V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet flow BOOST 1200 V / 40 A Features flow 0 housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V Si diode 17mm hight solder Pin Target Applications 12mm hight Press-fit Pin 12mm hight solder Pin Schematic ● solar inverter Types ● V23990-P629-L59-PM ● V23990-P629-L58-PM ● V23990-P629-L58Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 40 A 220 A 240 A 2s 42 63 W 150 °C 1200 V Bypass Diode ( D7 , D8 ) Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax T j=25°C T j=Tjmax T h=80°C T c=80°C t p=10ms sin 180° T j=25°C T j=Tjmax T h=80°C T c=80°C Boost IGBT ( T1 , T2 ) Collector-emitter break down voltage DC collector current V CE IC T j=25°C T j=Tjmax Pulsed collector current I CRM t p limited by T jmax Power dissipation P tot T j=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j≤150°C V GE=15V T jmax 1 T h=80°C T c=80°C T h=80°C T c=80°C 40 45 A 120 A 113 171 W ±20 V 10 800 µs V 175 °C 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Boost IGBT Protection Diode ( D9 , D10 ) Peak Repetitive Reverse Voltage DC forward current V RRM IF T j=25°C T j=Tjmax Surge forward current I FSM t p=10ms, sin 180°, T j=Tjmax Power dissipation P tot T j=Tjmax Maximum Junction Temperature T jmax T h=80°C 10 T c=80°C 13 T h=80°C T c=80°C A 21 A 26 39 W 150 °C 1200 V 39 53 A 270 A 89 134 W Boost FWD (D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current V RRM IF T j=25°C T h=80°C T j=Tjmax T c=80°C Surge forward current I FSM t p=10ms, sin 180°, T j=25°C Power dissipation P tot T j=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm T h=80°C T c=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech V is t=2s DC voltage 2 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,15 1,11 0,92 0,82 0,009 0,012 1,4 Bypass Diode ( D7 , D8 ) Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 24 Slope resistance (for power loss calc. only) rt 24 Reverse current Ir Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 1600 V V Ω 0,05 mA 1,67 Thermal grease thickness≤50um λ = 1 W/mK K/W 1,10 Boost IGBT ( T1 , T2 ) Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat Collector-emitter cut-off I CES Gate-emitter leakage current I GES Integrated Gate resistor R gint Turn-on delay time 0,0015 15 40 0 1200 20 0 tr t d(off) tf Fall time Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Rgoff=4 Ω Rgon=4 Ω Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 5,2 5,8 6,4 1,7 2,10 2,48 2,6 0,25 200 15 700 24 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 22 21 35 68 225 293 35 68 1,09 1,82 1,01 1,61 ns mWs 2300 f=1MHz 0 25 Tj=25°C 150 pF 135 QG Gate charge Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C none t d(on) Rise time Turn-off delay time VGE=VCE V GE(th) 15 600 40 Tj=25°C 185 nC 0,84 Thermal grease thickness≤50um λ = 1 W/mK K/W 0,56 Boost IGBT Protection Diode ( D9 , D10 ) Diode forward voltage VF Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 3 Tj=25°C Tj=125°C 0,7 1,66 1,58 2,4 V 2,72 Thermal grease thickness≤50um λ = 1 W/mK K/W 1,80 Boost FWD ( D1 , D4 ) Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech 50 1200 Rgon=4 Ω 15 700 24 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,28 2,36 2,8 60 63 78 83 208 2,25 5,02 0,98 2,42 5304 3201 V µA A ns µC mWs A/µs 1,07 Thermal grease thickness≤50um λ = 1 W/mK K/W 0,71 3 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Typ Unit Max Thermistor Rated resistance Tj=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486Ω Tc=100°C Power dissipation constant B-value B (25/50) B-value B (25/100) Tol. ±1% Vincotech NTC Reference copyright Vincotech 22 -4,5 kΩ +4,5 % Tj=25°C 210 mW Tj=25°C 3,5 mW/K Tj=25°C 3884 K Tj=25°C 3964 K F 4 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Boost IGBT Protection Diode Figure 1 Boost IGBT Protection Diode Typical FWD forward current as a function of forward voltage I F = f(V F) Figure 2 Boost IGBT Protection Diode Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 20 IF (A) 101 ZthJC (K/W) Tj = 25°C 15 100 Tj = Tjmax-25°C 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 5 0 0 At tp = 1 250 2 3 V F (V) 10-2 4 10-5 At D = R thJH = µs Figure 3 Boost IGBT Protection Diode Power dissipation as a function of heatsink temperature P tot = f(T h) 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 2,72 K/W Figure 4 Boost IGBT Protection Diode Forward current as a function of heatsink temperature I F = f(T h) 20 IF (A) Ptot (W) 60 45 15 30 10 15 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 5 50 150 100 150 Th ( o C) 200 ºC 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 3 Typical output characteristics I C = f(V CE) BOOST IGBT Figure 4 Typical output characteristics I C = f(V CE) 120 IC(A) IC (A) 120 BOOST FWD 90 90 60 60 30 30 0 0 0 At tp = Tj = V GS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GS from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) BOOST IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) BOOST FWD 150 IC (A) IF (A) 40 V CE (V) Tj = Tjmax-25°C Tj = 25°C 120 30 90 20 60 10 30 Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 At tp = V DS = 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 6 1 250 2 3 4 5 V F (V) 6 µs 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 5 Typical switching energy losses as a function of collector current E = f(I C) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 8 E (mWs) E (mWs) 8 BOOST IGBT Eon High T Eon High T 6 6 Eoff High T Eon Low T 4 4 Eon Low T Eoff Low T Eoff High T 2 2 0 Eoff Low T 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 25/125 °C V DS = 700 V V GS = 15 V R gon = 4 Ω R goff = 4 Ω 16 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/125 °C V DS = 700 V V GS = 15 V ID = 24 A Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current E rec = f(I C) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 5 E (mWs) 5 BOOST IGBT Erec High T 4 4 3 3 Erec Low T 2 2 Erec High T 1 1 Erec Low T 0 0 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = 25/125 °C V DS = 700 V V GS = 15 V R gon = 4 Ω copyright Vincotech 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 25/125 °C V DS = 700 V V GS = 15 V ID = 24 A 7 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 9 Typical switching times as a function of collector current t = f(I C) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 10 t ( µs) t ( µs) 10 BOOST IGBT 1 tdoff 1 tdoff tdon tf 0,1 0,1 tr tf tdon 0,01 0,01 tr 0,001 0,001 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 125 °C V DS = 700 V V GS = 15 V R gon = 4 Ω R goff = 4 Ω 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 125 °C V DS = 700 V V GS = 15 V IC = 24 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,6 BOOST FWD trr High T t rr( µs) t rr( µs) 0,6 0,5 0,5 trr Low T trr High T 0,4 0,4 0,3 0,3 trr Low T 0,2 0,2 0,1 0,1 0 0,0 0 R (K/W) At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 80 0 R (K/W) At Tj = VR= IF= V GS = °C V V Ω 8 16 25/125 700 24 15 32 48 64 R Gon ( Ω ) 80 °C V A V 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( µC) 10 Qrr ( µC) 10 BOOST FWD Qrr High T 8 8 6 6 Qrr Low T Qrr High T 4 4 2 2 Qrr Low T 0 0 0 At At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 40 60 I C (A) 80 0 At Tj = °C V V Ω 25/125 700 24 15 VR= IF= V GS = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) BOOST FWD 16 32 48 64 80 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 100 R Gon ( Ω) BOOST FWD IrrM (A) IrrM (A) 100 IRRM High T 80 80 IRRM Low T 60 60 40 40 20 20 IRRM High T IRRM Low T 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR= IF= V GS = °C V V Ω 9 16 25/125 700 24 15 32 48 64 R Gon ( Ω ) 80 °C V A V 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 8000 BOOST FWD direc / dt (A/ µs) direc / dt (A/ µs) 8000 dI0/dt dIrec/dt dI0/dt dIrec/dt 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 700 15 4 40 I C (A) 60 80 0 At Tj = °C V V Ω VR= IF= V GS = Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width Z thJH = f(t p) BOOST IGBT 16 25/125 700 24 15 32 48 80 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) BOOST FWD 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 64 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D = R thJH = tp/T 0,84 K/W 10-4 10-3 1,07 R (K/W) 0,107 0,391 0,223 0,092 0,030 R (K/W) 0,027 0,098 0,284 0,405 0,171 10 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 1,413 0,188 0,056 0,011 0,001 10-2 Tau (s) 8,145 1,332 0,228 0,069 0,014 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature I C = f(T h) 250 BOOST IGBT IC (A) Ptot (W) 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = V GS = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST FWD 50 175 15 100 150 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) BOOST FWD 70 IF (A) Ptot (W) 200 Th ( o C) 60 150 50 40 100 30 20 50 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 11 50 175 100 150 T h ( o C) 200 ºC 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet INPUT BOOST Figure 25 Safe operating area as a function of drain-source voltage I C = f(V CE) BOOST IGBT Figure 26 Gate voltage vs Gate charge BOOST IGBT V GE = f(Q g) 103 IC (A) VGE (V) 18 16 14 102 240V 10uS 12 10mS 960V 100uS 1mS 10 100mS 101 8 DC 6 10 0 4 2 1 0 0 10 At D = Th = V GS = Tj = 1 10 2 10 3 100 150 200 250 Qg (nC) At ID = single pulse 80 ºC V 15 T jmax ºC copyright Vincotech 50 V CE (V) 12 24 A 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Bypass Diode Figure 1 Typical Diode forward current as a function of forward voltage I F= f(V F) Bypass Diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 35 Bypass Diode ZthJC (K/W) IF (A) 101 30 Tj = 25°C Tj = Tjmax-25°C 25 100 20 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 5 0 10-2 0 0,3 At tp = 0,6 250 0,9 1,2 V F (V) 1,5 10-5 10-4 At D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Bypass Diode 10-3 10-2 10-1 100 10110 tp/T 1,674 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Bypass Diode 50 Ptot (W) IF (A) 100 t p (s) 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) datasheet Thermistor NTC-typical temperature characteristic R (Ω) 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Switching Definitions BOOST IGBT General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 500 tdoff % % VCE 400 100 VGE 90% IC VCE 90% 300 75 IC 200 50 tEoff VCE VGE 100 25 tdon IC 1% VGE10% IC 10% 0 0 VCE 3% tEon VGE -25 -0,2 0 0,2 0,4 0,6 -100 2,95 0,8 3 3,05 3,1 3,15 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 15 700 24 0,29 0,42 3,2 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f 0 15 700 24 0,02 0,14 V V V A µs µs Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of tr 125 500 fitted % VCE % IC IC 400 100 IC 90% 300 75 IC 60% 200 50 IC 40% IC 90% VCE 100 25 tr IC10% IC 10% 0 0 tf -100 -25 0,1 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 700 24 0,06 0,3 time (us) 3 0,4 3,025 3,05 3,075 3,1 time(us) V A µs V C (100%) = I C (100%) = tr = 15 700 24 0,01 V A µs 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Switching Definitions BOOST IGBT Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 120 % 350 % Eoff Pon 300 100 Poff 250 80 200 60 150 Eon 40 100 IC 1% 20 50 VGE 90% VGE 0 tEoff -20 -0,2 0 VCE 3% 10% tEon 0 0,2 0,4 -50 2,95 0,6 3 3,05 3,1 3,15 P off (100%) = E off (100%) = t E off = 16,97 1,55 0,42 kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Gate voltage vs Gate charge (measured) 3,2 time(us) time (us) Boost IGBT 16,97 1,85 0,14 kW mJ µs Figure 8 Boost FWD Turn-off Switching Waveforms & definition of t rr 200 20 VGE (V) % 100 15 trr Id 0 Vd fitted 10 IRRM 10% -100 5 -200 0 -300 -400 2,95 -5 -50 0 50 100 150 IRRM 90% IRRM 100% 3,1 3,25 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech 0 15 700 24 144,01 3,4 time(us) V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 16 700 24 -76 0,21 V A A µs 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet Switching Definitions BOOST FWD Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 150 % % Qrr 125 100 tQrr Erec 100 0 tErec 75 Id -100 50 -200 25 Prec -300 -400 2,95 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 0 3,1 3,25 24 4,94 0,43 3,4 time(us) -25 2,95 3,55 A µC µs P rec (100%) = E rec (100%) = t E rec = 17 3,1 3,25 16,97 2,36 0,43 3,4 time(us) 3,55 kW mJ µs 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM Ordering Code and Marking - Outline - Pinout datasheet Ordering Code & Marking Version Ordering Code in DataMatrix as P629-L59-PM in packaging barcode as without thermal paste 17mm housing V23990-P629-L59-PM P629-L59-PM without thermal paste 12mm housing V23990-P629-L58-PM P629-L58-PM P629-L58-PM without thermal paste 12mm housing with Press-fit pins V23990-P629-L58Y-PM P629-L58Y-PM P629-L58Y-PM Outline Pinout copyright Vincotech 18 23 Febr. 2015 / Revision 2 V23990-P629-L59-PM V23990-P629-L58-PM V23990-P629-L58Y-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 23 Febr. 2015 / Revision 2