10-PY07N3A030SM-M894F08Y datasheet flow 3xNPC 1 650 V / 30 A Features flow 1 housing ● Neutral-point-Clamped inverter ● ● ● ● Ultra fast switching Low Inductance layout Very compact design Press-fit pins Target Applications Schematic ● Solar inverters ● UPS ● SMPS Types ● 10-PY07N3A030SM-M894F08Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 32 A tp limited by Tjmax 90 A Tj≤175°C VCE<=VCES 90 A 67 W Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CES IC I CRM Turn off safe operating area Tj=Tjmax Tj=Tjmax Th=80°C Th=80°C Power dissipation P tot Gate-emitter peak voltage V GE ±20 V Maximum Junction Temperature T jmax 175 °C Peak Repetitive Reverse Voltage V RRM 600 V Forward average current I FAV Tj=Tjmax 23 A Surge forward current I FSM tp=10ms 300 A Power dissipation P tot Tj=Tjmax 40 W Maximum Junction Temperature T jmax 150 °C Buck FWD copyright Vincotech 1 Th=80°C Th=80°C 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 30 A 90 A 90 A 57 W ±20 V 5 400 µs V T jmax 175 °C Peak Repetitive Reverse Voltage V RRM 650 V Forward average current I FAV Tj=Tjmax 24 A Repetitive peak forward current I FRM tp limited by Tjmax 40 A Power dissipation P tot Tj=Tjmax 40 W Maximum Junction Temperature T jmax 175 °C Peak Repetitive Reverse Voltage V RRM 650 V Forward average current I FAV Tj=Tjmax 24 A Repetitive peak forward current I FRM tp limited by Tjmax 40 A Power dissipation P tot Tj=Tjmax 40 W Maximum Junction Temperature T jmax 175 °C Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CES IC I CRM Th=80°C tp limited by Tjmax Tj≤150°C Turn off safe operating area VCE<=VCES Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tj≤150°C VGE=15V Boost Inverse Diode Th=80°C Th=80°C Boost FWD copyright Vincotech 2 Th=80°C Th=80°C 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 3 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,3 4 4,7 1,63 1,86 2,22 Buck IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0003 30 15 Collector-emitter cut-off current incl. Diode I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 120 Rgoff=16 Ω Rgon=16 Ω 350 ±15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr t d(off) 0,04 V 70 70 8 9 68 81 8 12 0,332 0,489 0,147 0,224 ns mWs 2100 f=1MHz 0 25 ±15 520 Tj=25°C 45 pF 7,7 30 Tj=25°C Phase-Change Material ʎ=3,4W/mK 70 nC 1,42 K/W Buck FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 600 I RRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=16 Ω 350 ±15 ( di rf/dt )max E rec R th(j-s) Phase-Change Material ʎ=3,4W/mK 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,33 2,01 100 32 45 23 33 0,402 0,929 3386 4125 0,045 0,112 1,76 4 2,8 V µA A ns µC A/µs mWs K/W 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,1 5,8 6,4 1,03 1,63 1,75 1,87 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,00043 30 15 Collector-emitter cut-off incl diode I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 300 none tr t d(off) 0,0016 Rgoff=16 Ω Rgon=16 Ω 350 ±15 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 101 100 23 26 143 160 57 90 0,529 0,665 0,729 0,979 ns mWs 1630 f=1MHz 0 25 15 480 Tj=25°C 108 Tj=25°C 167 nC 1,67 K/W pF 50 30 Phase-Change Material ʎ=3,4W/mK Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 20 Tj=25°C Tj=125°C 1,23 Phase-Change Material ʎ=3,4W/mK 1,70 1,58 1,87 2,37 V K/W Boost FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink 650 I RRM t rr Peak rate of fall of recovery current 30 Rgon=16 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,23 1,69 1,55 1,87 0,24 17 21 231 297 1,20 2,22 2062 74 0,319 0,609 Phase-Change Material ʎ=3,4W/mK V µA A ns µC A/µs mWs 2,37 K/W 21511 Ω Thermistor Rated resistance Tj=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω Tj=100°C Power dissipation constant -4,5 +4,5 % Tj=25°C 210 mW Tj=25°C 3,5 mW/K B-value B(25/50) Tj=25°C 3884 K B-value B(25/100) Tj=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 5 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT 90 90 IC (A) IC (A) Figure 1 Typical output characteristics I C = f(V CE) 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 0,0 V CE (V) At tp = Tj = V GE from At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 0,5 1,0 1,5 2,0 2,5 3,0 3,5 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 30 4,0 FWD IC (A) IF (A) 120 25 100 20 80 15 60 10 40 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 5 Tj = 25°C 20 0 0 0 2 At tp = V CE = 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 6 1 250 2 3 4 V F (V) 5 µs 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) IGBT 1,2 0,9 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eon High T 0,8 Eon High T 1,0 Eon Low T 0,7 Eon Low T 0,8 0,6 0,5 0,6 Eoff High T 0,4 0,3 0,4 Eoff Low T Eoff High T 0,2 0,2 Eoff Low T 0,1 0,0 0,0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 20 30 40 50 60 R G ( Ω) 70 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V IC = 30 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,16 E (mWs) E (mWs) 10 Erec High T 0,14 FWD 0,18 0,16 0,14 0,12 0,12 0,10 0,10 0,08 0,08 0,06 0,06 Erec Low T 0,04 Erec High T 0,04 0,02 0,02 0,00 0,00 Erec Low T 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 10 20 30 40 50 60 R G ( Ω) 70 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 30 A 7 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t (µ s) t (µ s) 1,00 IGBT tdon tdoff 0,10 tdoff 0,10 tdon tf tr tf 0,01 0,01 tr 0,00 0,00 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G ( Ω) 70 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 30 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,04 FWD 0,06 t rr(µ s) t rr(µ s) trr High T trr High T 0,05 0,03 trr Low T 0,04 trr Low T 0,03 0,02 0,02 0,01 0,01 0,00 0,00 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 0 60 At Tj = VR= IF= V GE = °C V V Ω 8 10 25/125 350 30 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 1,4 FWD Qrr (µC) Qrr (µC) 1,2 Qrr High T 1,2 1 1,0 0,8 Qrr High T 0,8 0,6 0,6 Qrr Low T 0,4 0,4 Qrr Low T 0,2 0,2 0 0,0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 20 30 40 50 I C (A) 0 60 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 10 25/125 350 30 ±15 20 30 40 50 60 R gon ( Ω ) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD IrrM (A) 80 IrrM (A) 60 70 IRRM High T IRRM High T 70 50 60 IRRM Low T 40 50 IRRM Low T 40 30 30 20 20 10 10 0 0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 0 60 At Tj = VR= IF= V GE = °C V V Ω 9 10 25/125 350 30 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck 5000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 4500 FWD 8000 dIrec/dt T di0/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 4000 dI0/dt T dIrec/dt T 7000 6000 3500 5000 3000 2500 4000 2000 3000 1500 2000 1000 1000 500 0 0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 20 30 40 50 I C (A) 0 60 At Tj = VR= IF= V GE = °C V V Ω 101 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 20 25/125 350 30 ±15 °C V A V 30 40 50 60 R gon ( Ω) Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) ZthJH (K/W) IGBT ZthJH (K/W) Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 10 70 FWD D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D = R thJH = tp/T 1,42 K/W IGBT thermal model values R (K/W) 0,05 0,18 0,59 0,36 0,13 0,12 10-3 10-2 10-1 100 t p (s) 10110 tp/T 1,76 K/W FWD thermal model values Tau (s) 4,0E+00 5,0E-01 8,7E-02 1,8E-02 3,3E-03 3,2E-04 copyright Vincotech 10-4 R (K/W) 0,06 0,17 0,70 0,53 0,19 0,12 10 Tau (s) 4,8E+00 7,6E-01 1,6E-01 5,1E-02 1,1E-02 1,6E-03 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 50 IC (A) Ptot (W) 125 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) 90 200 FWD 40 IF (A) Ptot (W) IGBT 35 75 30 60 25 45 20 15 30 10 15 5 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = °C 11 30 150 60 90 120 T h ( o C) 150 °C 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Buck Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) IGBT Figure 26 Gate voltage vs Gate charge V GE = f(Q g) 15 2 12,5 IC (A) VGE (V) 3 10 10 IGBT 130V 10uS 100mS 520V 1mS 10 10mS 100uS 101 7,5 DC 100 5 10-1 2,5 0 10 0 101 At D = 102 0 103 V CE (V) At IC = single pulse 80 ºC ±15 V T jmax ºC Th = V GE = Tj = Figure 27 Reverse bias safe operating area 10 30 20 30 40 50 60 Q g (nC) 70 A IGBT I C = f(V CE) IC (A) 100 IC MAX 90 Ic 70 Ic CHIP MODULE 80 VCE MAX 60 50 40 30 20 10 0 0 At Tj = R gon = R goff = 100 200 125 °C 16 16 Ω Ω copyright Vincotech 300 400 500 600 V CE (V) 700 12 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 120 IC (A) IC (A) 120 IGBT 100 100 80 80 60 60 40 40 20 20 0 0 0,0 At tp = Tj = V GE from 0,5 1,0 1,5 2,0 2,5 3,0 3,5 V CE (V) 4,0 0,0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 125 IF (A) IC (A) 35 V CE (V) 30 100 25 75 20 15 50 10 25 Tj = 25°C 5 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = V CE = 1 250 10 copyright Vincotech 2 3 4 5 6 7 V GE (V) 0 8 At tp = µs V 13 0,5 250 1 1,5 2 2,5 3 3,5 4 V F (V) 4,5 µs 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 1,6 IGBT 2,5 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Eoff High T 1,4 Eon High T 1,2 Eon High T 2 Eon Low T Eoff Low T 1 Eon Low T 1,5 0,8 Eoff High T 1 Eoff Low T 0,6 0,4 0,5 0,2 0 0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G( Ω ) 70 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 30 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,8 E (mWs) E (mWs) 1,0 FWD 0,7 Erec High T 0,8 0,6 Erec High T 0,5 0,6 0,4 Erec Low T 0,4 0,3 Erec Low T 0,2 0,2 0,1 0 0,0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 10 20 30 40 50 60 RG (Ω ) 70 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 30 A 14 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 IGBT tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G( Ω ) 70 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 30 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,35 FWD 0,6 t rr(µ s) t rr(µ s) trr High T 0,30 trr Low T 0,5 trr High T trr Low T 0,25 0,4 0,20 0,3 0,15 0,2 0,10 0,1 0,05 0,00 0,0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR= IF= V GE = °C V V Ω 15 10 25/125 350 30 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 3 Qrr (µC) Qrr (µC) 3,5 3,0 FWD 2,5 Qrr High T Qrr High T 2,5 2 2,0 1,5 Qrr Low T 1,5 Qrr Low T 1 1,0 0,5 0,5 0 0,0 0 At At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 20 30 40 50 0 I C (A) 60 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 10 25/125 350 30 ±15 20 30 40 50 R gon ( Ω) 70 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 30 60 FWD IrrM (A) IrrM (A) 50 IRRM High T 25 40 IRRM Low T 20 30 15 20 10 IRRM High T 10 5 IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR= IF= V GE = °C V V Ω 16 10 25/125 350 30 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 10000 direc / dt (A/ms) 3000 FWD direc / dt (A/ms) dIrec/dt T dI0/dt T 2500 dIrec/dt T dI0/dt T 8000 2000 6000 1500 4000 1000 2000 500 0 0 0 At Tj = V CE = V GE = R gon = 10 25/125 350 ±15 16 20 30 40 50 I C (A) 60 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 25/125 350 30 ±15 20 30 40 50 60 R ( Ω) 70 gon °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10 -2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10 101 10 -2 10-5 At D = R thJH = tp/T 1,67 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 2,37 R (K/W) 0,18 0,37 0,64 0,32 0,15 R (K/W) 0,05 0,14 0,69 0,57 0,62 0,30 17 100 t p (s) 101 10 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 1,056 0,172 0,055 0,013 0,0030 10-2 Tau (s) 8,9E+00 1,1E+00 2,0E-01 6,4E-02 9,9E-03 1,0E-03 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) IGBT 50 IC (A) Ptot (W) 120 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) 75 200 FWD Ptot (W) IF (A) 40 35 60 30 25 45 20 30 15 10 15 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage I F = f(V F) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Boost Inverse Diode 101 ZthJC (K/W) IF (A) 125 100 100 75 50 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 25 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 1,5 250 2 2,5 3,5 4 V F (V) 10 4,5 -2 10 -5 10 At D = R thJH = µs Figure 27 Power dissipation as a function of heatsink temperature P tot = f(T h) Boost Inverse Diode -4 10 -3 10 -2 -1 10 0 t p (s) 1 10 10 tp/T 2,37 K/W Figure 28 Forward current as a function of heatsink temperature I F = f(T h) 80 10 Boost Inverse Diode 40 IF (A) Ptot (W) 3 70 35 60 30 50 25 40 20 30 15 20 10 10 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BOOST General Tj R gon R goff conditions = 125 °C = 16 Ω = 16 Ω Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 tdoff % % VCE 100 75 IC 150 VGE 90% VCE 90% VCE VGE IC 100 VGE 50 tdon tEoff 50 25 IC 1% 0 -25 -0,1 0 0,1 0,2 0,3 tEon -50 2,95 0,4 VCE 3% IC 10% VGE 10% 0 3 3,05 3,1 3,15 3,2 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 350 30 0,16 0,37 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 30 0,100 0,24 3,25 3,3 time(us) V V V A µs µs Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of t r 125 200 fitted % % VCE IC 100 IC 150 IC 90% 75 VCE 100 IC 90% IC 60% 50 tr IC 40% 50 25 IC10% 0 IC 10% 0 tf -50 3,05 -25 0 V C (100%) = I C (100%) = tf = copyright Vincotech 0,1 0,2 350 30 0,09 0,3 time (us) 0,4 V A µs V C (100%) = I C (100%) = tr = 21 3,1 3,15 350 30 0,026 3,2 time(us) 3,25 V A µs 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BOOST Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 125 150 % IC 1% Poff Pon % 125 100 Eoff Eon 100 75 75 50 50 25 25 VGE 90% VCE 3% VGE 10% 0 0 tEoff -25 -0,1 0 0,1 P off (100%) = E off (100%) = t E off = tEon 0,2 10,54 0,98 0,37 0,3 -25 2,95 time (us) 0,4 kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,05 3,1 10,54 0,67 0,24 kW mJ µs 3,15 3,2 time(us) 3,25 Figure 7 Boost IGBT Turn-off Switching Waveforms & definition of t rr 125 % 100 Id 75 trr 50 25 fitted 0 IRRM 10% -25 -50 IRRM 90% IRRM 100% -75 Vd -100 -125 3,05 3,1 3,15 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,2 350 30 -21 0,30 3,25 3,3 3,35 3,4 3,45 3,5 time(us) V A A µs 22 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BOOST Figure 8 Boost FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 125 125 % Qrr Id % Erec 100 100 75 tErec 75 tQrr 50 50 25 0 25 Prec -25 0 -50 -25 -75 3 3,2 I d (100%) = Q rr (100%) = t Q rr = 3,4 30 2,22 0,59 3,6 3,8 time(us) 3 4 A µC µs 3,2 3,4 P rec (100%) = E rec (100%) = t E rec = 10,54 0,61 0,59 3,6 3,8 time(us) 4 kW mJ µs Measurement circuit Figure 10 BOOST stage switching measurement circuit BUCK IGBT T1 BOOST IGBT VDC +350V -15V BUCK FRED D13+15V T3 BOOST FRED Vcc Vce Ic V L2 V A T4 115uH D14 T2 -15V V Vge 0.00001 0.000003 Q Q Q +15V Rgon 16_Ohm Q Rgoff -15V Q 16_Ohm Q copyright Vincotech 23 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BUCK General Tj R gon R goff conditions = 125 °C = 16 Ω = 16 Ω Figure 1 BUCK IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 BUCK IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 250 tdoff % % VCE IC 100 200 VCE 90% VGE 90% 75 150 IC VGE 50 VCE 100 tEoff tdon 25 VGE 50 IC 1% 0 VGE 10% 0 -25 -0,05 0 0,05 0,1 -50 2,95 0,15 3 IC 10% 3,05 VCE 3% tEon 3,1 3,15 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 350 30 0,08 0,10 3,2 time(us) time (us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 BUCK IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 30 0,07 0,18 V V V A µs µs Figure 4 BUCK IGBT Turn-on Switching Waveforms & definition of t r 125 250 fitted % IC IC % VCE 200 100 IC 90% 150 75 VCE IC 60% 100 50 IC 40% IC 90% tr 50 25 IC10% 0 0 tf -50 3,06 -25 0 0,03 V C (100%) = I C (100%) = tf = copyright Vincotech 0,06 350 30 0,01 0,09 0,12 time (us) IC 10% 0,15 V A µs V C (100%) = I C (100%) = tr = 24 3,08 3,1 350 30 0,01 3,12 3,14 3,16 time(us) 3,18 V A µs 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BUCK Figure 5 BUCK IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 BUCK IGBT Turn-on Switching Waveforms & definition of t Eon 200 125 % Pon % IC 1% Eoff 100 150 Poff 75 Eon 100 50 50 25 VGE 10% VGE 90% VCE 3% 0 tEon 0 tEoff -25 -0,04 -0,02 P off (100%) = E off (100%) = t E off = 0 0,02 10,53 0,22 0,10 0,04 0,06 0,08 -50 2,95 0,1 time (us) kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,05 10,53 0,49 0,18 3,1 3,15 time(us) 3,2 kW mJ µs Figure 7 BUCK IGBT Turn-off Switching Waveforms & definition of t rr 150 % 100 Id trr 50 Vd fitted 0 IRRM 10% -50 -100 IRRM 90% -150 -200 3,05 IRRM 100% 3,07 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,09 3,11 350 30 -45 0,03 V A A µs 3,13 3,15 time(us) 3,17 25 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Switching Definitions BUCK Figure 8 BUCK FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 BUCK FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Id Qrr Erec 100 100 tErec 75 tQrr 50 50 Prec 0 25 -50 0 -100 -150 3,06 -25 3,08 I d (100%) = Q rr (100%) = t Q rr = 3,1 30 0,93 0,07 3,12 3,14 -50 3,06 3,16 time(us) 3,08 3,1 3,12 3,14 3,16 time(us) A µC µs P rec (100%) = E rec (100%) = t E rec = 10,53 0,11 0,07 kW mJ µs Measurement circuit Figure 10 BUCK stage switching measurement circuit BUCK IGBT T1 BOOST IGBT -15V BUCK FRED D13 T3 BOOST FRED VDC 47kohm 47kohm 700 Vcc Vce 3*470uF -15V T4 3*470uF V L2 V 115uH D14 +15V Vge L 1mH V T2 A 0.00001 Q Q +15V 0.000003 Q Rgon 32_Ohm Q Rgoff -15V Q 32_Ohm Q copyright Vincotech 26 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code Standard in flow1 12mm housing 10-PY07N3A030SM-M894F08Y in DataMatrix as M894F08Y in packaging barcode as M894F08Y Outline Pin Pin table X Y 1 2 3 0 6 9,7 28,2 28,2 28,2 4 15,7 28,2 5 6 18,7 24,7 28,2 28,2 7 27,7 28,2 8 9 33,8 36,8 28,2 28,2 10 11 42,8 46,2 28,2 28,2 12 13 14 52,2 52,2 52,2 28,2 23,7 20,7 15 16 41,25 38,25 20,6 20,6 17 18 32,55 29,55 20,6 20,6 19 20 21 18,7 18,7 15,7 20,7 23,7 23,7 22 23 24 25 26 15,7 4,75 1,75 8,35 11,35 20,7 20,6 20,6 12,2 12,2 Pin Pin table X Y 27 19,95 12,2 36 37,95 0 28 29 22,95 44,35 12,2 12,2 37 38 29,2 26,2 0 0 30 31 47,35 52,2 12,2 8,9 39 40 23,2 20,4 0 0 32 33 34 35 52,2 46,75 43,95 40,95 5,9 0 0 0 41 42 43 44 11,8 9 6 3 0 0 0 0 Pinout copyright Vincotech 27 09 Oct. 2014 / Revision 2 10-PY07N3A030SM-M894F08Y datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 09 Oct. 2014 / Revision 2