10-PY07N3A015SM-M892F08Y datasheet flow 3xNPC 1 650 V / 15 A Features flow 1 housing ● Neutral-point-Clamped inverter ● ● ● ● Ultra fast switching Low Inductance layout Very compact design Press-fit pins Target Applications Schematic ● Solar inverters ● UPS ● SMPS Types ● 10-PY07N3A015SM-M892F08Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 20 27 A tp limited by Tjmax 45 A Tj≤175°C VCE<=VCES 45 A 43 66 W Buck IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CES IC I CRM Turn off safe operating area Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Power dissipation P tot Gate-emitter peak voltage V GE ±20 V Maximum Junction Temperature T jmax 175 °C 600 V 22 30 A 150 A 42 64 W 150 °C Buck FWD Peak Repetitive Reverse Voltage V RRM Tj=25°C Forward average current I FAV Tj=Tjmax Surge forward current I FSM tp=10ms Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 25 33 A tp limited by Tjmax 60 A Tj≤150°C VCE<=VCES 60 A 59 90 W ±20 V 6 360 µs V 150 °C 650 V 19 25 A 20 A 39 59 W 175 °C 650 V 19 25 A 20 A 39 59 W 175 °C Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CES IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings Maximum Junction Temperature t SC V CC Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V T jmax Boost Inverse Diode Peak Repetitive Reverse Voltage V RRM Tc=25°C Forward average current I FAV Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C Tc=80°C Th=80°C Tc=80°C Boost FWD Peak Repetitive Reverse Voltage V RRM Tj=25°C Forward average current I FAV Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 2 Th=80°C Tc=80°C Th=80°C Tc=80°C 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage copyright Vincotech t=2s DC voltage 3 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 3,3 4 4,7 1,64 1,77 2,22 Buck IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0004 15 15 Collector-emitter cut-off current incl. Diode I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 200 Rgoff=32 Ω Rgon=32 Ω ±15 350 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr t d(off) 0,04 V 73 72 8 9 72 86 10 11 0,199 0,277 0,072 0,127 ns mWs 930 f=1MHz 0 25 15 520 Tj=25°C 240 pF Tj=25°C 38 nC 2,20 K/W 4 15 Phase-Change Material ʎ=3,4W/mK Buck FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 600 I RRM Reverse recovery time Peak rate of fall of recovery current 15 Rgon=32 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) Phase-Change Material ʎ=3,4W/mK 15 Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,47 1,73 100 17 23 22 36 0,225 0,523 1736 1606 0,024 0,060 1,65 4 2,6 V µA A ns µC A/µs mWs K/W 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,1 5,8 6,4 1,03 1,54 1,76 1,87 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,00029 15 20 Collector-emitter cut-off incl diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 200 none tr t d(off) 0,01 Rgoff=16 Ω Rgon=16 Ω 350 ±15 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 65 66 15 17 139 161 65 73 0,210 0,267 0,395 0,542 ns mWs 1100 f=1MHz 0 25 15 480 Tj=25°C 71 pF Tj=25°C 120 nC 1,60 K/W 32 20 Phase-Change Material ʎ=3,4W/mK Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 10 Tj=25°C Tj=125°C 1,68 1,56 Phase-Change Material ʎ=3,4W/mK 1,87 2,44 V K/W Boost FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink 650 I RRM t rr Peak rate of fall of recovery current 10 Rgon=16 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,23 1,67 1,56 1,87 0,14 12 14 156 278 0,68 1,22 1738 153 0,187 0,348 Phase-Change Material ʎ=3,4W/mK V µA A ns µC A/µs mWs 2,44 K/W 21511 Ω Thermistor Rated resistance Tj=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω Tj=100°C Power dissipation constant -4,5 +4,5 % Tj=25°C 210 mW Tj=25°C 3,5 mW/K B-value B(25/50) Tj=25°C 3884 K B-value B(25/100) Tj=25°C 3964 K F Vincotech NTC Reference copyright Vincotech 5 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 45 IC (A) IC (A) 45 IGBT 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 0,0 V CE (V) At tp = Tj = V GE from At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 0,5 1,0 1,5 2,0 2,5 3,0 3,5 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 60 IF (A) IC (A) 16 4,0 14 50 12 40 10 8 30 Tj = Tjmax-25°C 6 20 Tj = 25°C Tj = Tjmax-25°C 4 Tj = 25°C 10 2 0 0 0 At tp = V CE = 1 250 5 copyright Vincotech 2 3 4 5 6 7 V (V) 8 GE 0 At tp = µs V 6 1 250 2 3 4 V F (V) 5 µs 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) IGBT 0,6 0,5 Eon High T E (mWs) E (mWs) Eon High T Eon Low T Eon Low T 0,5 0,4 0,4 0,3 0,3 Eoff High T 0,2 0,2 Eoff Low T Eoff High T 0,1 0,1 Eoff Low T 0,0 0,0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 R G ( Ω) 140 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) FWD 0,10 E (mWs) E (mWs) 0,10 Erec High T 0,08 0,08 0,06 0,06 0,04 0,04 Erec High T Erec Low T 0,02 0,02 Erec Low T 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 20 40 60 80 100 120 R ( Ω) 140 G With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 15 A 7 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 t (ms) t (ms) 1,00 IGBT tdon tdoff tdoff 0,10 0,10 tdon tf tr tf 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 R G ( Ω) 140 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 15 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,07 t rr(ms) t rr(ms) 0,05 FWD 0,04 trr High T 0,06 trr High T 0,05 0,03 trr Low T 0,04 trr Low T 0,03 0,02 0,02 0,01 0,01 0,00 0,00 0 At Tj = V CE = V GE = R gon = 5 25/125 350 ±15 32 copyright Vincotech 10 15 20 25 I C (A) 0 30 At Tj = VR= IF= V GE = °C V V Ω 8 20 25/125 350 15 ±15 40 60 80 100 120 R gon ( Ω) 140 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 0,7 Qrr (µC) Qrr (µC) 0,8 FWD Qrr High T 0,7 0,6 0,6 0,5 Qrr High T 0,5 0,4 0,4 0,3 0,3 Qrr Low T Qrr Low T 0,2 0,2 0,1 0,1 0 0,0 0 At Tj = V CE = V GE = R gon = 5 25/125 350 ±15 32 10 15 20 25 I C (A) 0 30 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 20 25/125 350 15 ±15 40 60 80 100 120 140 R gon ( Ω ) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 50 35 IrrM (A) IrrM (A) 40 IRRM High T IRRM High T 40 30 25 30 IRRM Low T 20 20 15 IRRM Low T 10 10 5 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 350 ±15 32 copyright Vincotech 10 15 20 25 0 I C (A) 30 At Tj = VR= IF= V GE = °C V V Ω 9 20 25/125 350 15 ±15 40 60 80 100 120 R gon ( Ω) 140 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 2500 FWD 4500 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) di0/dt T 2000 dIrec/dt T dI0/dt T 4000 3500 3000 1500 2500 2000 1000 1500 1000 500 500 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 350 ±15 32 10 15 20 25 0 I C (A) 30 At Tj = VR= IF= V GE = °C V V Ω 101 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 80 100 120 140 R gon ( Ω) °C V A V FWD D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 10110 At D = R thJH = K/W 10-4 10-3 1,65 R (K/W) 0,11 0,17 0,76 0,59 0,40 0,17 R (K/W) 0,05 0,10 0,71 0,40 0,21 0,17 10 10-1 100 t p (s) 10110 K/W FWD thermal model values Tau (s) 2,1E+00 4,5E-01 9,1E-02 2,4E-02 5,0E-03 9,0E-04 10-2 tp/T IGBT thermal model values copyright Vincotech 60 10-1 tp/T 2,20 25/125 350 15 ±15 40 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) ZthJH (K/W) IGBT ZthJH (K/W) Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 20 Tau (s) 4,1E+00 5,7E-01 7,9E-02 2,0E-02 4,7E-03 9,2E-04 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 80 IGBT Ptot (W) IC (A) 35 30 60 25 20 40 15 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 50 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 175 15 100 150 T h ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 40 Ptot (W) IF (A) 100 200 35 80 30 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Buck Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) IGBT Figure 26 Gate voltage vs Gate charge V GE = f(Q g) 15 IC (A) VGE (V) 103 10 IGBT 12,5 2 130V 100mS 520V 10 1mS 10mS 100uS 101 7,5 DC 100 5 10-1 2,5 0 100 10 At D = 1 10 0 103 V CE (V) 2 At IC = single pulse 80 ºC ±15 V T jmax ºC Th = V GE = Tj = Figure 27 Reverse bias safe operating area 10 0 20 30 Q g (nC) 40 A IGBT I C = f(V CE) IC (A) 55 50 IC MAX 45 Ic 35 Ic CHIP MODULE 40 30 VCE MAX 25 20 15 10 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = R gon = R goff = 125 °C 32 32 copyright Vincotech Ω Ω 12 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 60 IC (A) IC (A) 60 50 50 40 40 30 30 20 20 10 10 0 0 0,0 At tp = Tj = V GE from 0,5 1,0 1,5 2,0 2,5 V CE (V) 3,0 0,0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 0,5 1,0 1,5 2,0 2,5 V CE (V) 3,0 250 µs 124 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 20 FWD 45 IF (A) IC (A) IGBT 18 40 16 35 14 30 12 25 10 20 8 15 6 Tj = Tjmax-25°C 4 10 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 5 2 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 12 0 V GE (V) 14 At tp = µs V 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) E (mWs) 1 Eoff High T IGBT 0,7 Eon High T 0,6 Eoff High T 0,8 Eon Low T 0,5 Eoff Low T Eoff Low T 0,6 0,4 Eon High T 0,3 Eon Low T 0,4 0,2 0,2 0,1 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/124 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G( Ω ) 70 With an inductive load at Tj = 25/124 °C V CE = 350 V V GE = ±15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 0,5 Erec High T FWD 0,4 0,35 0,4 0,3 Erec High T 0,25 0,3 0,2 Erec Low T 0,2 Erec Low T 0,15 0,1 0,1 0,05 0 0,0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/124 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 10 20 30 40 50 60 RG (Ω ) 70 With an inductive load at Tj = 25/124 °C V CE = 350 V V GE = ±15 V IC = 15 A 14 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 IGBT tdoff tdoff tdon tf 0,1 0,1 tf tdon tr 0,01 0,01 tr 0,001 0,001 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 124 °C V CE = 350 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G( Ω ) 70 With an inductive load at Tj = 124 °C V CE = 350 V V GE = ±15 V IC = 15 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr(ms) 0,6 t rr(ms) 0,35 FWD trr High T 0,30 0,5 trr High T 0,25 0,4 trr Low T 0,20 trr Low T 0,3 0,15 0,2 0,10 0,1 0,05 0,00 0,0 0 At Tj = V CE = V GE = R gon = 5 25/124 350 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 15 10 25/124 350 15 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 1,8 1,6 Qrr (µC) Qrr (µC) Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) Qrr High T FWD 1,4 1,2 Qrr High T 1,4 1 1,2 0,8 1,0 Qrr Low T Qrr Low T 0,8 0,6 0,6 0,4 0,4 0,2 0,2 0 0,0 0 At At Tj = V CE = V GE = R gon = 5 25/124 350 ±15 16 10 15 20 25 0 I C (A) 30 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 25/124 350 15 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 35 IrrM (A) 18 IrrM (A) 10 IRRM High T 16 30 IRRM Low T 14 25 12 20 10 8 15 6 10 4 IRRM High T 5 2 IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 5 25/124 350 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 16 10 25/124 350 15 ±15 20 30 40 50 60 R gon ( Ω) 70 °C V A V 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) direc / dt (A/ms) 2500 direc / dt (A/ms) dIrec/dt T dI0/dt T 2000 FWD 8000 dIrec/dt T dI0/dt T 7000 6000 5000 1500 4000 3000 1000 2000 1000 500 0 0 -1000 0 At Tj = V CE = V GE = R gon = 5 25/124 350 ±15 16 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 10 20 25/124 350 15 ±15 °C V A V 30 40 50 60 R ( Ω) 70 gon Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 ZthJH (K/W) ZthJH (K/W) 101 FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 101 10-5 At D = R thJH = tp/T 1,60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 2,44 R (K/W) 0,07 0,30 0,70 0,38 0,15 R (K/W) 0,06 0,17 0,60 0,58 0,61 0,42 17 100 t p (s) 101 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 3,986 0,314 0,055 0,007 0,0005 10-2 Tau (s) 5,6E+00 6,5E-01 1,5E-01 3,9E-02 8,9E-03 2,0E-03 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 40 Ptot (W) IC (A) 120 IGBT 35 100 30 80 25 60 20 15 40 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) 75 200 FWD Ptot (W) IF (A) 30 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 175 100 150 Th ( o C) 200 ºC 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage I F = f(V F) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 45 IF (A) 10 1 ZthJC (K/W) 40 Boost Inverse Diode 35 30 100 25 20 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 Tj = Tjmax-25°C Tj = 25°C 5 0 0 At tp = 0,5 1 250 1,5 2 2,5 3 3,5 4 V F (V) 10 4,5 µs Figure 27 Power dissipation as a function of heatsink temperature P tot = f(T h) Boost Inverse Diode -2 10-5 10-4 At D = R thJH = tp/T 10-3 2,44 10-2 100 t p (s) 10110 K/W Figure 28 Forward current as a function of heatsink temperature I F = f(T h) Boost Inverse Diode 30 Ptot (W) IF (A) 75 10-1 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BOOST General Tj R gon R goff conditions = 125 °C = 16 Ω = 16 Ω Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 200 125 % tdoff % VCE 100 IC 150 VCE 90% VGE 90% 75 VCE VGE IC 100 VGE 50 tdon tEoff 50 25 IC 1% 0 -25 -0,1 0 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,2 -15 15 350 15 0,16 0,41 0,3 time (us) tEon -50 2,95 0,4 V V V A µs µs 3 3,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f VCE 3% IC 10% VGE 10% 0 -15 15 350 15 0,066 0,17 3,1 3,15 time(us) 3,2 V V V A µs µs Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of t r 125 200 fitted % VCE % IC IC 100 150 IC 90% 75 VCE 100 IC 90% IC 60% 50 tr IC 40% 50 25 IC 10% IC10% 0 0 tf -50 3,04 -25 0 V C (100%) = I C (100%) = tf = copyright Vincotech 0,1 0,2 350 15 0,073 0,3 time (us) 0,4 V A µs 3,06 V C (100%) = I C (100%) = tr = 21 3,08 350 15 0,017 3,1 3,12 3,14 3,16 time(us) 3,18 V A µs 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BOOST Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 125 175 % 100 Pon % 150 IC 1% Poff Eoff 125 75 Eon 100 75 50 50 25 25 VGE 90% VGE 10% 0 -25 -0,1 0 0,1 P off (100%) = E off (100%) = t E off = 5,26 0,54 0,41 VCE 3% 0 tEoff 0,2 0,3 -25 2,95 time (us) 0,4 kW mJ µs P on (100%) = E on (100%) = t E on = tEon 3 3,05 5,26 0,27 0,17 3,1 3,15 time(us) 3,2 kW mJ µs Figure 7 Boost IGBT Turn-off Switching Waveforms & definition of t rr 125 % 100 Id 75 trr 50 25 fitted 0 IRRM 10% -25 -50 -75 I RRM 90% -125 3,05 Vd IRRM 100% -100 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,15 350 15 -14 0,28 3,2 3,25 3,3 3,35 3,4 time(us) V A A µs 22 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BOOST Figure 8 Boost FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Erec Id 100 Qrr 100 tErec 75 tQrr 50 50 0 Prec 25 -50 0 -25 -100 3 3,1 I d (100%) = Q rr (100%) = t Q rr = 3,2 15 1,22 0,55 3,3 3,4 3,5 3,6 3 3,7 time(us) A µC µs 3,1 3,2 P rec (100%) = E rec (100%) = t E rec = 3,3 5,26 0,35 0,55 3,4 3,5 3,6 3,7 time(us) kW mJ µs Measurement circuit Figure 10 BOOST stage switching measurement circuit BUCK IGBT T1 BOOST IGBT VDC +350V -15V BUCK FRED D13+15V T3 BOOST FRED Vcc Vce Ic V L2 V A T4 115uH D14 T2 -15V V Vge 0.00001 0.000003 Q Q Q +15V Rgon 16_Ohm Q Rgoff -15V Q 16_Ohm Q copyright Vincotech 23 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BUCK General Tj R gon R goff conditions = 125 °C = 32 Ω = 32 Ω Figure 1 BUCK IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 BUCK IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 250 125 % % tdoff VCE 200 100 VGE 90% VCE 90% 75 IC 150 VGE IC VCE 100 50 tEoff VGE tdon 25 50 IC 1% VCE 3% IC 10% VGE 10% 0 tEon 0 -25 -0,05 0 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0,05 -15 15 350 15 0,09 0,16 0,1 -50 2,95 0,15 time (us) V V V A µs µs 3,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 BUCK IGBT Turn-off Switching Waveforms & definition of t f fitted -15 15 350 15 0,07 0,17 250 % VCE IC 3,1 3,15 time(us) 3,2 V V V A µs µs Figure 4 BUCK IGBT Turn-on Switching Waveforms & definition of t r 125 % 3 IC 200 100 IC 90% 150 75 VCE IC 60% 100 50 IC 40% tr IC 90% 50 25 IC10% 0 IC 10% 0 tf -50 3,06 -25 0 0,03 V C (100%) = I C (100%) = tf = copyright Vincotech 0,06 350 15 0,01 0,09 0,12 time (us) 0,15 V A µs V C (100%) = I C (100%) = tr = 24 3,08 3,1 350 15 0,01 3,12 3,14 3,16 time(us) 3,18 V A µs 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BUCK Figure 5 BUCK IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 BUCK IGBT Turn-on Switching Waveforms & definition of t Eon 125 250 % % IC 1% Eoff 100 200 75 150 Pon Eon Poff 100 50 50 25 VGE 90% VCE 3% VGE 10% 0 0 tEon tEoff -25 -0,05 0 P off (100%) = E off (100%) = t E off = 0,05 5,23 0,13 0,16 0,1 time (us) -50 2,95 0,15 kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,05 5,23 0,28 0,17 3,1 3,15 time(us) 3,2 kW mJ µs Figure 7 BUCK IGBT Turn-off Switching Waveforms & definition of t rr 150 % 100 Id trr 50 0 Vd fitted IRRM 10% -50 -100 IRRM 90% -150 -200 3,05 IRRM 100% 3,07 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,09 3,11 350 15 -23 0,04 V A A µs 3,13 3,15 time(us) 3,17 25 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Switching Definitions BUCK Figure 8 BUCK FRED Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 BUCK FRED Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Qrr Id Erec 100 100 tErec 75 tQrr 50 50 Prec 0 25 -50 0 -100 -150 3,05 -25 3,075 I d (100%) = Q rr (100%) = t Q rr = 3,1 3,125 15 0,52 0,07 3,15 3,175 time(us) -50 3,05 3,2 A µC µs 3,075 3,1 P rec (100%) = E rec (100%) = t E rec = 3,125 5,23 0,06 0,07 3,15 3,175 time(us) 3,2 kW mJ µs Measurement circuit Figure 10 BUCK stage switching measurement circuit BUCK IGBT T1 BOOST IGBT -15V BUCK FRED D13 T3 BOOST FRED VDC 47kohm 47kohm 700 Vcc Vce 3*470uF -15V T4 3*470uF V L2 V 115uH D14 +15V Vge L 1mH V T2 A 0.00001 Q Q +15V 0.000003 Q Rgon 32_Ohm Q Rgoff -15V Q 32_Ohm Q copyright Vincotech 26 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code 10-PY07N3A015SM-M892F08Y Standard in flow1 12mm housing in DataMatrix as M892F08Y in packaging barcode as M892F08Y Outline Pin table Pin X Y 1 2 3 0 6 9,7 28,2 28,2 28,2 4 5 15,7 18,7 28,2 28,2 6 7 24,7 27,7 28,2 28,2 8 9 33,8 36,8 28,2 28,2 10 11 42,8 46,2 28,2 28,2 12 52,2 28,2 13 14 52,2 52,2 23,7 20,7 15 16 41,25 38,25 20,6 20,6 17 18 32,55 29,55 20,6 20,6 19 20 21 18,7 18,7 15,7 20,7 23,7 23,7 22 23 24 25 26 15,7 4,75 1,75 8,35 11,35 20,7 20,6 20,6 12,2 12,2 Pin X Y 27 19,95 12,2 36 37,95 0 28 29 22,95 44,35 12,2 12,2 37 38 29,2 26,2 0 0 30 31 32 33 47,35 52,2 52,2 46,75 12,2 8,9 5,9 0 39 40 41 42 23,2 20,4 11,8 9 0 0 0 0 34 35 43,95 40,95 0 0 43 44 6 3 0 0 Pin table Pinout copyright Vincotech 27 09 Oct. 2014 / Revision 2 10-PY07N3A015SM-M892F08Y datasheet flow 3xNPC 1 DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 09 Oct. 2014 / Revision 2