10 PY07N3A030SM M894F08Y D2 14

10-PY07N3A030SM-M894F08Y
datasheet
flow 3xNPC 1
650 V / 30 A
Features
flow 1 housing
● Neutral-point-Clamped inverter
●
●
●
●
Ultra fast switching
Low Inductance layout
Very compact design
Press-fit pins
Target Applications
Schematic
● Solar inverters
● UPS
● SMPS
Types
● 10-PY07N3A030SM-M894F08Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
32
A
tp limited by Tjmax
90
A
Tj≤175°C
VCE<=VCES
90
A
67
W
Buck IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CES
IC
I CRM
Turn off safe operating area
Tj=Tjmax
Tj=Tjmax
Th=80°C
Th=80°C
Power dissipation
P tot
Gate-emitter peak voltage
V GE
±20
V
Maximum Junction Temperature
T jmax
175
°C
Peak Repetitive Reverse Voltage
V RRM
600
V
Forward average current
I FAV
Tj=Tjmax
23
A
Surge forward current
I FSM
tp=10ms
300
A
Power dissipation
P tot
Tj=Tjmax
40
W
Maximum Junction Temperature
T jmax
150
°C
Buck FWD
copyright Vincotech
1
Th=80°C
Th=80°C
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
30
A
90
A
90
A
57
W
±20
V
5
400
µs
V
T jmax
175
°C
Peak Repetitive Reverse Voltage
V RRM
650
V
Forward average current
I FAV
Tj=Tjmax
24
A
Repetitive peak forward current
I FRM
tp limited by Tjmax
40
A
Power dissipation
P tot
Tj=Tjmax
40
W
Maximum Junction Temperature
T jmax
175
°C
Peak Repetitive Reverse Voltage
V RRM
650
V
Forward average current
I FAV
Tj=Tjmax
24
A
Repetitive peak forward current
I FRM
tp limited by Tjmax
40
A
Power dissipation
P tot
Tj=Tjmax
40
W
Maximum Junction Temperature
T jmax
175
°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CES
IC
I CRM
Th=80°C
tp limited by Tjmax
Tj≤150°C
Turn off safe operating area
VCE<=VCES
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tj≤150°C
VGE=15V
Boost Inverse Diode
Th=80°C
Th=80°C
Boost FWD
copyright Vincotech
2
Th=80°C
Th=80°C
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
copyright Vincotech
t=2s
DC voltage
3
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
3,3
4
4,7
1,63
1,86
2,22
Buck IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0003
30
15
Collector-emitter cut-off current incl. Diode
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
120
Rgoff=16 Ω
Rgon=16 Ω
350
±15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
t d(off)
0,04
V
70
70
8
9
68
81
8
12
0,332
0,489
0,147
0,224
ns
mWs
2100
f=1MHz
0
25
±15
520
Tj=25°C
45
pF
7,7
30
Tj=25°C
Phase-Change
Material
ʎ=3,4W/mK
70
nC
1,42
K/W
Buck FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
600
I RRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=16 Ω
350
±15
( di rf/dt )max
E rec
R th(j-s)
Phase-Change
Material
ʎ=3,4W/mK
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,33
2,01
100
32
45
23
33
0,402
0,929
3386
4125
0,045
0,112
1,76
4
2,8
V
µA
A
ns
µC
A/µs
mWs
K/W
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,1
5,8
6,4
1,03
1,63
1,75
1,87
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,00043
30
15
Collector-emitter cut-off incl diode
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
300
none
tr
t d(off)
0,0016
Rgoff=16 Ω
Rgon=16 Ω
350
±15
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
101
100
23
26
143
160
57
90
0,529
0,665
0,729
0,979
ns
mWs
1630
f=1MHz
0
25
15
480
Tj=25°C
108
Tj=25°C
167
nC
1,67
K/W
pF
50
30
Phase-Change
Material
ʎ=3,4W/mK
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
20
Tj=25°C
Tj=125°C
1,23
Phase-Change
Material
ʎ=3,4W/mK
1,70
1,58
1,87
2,37
V
K/W
Boost FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
650
I RRM
t rr
Peak rate of fall of recovery current
30
Rgon=16 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
50
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,23
1,69
1,55
1,87
0,24
17
21
231
297
1,20
2,22
2062
74
0,319
0,609
Phase-Change
Material
ʎ=3,4W/mK
V
µA
A
ns
µC
A/µs
mWs
2,37
K/W
21511
Ω
Thermistor
Rated resistance
Tj=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
Tj=100°C
Power dissipation constant
-4,5
+4,5
%
Tj=25°C
210
mW
Tj=25°C
3,5
mW/K
B-value
B(25/50)
Tj=25°C
3884
K
B-value
B(25/100)
Tj=25°C
3964
K
Vincotech NTC Reference
copyright Vincotech
F
5
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
90
90
IC (A)
IC (A)
Figure 1
Typical output characteristics
I C = f(V CE)
80
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
0,0
V CE (V)
At
tp =
Tj =
V GE from
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
0,5
1,0
1,5
2,0
2,5
3,0
3,5
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
30
4,0
FWD
IC (A)
IF (A)
120
25
100
20
80
15
60
10
40
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
5
Tj = 25°C
20
0
0
0
2
At
tp =
V CE =
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
6
1
250
2
3
4
V F (V)
5
µs
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
IGBT
1,2
0,9
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eon High T
0,8
Eon High T
1,0
Eon Low T
0,7
Eon Low T
0,8
0,6
0,5
0,6
Eoff High T
0,4
0,3
0,4
Eoff Low T
Eoff High T
0,2
0,2
Eoff Low T
0,1
0,0
0,0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
20
30
40
50
60
R G ( Ω)
70
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
IC =
30
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,16
E (mWs)
E (mWs)
10
Erec High T
0,14
FWD
0,18
0,16
0,14
0,12
0,12
0,10
0,10
0,08
0,08
0,06
0,06
Erec Low T
0,04
Erec High T
0,04
0,02
0,02
0,00
0,00
Erec Low T
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
10
20
30
40
50
60
R G ( Ω)
70
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
30
A
7
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
t (µ s)
t (µ s)
1,00
IGBT
tdon
tdoff
0,10
tdoff
0,10
tdon
tf
tr
tf
0,01
0,01
tr
0,00
0,00
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G ( Ω)
70
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
30
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,04
FWD
0,06
t rr(µ s)
t rr(µ s)
trr High T
trr High T
0,05
0,03
trr Low T
0,04
trr Low T
0,03
0,02
0,02
0,01
0,01
0,00
0,00
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
copyright Vincotech
20
30
40
50
I C (A)
0
60
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
10
25/125
350
30
±15
20
30
40
50
60
R gon ( Ω)
70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
1,4
FWD
Qrr (µC)
Qrr (µC)
1,2
Qrr High T
1,2
1
1,0
0,8
Qrr High T
0,8
0,6
0,6
Qrr Low T
0,4
0,4
Qrr Low T
0,2
0,2
0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
20
30
40
50
I C (A)
0
60
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
10
25/125
350
30
±15
20
30
40
50
60
R gon ( Ω )
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
IrrM (A)
80
IrrM (A)
60
70
IRRM High T
IRRM High T
70
50
60
IRRM Low T
40
50
IRRM Low T
40
30
30
20
20
10
10
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
copyright Vincotech
20
30
40
50
I C (A)
0
60
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
10
25/125
350
30
±15
20
30
40
50
60
R gon ( Ω)
70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
5000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
4500
FWD
8000
dIrec/dt T
di0/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
4000
dI0/dt T
dIrec/dt T
7000
6000
3500
5000
3000
2500
4000
2000
3000
1500
2000
1000
1000
500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
20
30
40
50
I C (A)
0
60
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
101
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
25/125
350
30
±15
°C
V
A
V
30
40
50
60
R gon ( Ω)
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
ZthJH (K/W)
IGBT
ZthJH (K/W)
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
10
70
FWD
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D =
R thJH =
tp/T
1,42
K/W
IGBT thermal model values
R (K/W)
0,05
0,18
0,59
0,36
0,13
0,12
10-3
10-2
10-1
100
t p (s)
10110
tp/T
1,76
K/W
FWD thermal model values
Tau (s)
4,0E+00
5,0E-01
8,7E-02
1,8E-02
3,3E-03
3,2E-04
copyright Vincotech
10-4
R (K/W)
0,06
0,17
0,70
0,53
0,19
0,12
10
Tau (s)
4,8E+00
7,6E-01
1,6E-01
5,1E-02
1,1E-02
1,6E-03
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
50
IC (A)
Ptot (W)
125
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
90
200
FWD
40
IF (A)
Ptot (W)
IGBT
35
75
30
60
25
45
20
15
30
10
15
5
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
°C
11
30
150
60
90
120
T h ( o C)
150
°C
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Buck
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
IGBT
Figure 26
Gate voltage vs Gate charge
V GE = f(Q g)
15
2
12,5
IC (A)
VGE (V)
3
10
10
IGBT
130V
10uS
100mS
520V
1mS
10
10mS
100uS
101
7,5
DC
100
5
10-1
2,5
0
10
0
101
At
D =
102
0
103
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
Th =
V GE =
Tj =
Figure 27
Reverse bias safe operating area
10
30
20
30
40
50
60 Q g (nC) 70
A
IGBT
I C = f(V CE)
IC (A)
100
IC MAX
90
Ic
70
Ic CHIP
MODULE
80
VCE MAX
60
50
40
30
20
10
0
0
At
Tj =
R gon =
R goff =
100
200
125 °C
16
16
Ω
Ω
copyright Vincotech
300
400
500
600
V CE (V)
700
12
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
120
IC (A)
IC (A)
120
IGBT
100
100
80
80
60
60
40
40
20
20
0
0
0,0
At
tp =
Tj =
V GE from
0,5
1,0
1,5
2,0
2,5
3,0
3,5
V CE (V)
4,0
0,0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
125
IF (A)
IC (A)
35
V CE (V)
30
100
25
75
20
15
50
10
25
Tj = 25°C
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
1
250
10
copyright Vincotech
2
3
4
5
6
7
V GE (V)
0
8
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
3
3,5
4
V F (V)
4,5
µs
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
1,6
IGBT
2,5
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Eoff High T
1,4
Eon High T
1,2
Eon High T
2
Eon Low T
Eoff Low T
1
Eon Low T
1,5
0,8
Eoff High T
1
Eoff Low T
0,6
0,4
0,5
0,2
0
0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G( Ω )
70
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
30
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,8
E (mWs)
E (mWs)
1,0
FWD
0,7
Erec High T
0,8
0,6
Erec High T
0,5
0,6
0,4
Erec Low T
0,4
0,3
Erec Low T
0,2
0,2
0,1
0
0,0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
10
20
30
40
50
60
RG (Ω )
70
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
30
A
14
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
IGBT
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60
R G( Ω )
70
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
30
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,35
FWD
0,6
t rr(µ s)
t rr(µ s)
trr High T
0,30
trr Low T
0,5
trr High T
trr Low T
0,25
0,4
0,20
0,3
0,15
0,2
0,10
0,1
0,05
0,00
0,0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
10
25/125
350
30
±15
20
30
40
50
60
R gon ( Ω)
70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
3
Qrr (µC)
Qrr (µC)
3,5
3,0
FWD
2,5
Qrr High T
Qrr High T
2,5
2
2,0
1,5
Qrr Low T
1,5
Qrr Low T
1
1,0
0,5
0,5
0
0,0
0
At
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
20
30
40
50
0
I C (A) 60
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
10
25/125
350
30
±15
20
30
40
50
R gon ( Ω)
70
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
30
60
FWD
IrrM (A)
IrrM (A)
50
IRRM High T
25
40
IRRM Low T
20
30
15
20
10
IRRM High T
10
5
IRRM Low T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
16
10
25/125
350
30
±15
20
30
40
50
60 R gon ( Ω) 70
°C
V
A
V
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
10000
direc / dt (A/ms)
3000
FWD
direc / dt (A/ms)
dIrec/dt T
dI0/dt T
2500
dIrec/dt T
dI0/dt T
8000
2000
6000
1500
4000
1000
2000
500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/125
350
±15
16
20
30
40
50
I C (A) 60
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
25/125
350
30
±15
20
30
40
50
60 R ( Ω) 70
gon
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
10
-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10
101 10
-2
10-5
At
D =
R thJH =
tp/T
1,67
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
2,37
R (K/W)
0,18
0,37
0,64
0,32
0,15
R (K/W)
0,05
0,14
0,69
0,57
0,62
0,30
17
100
t p (s)
101 10
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
1,056
0,172
0,055
0,013
0,0030
10-2
Tau (s)
8,9E+00
1,1E+00
2,0E-01
6,4E-02
9,9E-03
1,0E-03
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
IGBT
50
IC (A)
Ptot (W)
120
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
75
200
FWD
Ptot (W)
IF (A)
40
35
60
30
25
45
20
30
15
10
15
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Boost Inverse Diode
101
ZthJC (K/W)
IF (A)
125
100
100
75
50
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
25
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
1
1,5
250
2
2,5
3,5
4
V F (V)
10
4,5
-2
10
-5
10
At
D =
R thJH =
µs
Figure 27
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Boost Inverse Diode
-4
10
-3
10
-2
-1
10
0
t p (s)
1
10 10
tp/T
2,37
K/W
Figure 28
Forward current as a
function of heatsink temperature
I F = f(T h)
80
10
Boost Inverse Diode
40
IF (A)
Ptot (W)
3
70
35
60
30
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
20
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BOOST
General
Tj
R gon
R goff
conditions
= 125 °C
= 16 Ω
= 16 Ω
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
200
125
tdoff
%
%
VCE
100
75
IC
150
VGE 90%
VCE 90%
VCE
VGE
IC
100
VGE
50
tdon
tEoff
50
25
IC 1%
0
-25
-0,1
0
0,1
0,2
0,3
tEon
-50
2,95
0,4
VCE 3%
IC 10%
VGE 10%
0
3
3,05
3,1
3,15
3,2
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
350
30
0,16
0,37
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
30
0,100
0,24
3,25
3,3
time(us)
V
V
V
A
µs
µs
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of t r
125
200
fitted
%
%
VCE
IC
100
IC
150
IC 90%
75
VCE
100
IC 90%
IC 60%
50
tr
IC 40%
50
25
IC10%
0
IC 10%
0
tf
-50
3,05
-25
0
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,1
0,2
350
30
0,09
0,3
time (us)
0,4
V
A
µs
V C (100%) =
I C (100%) =
tr =
21
3,1
3,15
350
30
0,026
3,2
time(us)
3,25
V
A
µs
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BOOST
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
125
150
%
IC 1%
Poff
Pon
%
125
100
Eoff
Eon
100
75
75
50
50
25
25
VGE 90%
VCE 3%
VGE 10%
0
0
tEoff
-25
-0,1
0
0,1
P off (100%) =
E off (100%) =
t E off =
tEon
0,2
10,54
0,98
0,37
0,3
-25
2,95
time (us) 0,4
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,05
3,1
10,54
0,67
0,24
kW
mJ
µs
3,15
3,2
time(us)
3,25
Figure 7
Boost IGBT
Turn-off Switching Waveforms & definition of t rr
125
%
100
Id
75
trr
50
25
fitted
0
IRRM 10%
-25
-50
IRRM 90%
IRRM 100%
-75
Vd
-100
-125
3,05
3,1
3,15
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,2
350
30
-21
0,30
3,25
3,3
3,35
3,4
3,45
3,5
time(us)
V
A
A
µs
22
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BOOST
Figure 8
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
125
125
%
Qrr
Id
%
Erec
100
100
75
tErec
75
tQrr
50
50
25
0
25
Prec
-25
0
-50
-25
-75
3
3,2
I d (100%) =
Q rr (100%) =
t Q rr =
3,4
30
2,22
0,59
3,6
3,8
time(us)
3
4
A
µC
µs
3,2
3,4
P rec (100%) =
E rec (100%) =
t E rec =
10,54
0,61
0,59
3,6
3,8
time(us)
4
kW
mJ
µs
Measurement circuit
Figure 10
BOOST stage switching measurement circuit
BUCK IGBT
T1
BOOST IGBT
VDC
+350V
-15V
BUCK FRED
D13+15V
T3
BOOST FRED
Vcc
Vce
Ic
V
L2
V
A
T4
115uH
D14
T2
-15V
V Vge
0.00001
0.000003
Q
Q
Q
+15V
Rgon
16_Ohm
Q
Rgoff
-15V
Q
16_Ohm
Q
copyright Vincotech
23
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BUCK
General
Tj
R gon
R goff
conditions
= 125 °C
= 16 Ω
= 16 Ω
Figure 1
BUCK IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
BUCK IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
250
tdoff
%
%
VCE
IC
100
200
VCE 90%
VGE 90%
75
150
IC
VGE
50
VCE
100
tEoff
tdon
25
VGE
50
IC 1%
0
VGE 10%
0
-25
-0,05
0
0,05
0,1
-50
2,95
0,15
3
IC 10%
3,05
VCE 3%
tEon
3,1
3,15
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
350
30
0,08
0,10
3,2
time(us)
time (us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
BUCK IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
30
0,07
0,18
V
V
V
A
µs
µs
Figure 4
BUCK IGBT
Turn-on Switching Waveforms & definition of t r
125
250
fitted
%
IC
IC
%
VCE
200
100
IC 90%
150
75
VCE
IC 60%
100
50
IC 40%
IC 90%
tr
50
25
IC10%
0
0
tf
-50
3,06
-25
0
0,03
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,06
350
30
0,01
0,09
0,12
time (us)
IC 10%
0,15
V
A
µs
V C (100%) =
I C (100%) =
tr =
24
3,08
3,1
350
30
0,01
3,12
3,14
3,16
time(us)
3,18
V
A
µs
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BUCK
Figure 5
BUCK IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
BUCK IGBT
Turn-on Switching Waveforms & definition of t Eon
200
125
%
Pon
%
IC 1%
Eoff
100
150
Poff
75
Eon
100
50
50
25
VGE 10%
VGE 90%
VCE 3%
0
tEon
0
tEoff
-25
-0,04
-0,02
P off (100%) =
E off (100%) =
t E off =
0
0,02
10,53
0,22
0,10
0,04
0,06
0,08
-50
2,95
0,1
time (us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
3
3,05
10,53
0,49
0,18
3,1
3,15
time(us)
3,2
kW
mJ
µs
Figure 7
BUCK IGBT
Turn-off Switching Waveforms & definition of t rr
150
%
100
Id
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
IRRM 90%
-150
-200
3,05
IRRM 100%
3,07
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,09
3,11
350
30
-45
0,03
V
A
A
µs
3,13
3,15
time(us)
3,17
25
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Switching Definitions BUCK
Figure 8
BUCK FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
BUCK FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Id
Qrr
Erec
100
100
tErec
75
tQrr
50
50
Prec
0
25
-50
0
-100
-150
3,06
-25
3,08
I d (100%) =
Q rr (100%) =
t Q rr =
3,1
30
0,93
0,07
3,12
3,14
-50
3,06
3,16
time(us)
3,08
3,1
3,12
3,14
3,16
time(us)
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
10,53
0,11
0,07
kW
mJ
µs
Measurement circuit
Figure 10
BUCK stage switching measurement circuit
BUCK IGBT
T1
BOOST IGBT
-15V
BUCK FRED D13
T3
BOOST FRED
VDC
47kohm
47kohm
700
Vcc
Vce
3*470uF
-15V
T4
3*470uF
V
L2
V
115uH
D14
+15V
Vge
L
1mH
V
T2
A
0.00001
Q
Q
+15V
0.000003
Q
Rgon
32_Ohm
Q
Rgoff
-15V
Q
32_Ohm
Q
copyright Vincotech
26
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
Standard in flow1 12mm housing
10-PY07N3A030SM-M894F08Y
in DataMatrix as
M894F08Y
in packaging barcode as
M894F08Y
Outline
Pin
Pin table
X
Y
1
2
3
0
6
9,7
28,2
28,2
28,2
4
15,7
28,2
5
6
18,7
24,7
28,2
28,2
7
27,7
28,2
8
9
33,8
36,8
28,2
28,2
10
11
42,8
46,2
28,2
28,2
12
13
14
52,2
52,2
52,2
28,2
23,7
20,7
15
16
41,25
38,25
20,6
20,6
17
18
32,55
29,55
20,6
20,6
19
20
21
18,7
18,7
15,7
20,7
23,7
23,7
22
23
24
25
26
15,7
4,75
1,75
8,35
11,35
20,7
20,6
20,6
12,2
12,2
Pin
Pin table
X
Y
27
19,95
12,2
36
37,95
0
28
29
22,95
44,35
12,2
12,2
37
38
29,2
26,2
0
0
30
31
47,35
52,2
12,2
8,9
39
40
23,2
20,4
0
0
32
33
34
35
52,2
46,75
43,95
40,95
5,9
0
0
0
41
42
43
44
11,8
9
6
3
0
0
0
0
Pinout
copyright Vincotech
27
09 Oct. 2014 / Revision 2
10-PY07N3A030SM-M894F08Y
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
28
09 Oct. 2014 / Revision 2