V23990-P864-F49-PM V23990-P864-F48-PM datasheet flow PACK 0 3rd gen 600 V / 30 A Features flow 0 housing ● 2 clip housing in 12mm and 17mm height ● Trench Fieldstop IGBT3 technology ● Compact and low inductance design ● Built-in NTC Target Applications Schematic ● Motor Drives ● Power Generation ● UPS Types ● V23990-P864-F49-PM: 17mm height ● V23990-P864-F48-PM: 12mm height Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 31 A 90 A 60 W ±20 V 6 360 µs V 175 °C Inverter Transistor Collector-emitter voltage DC collector current V CE IC Tj=Tjmax Repetitive peak collector current I CRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Gate-emitter peak voltage V GE Short circuit ratings* t SC V CC Maximum Junction Temperature Th=80°C Th=80°C Tj≤150°C VGE=15V T jmax * It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits Inverter Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Tj=Tjmax Th=80°C 600 V 30 A 60 A 46 W Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…..+125 °C Operation junction temperature T op -40…..+Tjmax-25 °C Th=80°C Thermal properties copyright Vincotech 1 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 4000 V min.12,7 mm Insulation properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance 12mm height min.9,22 mm Clearance 17mm height min.12,7 mm copyright Vincotech 2 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,57 1,79 2,15 Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) 0,00043 VCE=VGE V CEsat 30 15 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(jh) 200 350 Rgon=16Ω Rgoff=16Ω ±15 300 30 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr t d(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 106 104 14 20 146 171 92 112 0,47 0,66 0,67 0,91 ns mWs 1630 f=1MHz 0 25 15 480 Tj=25°C 108 pF Tj=25°C 167 nC 1,60 K/W 50 30 Thermal grease thickness≤50um λ = 1 W/mK Inverter Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF 30 IR I RRM Reverse recovery time t rr Reverse recovered charge Q rr Rgon=16Ω Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink ±15 300 ( di rf/dt )max E rec R th(jh) 30 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,64 1,55 2,2 27 34 146 253 1,34 2,65 1752 815 Tj=150°C 0,57 mWs 2,08 K/W 21,5 kΩ 200 Thermal grease thickness≤50um λ = 1 W/mK V mA A ns mC A/ms Thermistor Rated resistance Tj=25°C R Deviation of R100 ΔR/R Power dissipation P Tj=25°C B-value B(25/50) B-value B(25/100) Tj=25°C R100=1486 Ω Tj=100°C Power dissipation constant 4,5 % 210 mW Tj=25°C 3,5 mW/K Tj=25°C 3884 K 3964 K F Vincotech NTC Reference copyright Vincotech -4,5 3 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Typical output characteristics I C = f(V CE) 90 IC (A) IC (A) 90 Output inverter IGBT 75 75 60 60 45 45 30 30 15 15 0 0 0 1 tp = Tj = V GE from 2 3 VCE (V) 4 5 0 tp = Tj = 250 µs 25 °C 7 V to 17 V in steps of 1 V V GE from Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 90 IC (A) IF (A) 30 VCE (V) 25 75 20 60 15 45 Tj = Tjmax-25°C Tj = Tjmax-25°C 10 30 Tj = 25°C Tj = 25°C 5 15 0 0 0 tp = V CE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 4 0 0,5 tp = 250 1 1,5 2 2,5 VF (V) 3 µs 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 1,8 E (mWs) E (mWs) 1,8 Output inverter IGBT 1,5 Eon 1,5 Eoff Eon Eon 1,2 1,2 Eoff 0,9 Eoff 0,9 Eon: Eoff 0,6 0,6 0,3 0,3 0 0 0 inductive Tj = V CE = V GE = R gon = R goff = 10 20 30 40 50 I C (A) 60 0 load 25/150 300 ±15 16 16 inductive Tj = V CE = V GE = IC = °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter IGBT 15 30 45 R G( Ω ) 75 load 25/150 300 ±15 30 °C V V A Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) Output inverter IGBT E (mWs) 1 E (mWs) 1 60 Erec 0,8 0,8 0,6 0,6 Erec Erec 0,4 0,4 0,2 0,2 0 Erec 0 0 inductive Tj = V CE = V GE = R gon = 10 load 25/150 300 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 60 0 inductive Tj = V CE = V GE = IC = °C V V Ω 5 15 load 25/150 300 ±15 30 30 45 60 R G( Ω ) 75 °C V V A 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 Output inverter IGBT tdon tdoff tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 inductive Tj = V CE = V GE = R gon = R goff = 10 load 150 300 ±15 16 16 20 30 40 50 I C (A) 60 0 inductive Tj = V CE = V GE = IC = °C V V Ω Ω Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD 15 load 150 300 ±15 30 30 45 RG (Ω ) 75 °C V V A Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) Output inverter FWD 0,5 t rr( µs) t rr( µs) 0,5 60 0,4 trr 0,4 trr 0,3 0,3 trr 0,2 0,2 trr 0,1 0,1 0 0 0 Tj = V CE = V GE = R gon = 10 25/150 300 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 60 0 Tj = VR= IF= V GE = °C V V Ω 6 15 25/150 300 30 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( µC) 4 Output inverter FWD 4 Qrr ( µC) Qrr 3,2 3,2 2,4 2,4 Qrr Qrr 1,6 1,6 Qrr 0,8 0,8 0 0 0 At Tj = V CE = V GE = R gon = 10 25/150 300 ±15 16 20 30 40 50 I C (A) 60 0 Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Output inverter FWD 15 25/150 300 30 ±15 30 45 R gon ( Ω) 75 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) Output inverter FWD 90 IrrM (A) IrrM (A) 50 60 75 40 IRRM 60 30 IRRM 45 20 30 IRRM 10 15 IRRM 0 0 0 Tj = V CE = V GE = R gon = 10 25/150 300 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 60 0 Tj = VR= IF= V GE = °C V V Ω 7 15 25/150 300 30 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 7000 direc / dt (A/ µs) direc / dt (A/ µs) 3000 Output inverter FWD 2500 dI0/dt dIrec/dt 6000 5000 2000 4000 1500 3000 1000 2000 500 1000 dI0/dt dIrec/dt 0 0 0 Tj = V CE = V GE = R gon = 10 25/150 300 ±15 16 20 30 40 50 I C (A) 60 0 Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 15 25/150 300 30 ±15 30 45 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter FWD 101 ZthJH (K/W) ZthJH (K/W) 101 R gon ( Ω) 75 60 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-2 10-5 D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 1,60 K/W 10-5 10-4 D = R thJH = tp/T 2,08 10-3 FWD thermal model values R (K/W) 0,03 0,16 0,67 0,40 0,23 0,12 R (K/W) 0,03 0,19 0,81 0,57 0,30 0,18 copyright Vincotech 8 10-1 100 t p (s) 10110 K/W IGBT thermal model values Tau (s) 9,7E+00 9,7E-01 1,5E-01 3,3E-02 6,7E-03 5,5E-04 10-2 Tau (s) 9,7E+00 8,1E-01 1,3E-01 2,7E-02 5,1E-03 4,7E-04 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 40 IC (A) Ptot (W) 120 Output inverter IGBT 100 30 80 60 20 40 10 20 0 0 0 Tj = 50 175 100 150 Th ( o C) 200 0 Tj = °C 175 15 V GE = Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) Output inverter FWD 50 100 Th ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) Output inverter FWD 40 Ptot (W) IF (A) 100 150 80 30 60 20 40 10 20 0 0 0 Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 Tj = °C 9 50 175 100 150 Th ( o C) 200 °C 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Gate voltage vs Gate charge Output inverter IGBT V GE = f(Q g) 2 20 VGE (V) 10 Output inverter IGBT IC (A) 10uS 100uS 17,5 101 15 1mS 12,5 120V 480V 10mS 10 10 0 100m 7,5 DC 5 10-1 2,5 0 10-2 0 10 D = Th = V GE = Tj = 101 V CE (V) 102 0 103 IC = single pulse 80 ºC ±15 V T jmax ºC 15 30 30 45 60 75 90 105 120 135 150 165 180 Qg (nC) 195 A Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 copyright Vincotech 75 100 T (°C) 125 10 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Switching Definitions Output Inverter General Tj R gon R goff conditions = 150 °C = 16 Ω = 16 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 240 140 Ic 120 tdoff Uce 200 100 Uce 90% Uge 90% 160 80 120 Ic 60 % tEoff 40 Uce % 80 tdon Uge 20 Ic 1% 40 0 Uge Uge10% Uce3% Ic10% 0 -20 tEon -40 -0,1 0 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,2 0,3 time (us) -15 15 300 30 0,17 0,45 0,4 0,5 0,6 -40 0,7 2,7 V V V A µs µs 2,8 2,9 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3 3,1 time(us) -15 15 300 30 0,10 0,26 3,2 3,3 3,4 3,5 V V V A µs µs Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 240 fitted 120 200 Uce IC 100 160 Ic 90% 80 120 Ic 60% % 60 Uce % Ic90% 80 Ic 40% 40 tr 40 20 Ic Ic10% tf 0 Ic10% 0 -20 -40 0,1 0,15 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 300 30 0,11 0,25 0,3 time (us) 0,35 0,4 0,45 3 V A µs V C (100%) = I C (100%) = tr = 11 3,05 3,1 300 30 0,02 time(us) 3,15 3,2 3,25 V A µs 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 200 Eoff 100 Pon Poff 160 80 120 Eon 60 80 % % 40 40 20 Uge10% Uge90% tEoff 0 Uce3% 0 tEon Ic 1% -20 -0,1 -40 0,05 P off (100%) = E off (100%) = t E off = 0,2 9,01 0,91 0,45 0,35 time (us) 0,5 0,65 2,9 0,8 3 3,1 3,2 3,3 3,4 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Output inverter FWD Gate voltage vs Gate charge (measured) 9,01 0,67 0,26 kW mJ µs Figure 8 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr 20 120 15 Id 80 trr fitted 10 40 Uge (V) 5 0 Ud % 0 IRRM10% -40 -5 -80 -10 IRRM90% IRRM100% -120 -15 -160 -20 -50 0 V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech 50 -15 15 300 30 1737 100 150 Qg (nC) 200 250 2,9 300 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 12 300 30 -34 0,25 V A A µs 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Switching Definitions Output Inverter Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 Erec Qrr 100 100 80 50 tQrr tErec 60 % 0 % 40 -50 20 Prec -100 0 -150 -20 2,9 3 3,1 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,2 3,3 3,4 time(us) 30 2,65 0,47 A µC µs 3,5 3,6 3,7 3,8 2,9 3 P rec (100%) = E rec (100%) = t E rec = 13 3,1 3,2 3,3 3,4 time(us) 9,01 0,57 0,47 kW mJ µs 3,5 3,6 3,7 3,8 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet Package Outline and Pinout Outline Pinout copyright Vincotech 14 20 Apr. 2015 / Revision 2 V23990-P864-F49-PM V23990-P864-F48-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 20 Apr. 2015 / Revision 2