10 FZ122PA050SC P997F08 D3 14

10-FZ122PA050SC-P997F08
datasheet
flow PHASE0
1200 V / 50 A
Features
flow 0 12mm housing
● Trench Fieldstop IGBT4 technology
● 2-clip housing in 12mm height
● Compact and low inductance design
Target Applications
Schematic
● Motor Drive
● UPS
Types
● 10-FZ122PA050SC-P997F08
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
55
71
A
150
A
144
218
W
Output Inverter Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T j≤150°C
V GE=15V
T jmax
±20
V
10
800
µs
V
175
°C
1200
V
50
66
A
100
A
90
136
W
175
°C
Output Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
I FRM
P tot
T j=25°C
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T jmax
1
T s=80°C
T c=80°C
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
Comparative Tracking Index
copyright Vincotech
4000
V
min 12,7
mm
9,88
mm
CTI
2
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5
5,8
6,5
1,5
1,96
2,33
2,3
Output Inverter Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0018
15
50
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
0,02
700
4
tr
t d(off)
25
150
25
150
25
150
25
150
R goff=8 Ω
R gon=8 Ω
±15
600
50
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
102
106
17
24
225
289
97
131
2,49
4,04
2,88
4,63
ns
mWs
2770
f=1MHz
0
25
25
pF
205
166
25
±15
phase-change
material
λ = 3,4 W/mK
193
nC
0,66
K/W
Output Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance junction to sink
copyright Vincotech
50
R gon=8 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
phase-change
material
λ = 3,4 W/mK
50
25
150
25
150
25
150
25
150
25
150
25
150
1
1,76
1,69
80,03
87
128,7
290,7
4,26
8,9
4953
1407
1,57
3,55
1,06
3
2,2
V
A
ns
µC
A/µs
mWs
K/W
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Output inverter IGBT
Typical output characteristics
I C = f(V CE)
IC (A)
150
IC (A)
150
120
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
4
5
350
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
150
IC (A)
IF (A)
50
V CE (V)
40
120
30
90
20
60
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
10
30
0
0
0
At
tp =
V CE =
2
350
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
4
0,5
1
350
µs
1,5
2
2,5
V F (V)
3
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 5
Output inverter IGBT
Figure 6
Output inverter IGBT
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
9
E (mWs)
E (mWs)
Typical switching energy losses
Eon High T
7,5
9
Eon High T
7,5
6
Eon Low T
6
Eoff High T
Eoff Low T
Eoff High T
4,5
4,5
Eon Low T
3
3
1,5
1,5
Eoff Low T
0
0
0
20
40
60
80
I C (A)
0
100
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 7
Output inverter IGBT
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Figure 8
Output inverter IGBT
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
5
E (mWs)
5
Erec
4
Tj = Tjmax -25°C
4
Tj = Tjmax -25°C
Erec
3
3
Tj = 25°C
Erec
2
Tj = 25°C
2
Erec
1
1
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
copyright Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
5
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 9
Output inverter IGBT
Figure 10
Output inverter IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
8
Ω
R goff =
8
Ω
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Output inverter FWD
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,7
t rr( µs)
t rr( µs)
0,4
trr
0,6
trr
0,32
Tj = Tjmax -25°C
0,5
0,24
0,4
Tj = Tjmax -25°C
trr
0,3
0,16
trr
0,2
Tj = 25°C
Tj = 25°C
0,08
0,1
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
8
25/150
600
50
±15
16
24
32
R g on ( Ω ) 40
°C
V
A
V
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 13
Output inverter FWD
Figure 14
Output inverter FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
15
Qrr( µC)
Qrr( µC)
15
12
12
Qrr
Qrr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
9
9
6
6
Qrr
Tj = 25°C
Qrr
3
3
Tj = 25°C
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
40
60
80
I C (A)
100
0
8
16
25/150
600
°C
V
At
Tj =
VR=
25/150
600
°C
V
±15
8
V
Ω
IF=
V GE =
50
±15
A
V
Figure 15
Output inverter FWD
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
24
32
R g on ( Ω)
40
Figure 16
Output inverter FWD
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
180
IrrM (A)
IrrM (A)
150
150
120
IRRM
120
IRRM
90
Tj = Tjmax -25°C
Tj = Tjmax - 25°C
90
Tj = 25°C
60
Tj = 25°C
60
IRRM
IRRM
30
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
8
25/150
600
50
±15
16
24
32
R gon ( Ω )
40
°C
V
A
V
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 17
Output inverter FWD
Figure 18
Output inverter FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
6000
direc / dt (A/ µs)
direc / dt (A/µ s)
dI0/dt
dIrec/dtLow T
dIrec/dt
5000
dI0/dt
dIrec/dt
8000
dIo/dtLow T
4000
6000
di0/dtHigh T
3000
Tj = 25°C
4000
2000
dIrec/dtHigh T
2000
1000
Tj = Tjmax - 25°C
dIrec/dtHigh T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
I C (A)
80
100
0
16
25/150
600
°C
V
At
Tj =
VR=
25/150
600
°C
V
±15
8
V
Ω
IF=
V GE =
50
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Output inverter IGBT
24
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
R gon ( Ω )
32
40
Output inverter FWD
101
ZthJH (K/W)
Zth-JH (K/W)
101
100
10
8
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D =
R thJH =
tp/T
0,66
K/W
10-4
10-3
1,06
100
t p (s)
1
1010
K/W
FWD thermal model values
R (K/W)
0,09
0,18
0,31
Tau (s)
1,3E+00
1,9E-01
6,0E-02
R (K/W)
0,04
0,09
0,50
Tau (s)
4,7E+00
8,8E-01
1,2E-01
0,05
0,03
4,7E-03
3,7E-04
0,28
0,09
0,06
4,1E-02
6,5E-03
6,8E-04
8
10-1
tp/T
IGBT thermal model values
copyright Vincotech
10-2
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 21
Output inverter IGBT
Figure 22
Output inverter IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
80
IC (A)
Ptot (W)
280
70
240
60
200
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Output inverter FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
150
Output inverter FWD
Forward current as a
function of heatsink temperature
I F = f(T h)
80
Ptot (W)
IF (A)
180
70
150
60
120
50
90
40
30
60
20
30
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Output Inverter Switch
Figure 25
Safe operating area as a function
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q GE)
103
Output inverter IGBT
IC (A)
VGE (V)
16
14
10uS
240V
102
12
100uS
100mS
DC
960V
1mS
10
10mS
8
101
6
4
100
2
0
10-1 0
10
At
D =
Th =
V GE =
Tj =
10
1
10
2
10
3
0
copyright Vincotech
60
90
120
150
180
210
240
270
300
Q g (nC)
At
IC =
single pulse
80
±15
T jmax
30
V CE (V)
50
A
ºC
V
ºC
10
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
= 8Ω
R gon
R goff
= 8Ω
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
140
300
%
%
120
IC
tdoff
250
VCE
100
VGE 90%
VCE 90%
200
80
150
IC
60
tEoff
40
VCE
100
tdon
20
VGE
50
0
VGE
VGE10%
IC 1%
VCE 3%
IC10%
0
-20
tEon
-40
-0,2
-0,05
0,1
0,25
0,4
0,55
0,7
-50
0,85
2,8
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
600
t doff =
t E off =
2,95
3,1
3,25
-15
15
600
V
V
V
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
50
A
I C (100%) =
50
A
0,29
0,70
µs
µs
t don =
t E on =
0,10
0,33
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,4
3,55
3,7
time(us)
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
300
%
%
Ic
120
fitted
IC
250
VCE
100
200
IC 90%
80
150
IC 60%
60
VCE
100
IC90%
IC 40%
40
tr
50
20
IC10%
0
-20
0,1
0,15
0,2
0,25
0,3
IC10%
0
tf
0,35
0,4
0,45
-50
2,95
0,5
time (us)
3,025
3,1
3,175
3,325
3,4
time(us)
V C (100%) =
I C (100%) =
600
50
V
A
V C (100%) =
I C (100%) =
600
50
V
A
tf =
0,13
µs
tr =
0,03
µs
copyright Vincotech
3,25
11
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
250
%
Poff
Pon
%
Eoff
100
200
80
150
60
Eon
100
40
50
20
VGE 10%
VGE 90%
VCE 3%
0
0
tEoff
tEon
IC 1%
-20
-0,2
-50
-0,05
0,1
0,25
0,4
0,55
0,7
2,9
0,85
3
3,1
3,2
3,3
3,4
P off (100%) =
E off (100%) =
t E off =
30,25
4,66
0,70
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
3,5
time(us)
time (us)
Output inverter FWD
30,25
4,02
0,33
kW
mJ
µs
Figure 8
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
Gate voltage vs Gate charge (measured)
120
VGE (V)
20
%
15
80
10
40
5
0
0
-40
-5
-80
-10
-120
-15
-160
Id
trr
fitted
Vd
IRRM10%
IRRM90%
IRRM100%
-200
-20
-50
0
50
100
150
200
250
300
3
350
3,1
3,2
3,3
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
-15
15
600
50
V
V
V
A
Qg =
2286,11
nC
copyright Vincotech
3,4
3,5
3,6
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
12
600
50
-87
0,29
V
A
A
µs
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Switching Definitions Output Inverter
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
%
Erec
%
Qrr
100
100
Id
50
80
tQrr
0
60
-50
40
-100
20
-150
0
tErec
Prec
-20
-200
3
3,15
3,3
3,45
3,6
3,75
3
3,9
3,15
3,3
3,45
30,25
3,45
0,59
kW
mJ
µs
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
50
8,75
0,59
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
13
3,6
3,75
3,9
time(us)
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 12mm housing solder pins
10-FZ122PA50SC-P997F08
Text
Name
Date code
UL & Vinco
Lot
Serial
NN-NNNNNNNNNNNNNN
WWYY
UL Vinco
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Datamatrix
Outline
Pin
Pin table
X
Y
Function
1
2
3
4
5
6
7
8
9
10
11
0
0
0
0
0
0
0
0
13,85
16,75
33,5
0
2,3
4,6
6,9
15,6
17,9
20,2
22,5
16,45
16,45
11,5
DCDCDCDCDC+
DC+
DC+
DC+
G12
S12
Ph
12
13
14
15
33,5
33,5
33,5
33,5
9,2
6,9
4,6
2,3
Ph
Ph
Ph
Ph
16
17
18
19
33,5
13,85
19,55
19,55
0
13,55
4,95
7,85
Ph
Ph
S11
G11
Pinout
Identification
ID
Component
Voltage
Current
Function
T11,T12
D11,D12
IGBT
1200 V
1200 V
50 A
50 A
Output Inverter Switch
Output Inverter Diode
copyright Vincotech
FWD
14
Comment
12 Jan. 2016 / Revision 3
10-FZ122PA050SC-P997F08
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
Document No.:
Date:
Modification:
10-FZ122PA50SC-P997F08-D3-14
12 Jan. 2016
Header
Pages
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
15
12 Jan. 2016 / Revision 3