80-M006PNB010SA*-K615* datasheet MiniSKiiP® PIM 0 600 V / 10 A MiniSKiiP®0 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT's for low saturation losses ● Optional 2- and 3-leg rectifier Target Applications Schematic ● Industrial Drives ● Embedded Drives Types 80-M006PNB010SA01-K615D, 2-leg rectifier 80-M006PNB010SA-K615C, 3-leg rectifier Maximum Ratings T j = 25 °C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 25 25 A 220 A 240 A2s 46 70 W 150 °C 600 V 15 15 A 30 A 30 A 48 72 W Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge (non-repetitive) forward current I FSM 2 t p = 10 ms T j = 25 °C 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T s = 80 °C T c = 80 °C T jmax Inverter Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 T s = 80 °C T c = 80 °C ±20 V 6 360 µs V 175 °C 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Maximum Ratings T j = 25 °C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Inverter Diode Peak Repetitive Reverse Voltage V RRM T j=T jmax T s = 80 °C T c = 80 °C 15 15 A t p limited by T jmax T s = 25 °C 30 A T j=T jmax T s = 80 °C T c = 80 °C 38 57 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature IF I FRM P tot Thermal Properties Isolation Properties Insulation voltage V is DC Voltage Creepage distance Clearance Comparative Tracking Index copyright Vincotech CTI tp=2s 4000 V min 12,7 mm min 12,7 mm >200 2 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,43 1,44 0,92 0,79 20,29 26,11 1,64 Rectifier Diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance junction to sink 1500 R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK V GE(th) V CE=V GE 25 125 25 125 25 125 25 125 V V mΩ 0,05 1,5 mA K/W Inverter Switch Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,00015 15 10 Collector-emitter cut-off current incl. Diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 5 5,8 6,5 1,19 1,64 1,89 1,99 0,0006 300 none tr t d(off) 25 150 25 150 25 150 25 150 R goff = 32 Ω R gon = 32 Ω ±15 300 10 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 90 91 22 25 133 156 120 144 0,26 0,38 0,26 0,34 ns mWs 551 f = 1 MHz 0 25 25 40 pF 17 ±15 25 55 Thermal grease thickness≤50um λ = 1 W/mK 62 2 nC K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink 10 R gon = 32 Ω ±15 300 ( di rf/dt )max E rec R th(j-s) 10 25 150 25 150 25 150 25 150 25 150 25 150 1,39 1,32 6,77 9,87 233 352 0,66 1,46 105 109 0,13 0,30 Thermal grease thickness≤50um λ = 1 W/mK V A ns µC A/µs mWs 2,5 K/W Thermistor Rated resistance R 25 R 25 = 1000 Ω R 100 = 1670 Ω 25 100 1000 -3 -2 Ω 3 2 Deviation of R Δ R/R R100 R 100 25 1670 Ω 0,76 % /K A-value B (25/50) 25 7,635*10-3 1/K B-value B (25/100) 25 1,731*10-5 1/K² Temperature coefficient Vincotech PTC Reference copyright Vincotech % E 3 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 35 IC (A) IF (A) 10 5 30 8 25 6 20 15 4 Tj = Tjmax-25°C Tj = Tjmax-25°C 10 Tj = 25°C 2 5 Tj = 25°C 0 0 0 tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0,0 tp = µs V 4 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) 1,0 E (mWs) 1,0 Eon High T 0,8 0,8 Eon High T Eon Low T 0,6 0,6 Eoff High T Eon Low T 0,4 0,4 Eoff High T Eoff Low T Eoff Low T 0,2 0,2 0,0 0,0 0 5 inductive Tj = V CE = V GE = R gon = R goff = 10 15 I C (A) 20 0 load 25/150 300 ±15 °C V V 32 32 Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) FWD 32 64 inductive Tj = V CE = V GE = load 25/150 300 ±15 °C V V IC = 10 A 96 128 RG( Ω ) Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 160 FWD 0,4 E (mWs) E (mWs) 0,6 0,5 Tj = Tjmax -25°C Erec 0,3 0,4 Erec 0,3 0,2 Erec Tj = 25°C Tj = Tjmax -25°C 0,2 Erec 0,1 0,1 Tj = 25°C 0,0 0,0 0 inductive Tj = V CE = V GE = R gon = 5 10 15 I C (A) 20 0 load 25/150 300 ±15 32 copyright Vincotech inductive Tj = V CE = V GE = IC = °C V V Ω 5 32 64 96 128 RG( Ω ) 160 load 25/150 300 ±15 10 °C V V A 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) t ( µs) 1,00 t ( µs) 1,00 tdoff tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 inductive Tj = V CE = V GE = R gon = R goff = 5 10 load 150 300 ±15 °C V V 32 32 Ω Ω 15 I C (A) 20 Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) 0 FWD 32 64 inductive Tj = V CE = V GE = load 150 300 ±15 °C V V IC = 10 A 96 128 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) RG( Ω ) 160 FWD 0,6 t rr( µs) t rr( µs) 0,6 trr 0,5 0,5 0,4 0,4 trr Tj = Tjmax -25°C trr trr 0,3 0,3 Tj = Tjmax -25°C 0,2 0,2 0,1 0,1 Tj = 25°C Tj = 25°C 0,0 0,0 0 Tj = V CE = V GE = R gon = 5 25/150 300 ±15 32 copyright Vincotech 10 15 I C (A) 20 0 Tj = VR= IF= V GE = °C V V Ω 6 32 25/150 300 10 ±15 64 96 128 R g on ( Ω ) 160 °C V A V 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr( µC) 2,0 Qrr( µC) 2,5 Qrr 2,0 Tj = Tjmax -25°C 1,6 Qrr 1,5 1,2 Qrr 1,0 0,8 Tj = Tjmax -25°C Qrr Tj = 25°C 0,5 0,4 Tj = 25°C 0,0 0,0 0 At 5 Tj = V CE = V GE = R gon = 10 15 I C (A) 20 0 32 64 25/150 300 °C V Tj = VR= 25/150 300 °C V ±15 32 V Ω IF= V GE = 10 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 96 128 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) R g on ( Ω) 160 FWD 25 IrrM (A) IrrM (A) 12 IRRM 10 20 Tj = Tjmax - 25°C Tj = Tjmax -25°C 8 IRRM 15 6 Tj = 25°C 10 4 Tj = 25°C IRRM 5 2 IRRM 0 0 0 Tj = V CE = V GE = R gon = 5 25/150 300 ±15 32 copyright Vincotech 10 15 I C (A) 0 20 Tj = VR= IF= V GE = °C V V Ω 7 32 25/150 300 10 ±15 64 96 128 R gon ( Ω ) 160 °C V A V 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 17 FWD Figure 18 FWD Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 2500 600 direc / dt (A/ µs) direc / dt (A/µ s) Typical rate of fall of forward dI0/dt dIrec/dt 500 dI0/dt Tj = 25°C dIrec/dt 2000 dIo/dtLow T 400 di0/dtHigh T 1500 300 1000 200 500 100 Tj = Tjmax - 25°C dIrec/dtLow T dIrec/dtHigh T dIrec/dtHigh T 0 0 0 Tj = V CE = V GE = R gon = 5 10 I C (A) 15 0 20 32 64 25/150 300 °C V Tj = VR= 25/150 300 °C V ±15 32 V Ω IF= V GE = 10 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) IGBT 96 R gon ( Ω ) 160 128 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Z th(j-s) (K/W) 101 Z th(j-s) (K/W) 101 FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 2 K/W 1,62 10-5 10-4 D = R th(j-s) = tp/T 2,5 10-3 10-2 K/W 10-1 100 FWD thermal model values Thermal grease Phase change interface R (K/W) 0,04 0,15 0,71 0,61 0,26 0,22 R (K/W) 0,05 0,25 0,88 0,73 0,33 0,26 copyright Vincotech R (K/W) 0,00 0,00 0,00 0,00 0,00 0,00 Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 8 τ (s) 9,0E+00 6,6E-01 1,2E-01 2,9E-02 4,8E-03 6,9E-04 10110 2,04 IGBT thermal model values Thermal grease Phase change interface τ (s) 5,9E+00 5,2E-01 7,5E-02 1,8E-02 2,8E-03 2,7E-04 t p (s) R (K/W) 0,00 0,00 0,00 0,00 0,00 0,00 Tau (s) 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 0,0E+00 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 20 Ptot (W) IC (A) 100 80 15 60 10 40 5 20 0 0 0 Tj = 50 175 100 150 T s ( o C) 200 0 Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T s) FWD 50 175 15 100 150 T s ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T s) FWD 20 IF (A) Ptot (W) 75 200 60 15 45 10 30 5 15 0 0 0 Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 Tj = °C 9 50 175 100 150 T s ( o C) 200 °C 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Inverter Switch / Inverter Diode Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q G) 102 IGBT 10mS VGE (V) IC (A) 17,5 1mS 10uS 100uS 15 100mS DC 10 1 120V 12,5 480V 10 100 7,5 5 10-1 2,5 0 0 10-2 10 0 10 D = single pulse Th = 80 ±15 T jmax V GE = Tj = 1 10 V CE (V) 2 10 20 30 40 50 60 103 IC = 10 70 Q G (nC) 80 A ºC V ºC Figure 27 IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) IGBT Typical short circuit collector current as a function of gate-emitter voltage I sc = f(V GE) 250 tsc (µS) IC(sc) 17,5 15 200 12,5 150 10 7,5 100 5 50 2,5 0 0 12 V CE = Tj ≤ 14 16 600 V 175 ºC copyright Vincotech 18 V GE (V) 12 20 V CE ≤ Tj = 10 14 16 600 V 175 ºC 18 V GE (V) 20 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Rectifier Diode Figure 1 Rectifier Diode Figure 2 Rectifier Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 75 Zth(j-s) (K/W) 101 IF (A) Tj = 25°C 60 Tj = Tjmax-25°C 100 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 15 0 0,0 0,5 1,0 1,5 2,0 2,5 10-2 V F (V) 3,0 10-5 tp = 250 µs D = R th(j-s) = Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T s) Rectifier Diode 10-4 10-3 10-2 10-1 t p (s) 1 1010 tp/T 1,5 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T s) 105 100 Rectifier Diode IF (A) Ptot (W) 30 90 25 75 20 60 15 45 10 30 5 15 0 0 0 Tj = 30 150 copyright Vincotech 60 90 120 T s ( o C) 150 0 Tj = ºC 11 30 150 60 90 120 T s ( o C) 150 ºC 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Thermistor Figure 1 Thermistor Thermistor Equation of PTC resistance temperature dependency Typical PTC characteristic as a function of temperature R T = f(T ) PTC-typical temperature characteristic 2000 2 R/Ω R (T ) = 1000 Ω[1+ A *(T -25°C) +B *(T -25°C) ] [Ω] 1800 1600 1400 1200 1000 25 45 copyright Vincotech 65 85 105 T (°C) 125 12 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C R gon R goff = = 32 Ω 32 Ω Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 250 140 % % 120 tdoff IC 200 VCE 100 VCE 90% VGE 90% 150 80 VCE IC 100 60 tEoff VGE tdon 40 50 20 IC 1% VGE 0 IC10% VGE10% 0 VCE 3% tEon -50 -20 -0,2 -0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 0,1 0,2 0,3 0,4 time (µs) 2,8 0,5 2,9 3 3,1 -15 15 300 V V V V GE (0%) = V GE (100%) = V C (100%) = -15 15 300 V V V 10 0,15 0,48 A µs µs I C (100%) = t don = t E on = 10 0,09 0,24 A µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,2 3,3 time(µs) 3,4 Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 250 % % Ic 120 fitted VCE IC 200 100 IC 90% 150 80 IC 60% 60 VCE 100 IC90% tr IC 40% 40 50 20 IC10% IC10% 0 -20 -0,05 0 tf -50 0 0,05 0,1 0,15 0,2 0,25 0,3 3 3,05 3,1 3,15 time (µs) V C (100%) = I C (100%) = tf = copyright Vincotech 300 10 0,13 3,2 3,25 time(µs) V A µs V C (100%) = I C (100%) = tr = 13 300 10 0,02 V A µs 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 180 % Poff 100 Pon % Eoff 150 80 120 Eon 60 90 40 60 20 30 VGE 90% IC 1% 0 tEoff -20 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 3,01 0,32 0,48 tEon -30 0,6 2,9 time (µs) P off (100%) = E off (100%) = t E off = VCE 3% VGE 10% 0 kW mJ µs 3 P on (100%) = E on (100%) = t E on = 3,1 3,2 3,01 0,36 0,24 3,3 time(µs) 3,4 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 % Id 80 trr 40 Vd 0 IRRM10% fitted -40 -80 IRRM90% IRRM100% -120 2,95 3,1 3,25 3,4 3,55 3,7 time(µs) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 14 300 10 -10 0,34 V A A µs 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 % % Qrr Id Erec 100 100 80 tQrr tErec 50 60 0 40 -50 20 Prec -100 0 -20 -150 3 3,2 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,4 3,6 10 1,50 1,00 A µC µs 3,8 4 time(µs) 2,9 4,2 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(µs) P rec (100%) = E rec (100%) = t E rec = 15 3,01 0,32 1,00 kW mJ µs 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Ordering Code and Marking - Outline - Pinout - Identification Ordering Code & Marking Version Ordering Code with 2-leg rectifier, std lid (black V23990-K02-T-PM) 80-M006PNB010SA01-K615D-/0A/ with 2-leg rectifier, std lid (black V23990-K02-T-PM) and P12 80-M006PNB010SA01-K615D-/1A/ with 2-leg rectifier, thin lid (white V23990-K03-T-PM) 80-M006PNB010SA01-K615D-/0B/ with 2-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 80-M006PNB010SA01-K615D-/1B/ with 3-leg rectifier, std lid (black V23990-K02-T-PM) 80-M006PNB010SA-K615C-/0A/ with 3-leg rectifier, std lid (black V23990-K02-T-PM) and P12 80-M006PNB010SA-K615C-/1A/ with 3-leg rectifier, thin lid (white V23990-K03-T-PM) 80-M006PNB010SA-K615C-/0B/ 80-M006PNB010SA-K615C-/1B/ with 3-leg rectifier, thin lid (white V23990-K03-T-PM) and P12 Text Datamatrix Name Type&Ver Date code Vinco&Lot Serial&UL NN-NNNNNNNNNNNNNN TTTTTTTVV WWYY Vinco LLLLL SSSS UL Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Outline Pinout Identification ID Component Voltage Current Function T1-T6 IGBT 600 V 10 A Inverter Switch D1-D6 FWD 600 V 10 A Inverter Diode D7-D12 Rectifier Diode 1600 V 25 A Rectifier Diode PTC PTC - - Thermistor copyright Vincotech 16 Comment 12 Jan. 2016 / Revision 3 80-M006PNB010SA*-K615* datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 198 Standard <SPQ Sample Handling instruction Handling instructions for MiniSkiiP ® 0 packages see vincotech.com website. Package data Package data for MiniSkiiP ® 0 packages see vincotech.com website. Document No.: Date: 80-M006PNB010SAx-K615x-D3-14 12 Jan. 2016 Modification: Pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 12 Jan. 2016 / Revision 3