peak collector current
I CRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings*
t SC
V CC
Maximum Junction Temperature
Th=80°C
Th=80°C
Tj≤150°C
VGE=15V
T jmax
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Tj=Tjmax
Th=80°C
600
V
30
A
60
A
46
W
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…..+125
°C
Operation junction temperature
T op
-40…..+Tjmax-25
°C
Th=80°C
Thermal properties
copyright Vincotech
1
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
4000
V
min.12,7
mm
Insulation properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
12mm height
min.9,22
mm
Clearance
17mm height
min.12,7
mm
copyright Vincotech
2
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,57
1,79
2,15
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
0,00043
VCE=VGE
V CEsat
30
15
Collector-emitter cut-off current incl. Diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(jh)
200
350
Rgon=16Ω
Rgoff=16Ω
±15
300
30
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
106
104
14
20
146
171
92
112
0,47
0,66
0,67
0,91
ns
mWs
1630
f=1MHz
0
25
15
480
Tj=25°C
108
pF
Tj=25°C
167
nC
1,60
K/W
50
30
Thermal grease
thickness≤50um
λ = 1 W/mK
Inverter Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
30
IR
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Rgon=16Ω
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
±15
300
( di rf/dt )max
E rec
R th(jh)
30
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,64
1,55
2,2
27
34
146
253
1,34
2,65
1752
815
Tj=150°C
0,57
mWs
2,08
K/W
21,5
kΩ
200
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
A
ns
mC
A/ms
Thermistor
Rated resistance
Tj=25°C
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
B-value
B(25/50)
B-value
B(25/100)
Tj=25°C
R100=1486 Ω
Tj=100°C
Power dissipation constant
4,5
%
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
3884
K
3964
K
F
Vincotech NTC Reference
copyright Vincotech
-4,5
3
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
90
IC (A)
IC (A)
90
Output inverter IGBT
75
75
60
60
45
45
30
30
15
15
0
0
0
1
tp =
Tj =
V GE from
2
3
VCE (V)
4
5
0
tp =
Tj =
250
µs
25
°C
7 V to 17 V in steps of 1 V
V GE from
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
90
IC (A)
IF (A)
30
VCE (V)
25
75
20
60
15
45
Tj = Tjmax-25°C
Tj = Tjmax-25°C
10
30
Tj = 25°C
Tj = 25°C
5
15
0
0
0
tp =
V CE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
4
0
0,5
tp =
250
1
1,5
2
2,5
VF (V)
3
µs
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
1,8
E (mWs)
E (mWs)
1,8
Output inverter IGBT
1,5
Eon
1,5
Eoff
Eon
Eon
1,2
1,2
Eoff
0,9
Eoff
0,9
Eon:
Eoff
0,6
0,6
0,3
0,3
0
0
0
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
10
20
30
40
50
I C (A)
60
0
load
25/150
300
±15
16
16
inductive
Tj =
V CE =
V GE =
IC =
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter IGBT
15
30
45
R G( Ω )
75
load
25/150
300
±15
30
°C
V
V
A
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
Output inverter IGBT
E (mWs)
1
E (mWs)
1
60
Erec
0,8
0,8
0,6
0,6
Erec
Erec
0,4
0,4
0,2
0,2
0
Erec
0
0
inductive
Tj =
V CE =
V GE =
R gon =
10
load
25/150
300
±15
16
copyright Vincotech
20
30
40
50
I C (A)
60
0
inductive
Tj =
V CE =
V GE =
IC =
°C
V
V
Ω
5
15
load
25/150
300
±15
30
30
45
60
R G( Ω )
75
°C
V
V
A
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
Output inverter IGBT
tdon
tdoff
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
inductive
Tj =
V CE =
V GE =
R gon =
R goff =
10
load
150
300
±15
16
16
20
30
40
50
I C (A)
60
0
inductive
Tj =
V CE =
V GE =
IC =
°C
V
V
Ω
Ω
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
15
load
150
300
±15
30
30
45
RG (Ω )
75
°C
V
V
A
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
Output inverter FWD
0,5
t rr( µs)
t rr( µs)
0,5
60
0,4
trr
0,4
trr
0,3
0,3
trr
0,2
0,2
trr
0,1
0,1
0
0
0
Tj =
V CE =
V GE =
R gon =
10
25/150
300
±15
16
copyright Vincotech
20
30
40
50
I C (A)
60
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
15
25/150
300
30
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
4
Output inverter FWD
4
Qrr ( µC)
Qrr
3,2
3,2
2,4
2,4
Qrr
Qrr
1,6
1,6
Qrr
0,8
0,8
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/150
300
±15
16
20
30
40
50
I C (A)
60
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Output inverter FWD
15
25/150
300
30
±15
30
45
R gon ( Ω) 75
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
Output inverter FWD
90
IrrM (A)
IrrM (A)
50
60
75
40
IRRM
60
30
IRRM
45
20
30
IRRM
10
15
IRRM
0
0
0
Tj =
V CE =
V GE =
R gon =
10
25/150
300
±15
16
copyright Vincotech
20
30
40
50
I C (A)
60
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
15
25/150
300
30
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
7000
direc / dt (A/ µs)
direc / dt (A/ µs)
3000
Output inverter FWD
2500
dI0/dt
dIrec/dt
6000
5000
2000
4000
1500
3000
1000
2000
500
1000
dI0/dt
dIrec/dt
0
0
0
Tj =
V CE =
V GE =
R gon =
10
25/150
300
±15
16
20
30
40
50
I C (A)
60
0
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
15
25/150
300
30
±15
30
45
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
R gon ( Ω) 75
60
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10-5
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
1,60
K/W
10-5
10-4
D =
R thJH =
tp/T
2,08
10-3
FWD thermal model values
R (K/W)
0,03
0,16
0,67
0,40
0,23
0,12
R (K/W)
0,03
0,19
0,81
0,57
0,30
0,18
copyright Vincotech
8
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
Tau (s)
9,7E+00
9,7E-01
1,5E-01
3,3E-02
6,7E-03
5,5E-04
10-2
Tau (s)
9,7E+00
8,1E-01
1,3E-01
2,7E-02
5,1E-03
4,7E-04
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
40
IC (A)
Ptot (W)
120
Output inverter IGBT
100
30
80
60
20
40
10
20
0
0
0
Tj =
50
175
100
150
Th ( o C)
200
0
Tj =
°C
175
15
V GE =
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Output inverter FWD
50
100
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
Output inverter FWD
40
Ptot (W)
IF (A)
100
150
80
30
60
20
40
10
20
0
0
0
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
Tj =
°C
9
50
175
100
150
Th ( o C)
200
°C
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
V GE = f(Q g)
2
20
VGE (V)
10
Output inverter IGBT
IC (A)
10uS
100uS
17,5
101
15
1mS
12,5
120V
480V
10mS
10
10
0
100m
7,5
DC
5
10-1
2,5
0
10-2 0
10
D =
Th =
V GE =
Tj =
101
V CE (V)
102
0
103
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
15
30
30
45
60
75
90
105
120
135
150
165
180
Qg (nC)
195
A
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
copyright Vincotech
75
100
T (°C)
125
10
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Switching Definitions Output Inverter
General
Tj
R gon
R goff
conditions
= 150 °C
= 16 Ω
= 16 Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
240
140
Ic
120
tdoff
Uce
200
100
Uce 90%
Uge 90%
160
80
120
Ic
60
%
tEoff
40
Uce
%
80
tdon
Uge
20
Ic 1%
40
0
Uge
Uge10%
Uce3%
Ic10%
0
-20
tEon
-40
-0,1
0
0,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0,2
0,3
time (us)
-15
15
300
30
0,17
0,45
0,4
0,5
0,6
-40
0,7
2,7
V
V
V
A
µs
µs
2,8
2,9
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3
3,1
time(us)
-15
15
300
30
0,10
0,26
3,2
3,3
3,4
3,5
V
V
V
A
µs
µs
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
240
fitted
120
200
Uce
IC
100
160
Ic 90%
80
120
Ic 60%
% 60
Uce
%
Ic90%
80
Ic 40%
40
tr
40
20
Ic
Ic10%
tf
0
Ic10%
0
-20
-40
0,1
0,15
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
300
30
0,11
0,25
0,3
time (us)
0,35
0,4
0,45
3
V
A
µs
V C (100%) =
I C (100%) =
tr =
11
3,05
3,1
300
30
0,02
time(us)
3,15
3,2
3,25
V
A
µs
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
200
Eoff
100
Pon
Poff
160
80
120
Eon
60
80
%
%
40
40
20
Uge10%
Uge90%
tEoff
0
Uce3%
0
tEon
Ic 1%
-20
-0,1
-40
0,05
P off (100%) =
E off (100%) =
t E off =
0,2
9,01
0,91
0,45
0,35
time (us)
0,5
0,65
2,9
0,8
3
3,1
3,2
3,3
3,4
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Output inverter FWD
Gate voltage vs Gate charge (measured)
9,01
0,67
0,26
kW
mJ
µs
Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
20
120
15
Id
80
trr
fitted
10
40
Uge (V)
5
0
Ud
%
0
IRRM10%
-40
-5
-80
-10
IRRM90%
IRRM100%
-120
-15
-160
-20
-50
0
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
50
-15
15
300
30
1737
100
150
Qg (nC)
200
250
2,9
300
3
3,1
3,2
3,3
3,4
3,5
3,6
time(us)
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
12
300
30
-34
0,25
V
A
A
µs
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Switching Definitions Output Inverter
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
Erec
Qrr
100
100
80
50
tQrr
tErec
60
% 0
%
40
-50
20
Prec
-100
0
-150
-20
2,9
3
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,2
3,3
3,4
time(us)
30
2,65
0,47
A
µC
µs
3,5
3,6
3,7
3,8
2,9
3
P rec (100%) =
E rec (100%) =
t E rec =
13
3,1
3,2
3,3
3,4
time(us)
9,01
0,57
0,47
kW
mJ
µs
3,5
3,6
3,7
3,8
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
Package Outline and Pinout
Outline
Pinout
copyright Vincotech
14
20 Apr. 2015 / Revision 2
V23990-P864-F49-PM
V23990-P864-F48-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
20 Apr. 2015 / Revision 2