10-FZ122PA050SC-P997F08 datasheet flow PHASE0 1200 V / 50 A Features flow 0 12mm housing ● Trench Fieldstop IGBT4 technology ● 2-clip housing in 12mm height ● Compact and low inductance design Target Applications Schematic ● Motor Drive ● UPS Types ● 10-FZ122PA050SC-P997F08 Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 55 71 A 150 A 144 218 W Output Inverter Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T j≤150°C V GE=15V T jmax ±20 V 10 800 µs V 175 °C 1200 V 50 66 A 100 A 90 136 W 175 °C Output Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature copyright Vincotech V RRM IF I FRM P tot T j=25°C T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T jmax 1 T s=80°C T c=80°C 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance Comparative Tracking Index copyright Vincotech 4000 V min 12,7 mm 9,88 mm CTI 2 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5 5,8 6,5 1,5 1,96 2,33 2,3 Output Inverter Switch Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0018 15 50 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 0,02 700 4 tr t d(off) 25 150 25 150 25 150 25 150 R goff=8 Ω R gon=8 Ω ±15 600 50 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 102 106 17 24 225 289 97 131 2,49 4,04 2,88 4,63 ns mWs 2770 f=1MHz 0 25 25 pF 205 166 25 ±15 phase-change material λ = 3,4 W/mK 193 nC 0,66 K/W Output Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink copyright Vincotech 50 R gon=8 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) phase-change material λ = 3,4 W/mK 50 25 150 25 150 25 150 25 150 25 150 25 150 1 1,76 1,69 80,03 87 128,7 290,7 4,26 8,9 4953 1407 1,57 3,55 1,06 3 2,2 V A ns µC A/µs mWs K/W 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Output inverter IGBT Typical output characteristics I C = f(V CE) IC (A) 150 IC (A) 150 120 120 90 90 60 60 30 30 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 350 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 4 5 350 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD 150 IC (A) IF (A) 50 V CE (V) 40 120 30 90 20 60 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 10 30 0 0 0 At tp = V CE = 2 350 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 4 0,5 1 350 µs 1,5 2 2,5 V F (V) 3 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 9 E (mWs) E (mWs) Typical switching energy losses Eon High T 7,5 9 Eon High T 7,5 6 Eon Low T 6 Eoff High T Eoff Low T Eoff High T 4,5 4,5 Eon Low T 3 3 1,5 1,5 Eoff Low T 0 0 0 20 40 60 80 I C (A) 0 100 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 50 A Figure 7 Output inverter IGBT Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Figure 8 Output inverter IGBT Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 5 E (mWs) 5 Erec 4 Tj = Tjmax -25°C 4 Tj = Tjmax -25°C Erec 3 3 Tj = 25°C Erec 2 Tj = 25°C 2 Erec 1 1 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 8 Ω copyright Vincotech 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 50 A 5 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 9 Output inverter IGBT Figure 10 Output inverter IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 8 Ω R goff = 8 Ω 8 16 24 32 RG( Ω ) 40 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Output inverter FWD Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,7 t rr( µs) t rr( µs) 0,4 trr 0,6 trr 0,32 Tj = Tjmax -25°C 0,5 0,24 0,4 Tj = Tjmax -25°C trr 0,3 0,16 trr 0,2 Tj = 25°C Tj = 25°C 0,08 0,1 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR= IF= V GE = °C V V Ω 6 8 25/150 600 50 ±15 16 24 32 R g on ( Ω ) 40 °C V A V 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 13 Output inverter FWD Figure 14 Output inverter FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 15 Qrr( µC) Qrr( µC) 15 12 12 Qrr Qrr Tj = Tjmax -25°C Tj = Tjmax -25°C 9 9 6 6 Qrr Tj = 25°C Qrr 3 3 Tj = 25°C 0 0 0 At At Tj = V CE = V GE = R gon = 20 40 60 80 I C (A) 100 0 8 16 25/150 600 °C V At Tj = VR= 25/150 600 °C V ±15 8 V Ω IF= V GE = 50 ±15 A V Figure 15 Output inverter FWD Typical reverse recovery current as a function of collector current I RRM = f(I C) 24 32 R g on ( Ω) 40 Figure 16 Output inverter FWD Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 180 IrrM (A) IrrM (A) 150 150 120 IRRM 120 IRRM 90 Tj = Tjmax -25°C Tj = Tjmax - 25°C 90 Tj = 25°C 60 Tj = 25°C 60 IRRM IRRM 30 30 0 0 0 At Tj = V CE = V GE = R gon = 20 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR= IF= V GE = °C V V Ω 7 8 25/150 600 50 ±15 16 24 32 R gon ( Ω ) 40 °C V A V 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 17 Output inverter FWD Figure 18 Output inverter FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 6000 direc / dt (A/ µs) direc / dt (A/µ s) dI0/dt dIrec/dtLow T dIrec/dt 5000 dI0/dt dIrec/dt 8000 dIo/dtLow T 4000 6000 di0/dtHigh T 3000 Tj = 25°C 4000 2000 dIrec/dtHigh T 2000 1000 Tj = Tjmax - 25°C dIrec/dtHigh T 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 I C (A) 80 100 0 16 25/150 600 °C V At Tj = VR= 25/150 600 °C V ±15 8 V Ω IF= V GE = 50 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) Output inverter IGBT 24 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) R gon ( Ω ) 32 40 Output inverter FWD 101 ZthJH (K/W) Zth-JH (K/W) 101 100 10 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D = R thJH = tp/T 0,66 K/W 10-4 10-3 1,06 100 t p (s) 1 1010 K/W FWD thermal model values R (K/W) 0,09 0,18 0,31 Tau (s) 1,3E+00 1,9E-01 6,0E-02 R (K/W) 0,04 0,09 0,50 Tau (s) 4,7E+00 8,8E-01 1,2E-01 0,05 0,03 4,7E-03 3,7E-04 0,28 0,09 0,06 4,1E-02 6,5E-03 6,8E-04 8 10-1 tp/T IGBT thermal model values copyright Vincotech 10-2 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 21 Output inverter IGBT Figure 22 Output inverter IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 80 IC (A) Ptot (W) 280 70 240 60 200 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Output inverter FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T h) 150 Output inverter FWD Forward current as a function of heatsink temperature I F = f(T h) 80 Ptot (W) IF (A) 180 70 150 60 120 50 90 40 30 60 20 30 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Output Inverter Switch Figure 25 Safe operating area as a function Output inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q GE) 103 Output inverter IGBT IC (A) VGE (V) 16 14 10uS 240V 102 12 100uS 100mS DC 960V 1mS 10 10mS 8 101 6 4 100 2 0 10-1 0 10 At D = Th = V GE = Tj = 10 1 10 2 10 3 0 copyright Vincotech 60 90 120 150 180 210 240 270 300 Q g (nC) At IC = single pulse 80 ±15 T jmax 30 V CE (V) 50 A ºC V ºC 10 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C = 8Ω R gon R goff = 8Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 140 300 % % 120 IC tdoff 250 VCE 100 VGE 90% VCE 90% 200 80 150 IC 60 tEoff 40 VCE 100 tdon 20 VGE 50 0 VGE VGE10% IC 1% VCE 3% IC10% 0 -20 tEon -40 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 -50 0,85 2,8 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 2,95 3,1 3,25 -15 15 600 V V V V V V V GE (0%) = V GE (100%) = V C (100%) = 50 A I C (100%) = 50 A 0,29 0,70 µs µs t don = t E on = 0,10 0,33 µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,4 3,55 3,7 time(us) Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 300 % % Ic 120 fitted IC 250 VCE 100 200 IC 90% 80 150 IC 60% 60 VCE 100 IC90% IC 40% 40 tr 50 20 IC10% 0 -20 0,1 0,15 0,2 0,25 0,3 IC10% 0 tf 0,35 0,4 0,45 -50 2,95 0,5 time (us) 3,025 3,1 3,175 3,325 3,4 time(us) V C (100%) = I C (100%) = 600 50 V A V C (100%) = I C (100%) = 600 50 V A tf = 0,13 µs tr = 0,03 µs copyright Vincotech 3,25 11 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 250 % Poff Pon % Eoff 100 200 80 150 60 Eon 100 40 50 20 VGE 10% VGE 90% VCE 3% 0 0 tEoff tEon IC 1% -20 -0,2 -50 -0,05 0,1 0,25 0,4 0,55 0,7 2,9 0,85 3 3,1 3,2 3,3 3,4 P off (100%) = E off (100%) = t E off = 30,25 4,66 0,70 kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 3,5 time(us) time (us) Output inverter FWD 30,25 4,02 0,33 kW mJ µs Figure 8 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr Gate voltage vs Gate charge (measured) 120 VGE (V) 20 % 15 80 10 40 5 0 0 -40 -5 -80 -10 -120 -15 -160 Id trr fitted Vd IRRM10% IRRM90% IRRM100% -200 -20 -50 0 50 100 150 200 250 300 3 350 3,1 3,2 3,3 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = -15 15 600 50 V V V A Qg = 2286,11 nC copyright Vincotech 3,4 3,5 3,6 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = 12 600 50 -87 0,29 V A A µs 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Switching Definitions Output Inverter Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 % Erec % Qrr 100 100 Id 50 80 tQrr 0 60 -50 40 -100 20 -150 0 tErec Prec -20 -200 3 3,15 3,3 3,45 3,6 3,75 3 3,9 3,15 3,3 3,45 30,25 3,45 0,59 kW mJ µs time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 50 8,75 0,59 A µC µs P rec (100%) = E rec (100%) = t E rec = 13 3,6 3,75 3,9 time(us) 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 12mm housing solder pins 10-FZ122PA50SC-P997F08 Text Name Date code UL & Vinco Lot Serial NN-NNNNNNNNNNNNNN WWYY UL Vinco LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Datamatrix Outline Pin Pin table X Y Function 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 13,85 16,75 33,5 0 2,3 4,6 6,9 15,6 17,9 20,2 22,5 16,45 16,45 11,5 DCDCDCDCDC+ DC+ DC+ DC+ G12 S12 Ph 12 13 14 15 33,5 33,5 33,5 33,5 9,2 6,9 4,6 2,3 Ph Ph Ph Ph 16 17 18 19 33,5 13,85 19,55 19,55 0 13,55 4,95 7,85 Ph Ph S11 G11 Pinout Identification ID Component Voltage Current Function T11,T12 D11,D12 IGBT 1200 V 1200 V 50 A 50 A Output Inverter Switch Output Inverter Diode copyright Vincotech FWD 14 Comment 12 Jan. 2016 / Revision 3 10-FZ122PA050SC-P997F08 datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. Document No.: Date: Modification: 10-FZ122PA50SC-P997F08-D3-14 12 Jan. 2016 Header Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 15 12 Jan. 2016 / Revision 3