10-FZ12NMA080NS03-M260F38 10

10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
flow MNPC 0
1200 V / 80 A
Features
flow 0 12mm housing
● mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Solder pin
Target Applications
Pressfit pin
Schematic
● solar inverter
● UPS
Types
● 10-FZ12NMA080NS03-M260F38
● 10-PZ12NMA080NS03-M260F38Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Power dissipation per IGBT
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j=T jmax
T s=80°C
T c=80°C
t p limited by T jmax
T j=T jmax
T s=80°C
T c=80°C
T j≤150°C
V GE=15V
T jmax
57
76
A
240
A
112
169
W
±20
V
10
600
µs
V
175
°C
600
V
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
copyright Vincotech
V RRM
IF
T j=T jmax
P tot
T j=T jmax
T jmax
T s=80°C
T c=80°C
T s=80°C
T c=80°C
34
46
59
90
175
1
A
W
°C
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
52
68
A
225
A
72
109
W
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation per IGBT
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Turn off safe operating area (RBSOA)
I cmax
Maximum Junction Temperature
T jmax
T s=80°C
T c=80°C
T j=T jmax
t p limited by T jmax
T s=80°C
T c=80°C
T j=T jmax
T j≤150°C
V GE=15V
V CE max = 600V
T vj max≤ 150°C
±20
V
6
360
µs
V
150
A
175
°C
1200
V
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
I FRM
T s=80°C
T c=80°C
T j=T jmax
t p limited by T jmax
47
62
A
100
A
79
119
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
P tot
T s=80°C
T c=80°C
T j=T jmax
Thermal Properties
Creepage distance
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
4000
V
min 12,7
mm
8,95
mm
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5,5
6,5
Half Bridge IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0006
15
80
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink per chip
R th(j-s)
4,5
2,02
2,17
R goff=4 Ω
R gon=4 Ω
±15
350
56
25
125
25
125
25
125
25
125
25
125
25
125
400
113
113
15
17
128
149
28
45
0,41
0,68
0,73
1,36
V
V
2
none
tr
t d(off)
25
125
25
125
25
125
25
125
mA
nA
Ω
ns
mWs
15000
f=1MHz
25
0
25
400
pF
280
15
600
80
25
Thermal grease
thickness≤50um
λ = 1 W/mK
626
nC
0,85
K/W
Neutral Point FWD
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
75
R gon=4 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
56
25
125
25
125
25
125
25
125
25
125
25
125
2,15
2,36
72
74
40
79
1
2
5066
3825
0,32
0,53
1,6
3
V
A
ns
µC
A/µs
mWs
K/W
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,45
1,59
1,85
Neutral Point IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,0012
15
75
Collector-emitter cut-off incl diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink per chip
R th(j-s)
15
600
none
tr
t d(off)
25
125
25
125
25
125
25
125
R goff=4 Ω
R gon=4 Ω
350
±15
56
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
84
85
11
12
177
205
87
105
0,53
0,75
1,86
2,50
ns
mWs
4620
f=1MHz
0
25
288
25
pF
137
±15
480
75
25
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,32
K/W
Half Bridge FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
I RRM
Reverse recovery time
Peak rate of fall of recovery current
50
±15
350
( di rf/dt )max
E rec
R th(j-s)
56
25
125
25
125
25
125
25
125
25
125
25
125
25
125
1,35
1,73
1,70
2,05
10
106
118
102
148
5,32
8,22
6904
4951
1,55
2,42
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,21
K/W
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100=1486Ω
100
25
Power dissipation constant
Ω
22000
12
-12
%
200
mW
25
2
mW/K
B-value
B (25/50)
Tol. ±3%
25
3950
K
B-value
B (25/100)
Tol. ±3%
25
3996
K
Vincotech NTC Reference
copyright Vincotech
B
4
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
IGBT
Typical output characteristics
I C = f(V CE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
175
IC (A)
IF (A)
90
5
150
75
125
60
100
45
75
Tj = 25°C
Tj = Tjmax-25°C
30
50
Tj = Tjmax-25°C
15
25
Tj = 25°C
0
0
0
2
4
At
tp =
V CE =
250
1
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
5
1
250
2
3
V F (V)
4
µs
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
2,5
E (mWs)
E (mWs)
2,5
Eoff High T
2,0
Eon High T
2,0
Eon Low T
1,5
Eoff High T
1,5
Eoff Low T
Eon High T
1,0
1,0
Eoff Low T
Eon Low T
0,5
0,5
0,0
0,0
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
0,6
E (mWs)
0,8
FWD
Erec High T
0,5
0,6
0,4
Erec Low T
Erec High T
0,3
0,4
0,2
0,2
Erec Low T
0,1
0,0
0,0
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
6
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1,00
tdon
t (µ s)
t (µ s)
1,00
tdoff
tdoff
tdon
0,10
0,10
tr
tf
tf
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
20
R G ( Ω)
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,12
trr High T
0,10
trr High T
t rr(µ s)
t rr(µ s)
0,12
FWD
0,09
0,08
trr Low T
0,06
0,06
trr Low T
0,04
0,03
0,02
0,00
0,00
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
2,5
Qrr (µ C)
Qrr (µ C)
4
2
Qrr High T
Qrr High T
3
1,5
Qrr Low T
2
Qrr Low T
1
1
0,5
0
0
At
0
20
At
Tj =
V CE =
V GE =
R gon =
40
60
80
0
100
I C (A)
5
10
25/125
350
°C
V
At
Tj =
VR=
25/125
350
°C
V
±15
4
V
Ω
IF=
V GE =
56
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
15
R gon ( Ω )
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
100
IrrM (A)
IrrM (A)
100
20
80
80
IRRM High T
60
60
IRRM Low T
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
7000
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
7000
di0/dt T
dIrec/dt T
dI0/dt T
6000
6000
5000
5000
4000
4000
3000
3000
2000
2000
1000
1000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
80
I C (A)
0
100
5
10
25/125
350
°C
V
At
Tj =
VR=
25/125
350
°C
V
±15
4
V
Ω
IF=
V GE =
56
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
15
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
20
R gon ( Ω)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R =
thJH
10-4
10-3
10-2
10-1
100
t p (s)
10110
10-5
At
D =
R thJH =
tp/T
0,85
K/W
10-4
10-3
1,60
100
t p (s)
101 10
K/W
FWD thermal model values
R (K/W)
0,14
0,32
0,30
Tau (s)
1,8E+00
2,9E-01
1,0E-01
R (K/W)
0,07
0,16
0,64
Tau (s)
5,7E+00
1,2E+00
2,0E-01
0,07
0,02
1,4E-02
1,7E-03
0,50
0,13
0,10
6,6E-02
9,1E-03
1,5E-03
9
10-1
tp/T
IGBT thermal model values
copyright Vincotech
10-2
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
90
IC (A)
Ptot (W)
250
75
200
60
150
45
100
30
50
15
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
50
At
Tj =
V GE =
°C
Figure 23
FWD
175
15
100
150
T h ( o C)
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
200
FWD
Forward current as a
function of heatsink temperature
I F = f(T h)
60
IF (A)
Ptot (W)
125
50
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
IGBT
15
IC (A)
VGE (V)
103
12,5
100uS
102
600V
1mS
100mS
10
10mS
101
7,5
DC
100
5
2,5
10-1
0
0
100
10
At
D =
1
10
102
At
IC =
single pulse
Th =
80
±15
T jmax
V GE =
Tj =
50
100
V CE (V)
3
80
150
200
250
300
Q g (nC)
350
A
ºC
V
ºC
Figure 27
IGBT
Reverse bias safe operating area
I C = f(V CE)
IC (A)
180
ICMAX
160
Ic CHIP
140
Ic MODULE
120
100
VCEMAX
80
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
ºC
DC link minus =DC link plus
Switching mode :
copyright Vincotech
3 level switching
11
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 1
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
Typical output characteristics
I C = f(V CE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
IGBT
1
2
3
4
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
5
V CE (V)
FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
100
IF (A)
IC (A)
250
80
200
60
150
Tj = 25°C
Tj = Tjmax-25°C
40
100
Tj = Tjmax-25°C
20
50
Tj = 25°C
0
0
0
2
4
At
tp =
V CE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
12
1
250
2
3
V F (V)
4
µs
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 5
IGBT
Figure 6
IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
E (mWs)
4
E (mWs)
4
Eoff High T
3
3
Eon High T
Eoff Low T
Eoff High T
Eon Low T
2
2
Eoff Low T
Eon High T
1
1
Eon Low T
0
0
0
20
40
60
80
0
100
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
3
E (mWs)
E (mWs)
4
FWD
2,5
Erec High T
Erec High T
3
2
2
1,5
Erec Low T
Erec Low T
1
1
0,5
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
5
10
15
RG (Ω)
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
13
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 9
IGBT
Figure 10
IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,5
t rr(µ s)
t rr(µ s)
0,20
FWD
trr High T
trr High T
0,4
trr Low T
0,3
0,15
trr Low T
0,10
0,2
0,05
0,1
0,00
0,0
0
20
At
Tj =
V CE =
V GE =
R gon =
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
14
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 13
FWD
Figure 14
FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (µ C)
10
Qrr (µ C)
12
Qrr High T
Qrr High T
10
8
8
6
Qrr Low T
Qrr Low T
6
4
4
2
2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
80
100
I C (A)
0
4
8
25/125
350
°C
V
At
Tj =
VR=
25/125
350
°C
V
±15
4
V
Ω
IF=
V GE =
56
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
12
16
R gon ( Ω )
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
150
20
FWD
150
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
120
120
90
90
60
60
IRRM High T
IRRM Low T
30
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 17
FWD
Figure 18
FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
dIrec/dt T
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
10000
8000
dIrec/dt T
dI0/dt T
10000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
60
80
100
I C (A)
0
5
10
25/125
350
°C
V
At
Tj =
VR=
25/125
350
°C
V
±15
4
V
Ω
IF=
V GE =
56
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
15
R gon ( Ω)
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
20
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D =
R thJH =
tp/T
1,32
K/W
10-4
10-3
1,21
100
t p (s)
101 10
K/W
FWD thermal model values
R (K/W)
0,06
0,17
0,35
Tau (s)
6,4E+00
1,3E+00
2,5E-01
R (K/W)
0,03
0,11
0,34
Tau (s)
6,2E+00
1,1E+00
2,0E-01
0,60
0,13
8,5E-02
8,9E-03
0,54
0,14
0,05
6,8E-02
1,2E-02
2,8E-03
16
10-1
tp/T
IGBT thermal model values
copyright Vincotech
10-2
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 21
IGBT
Figure 22
IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
80
Ptot (W)
IC (A)
150
120
60
90
40
60
20
30
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
FWD
50
175
15
100
150
o
T h ( C)
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
P tot = f(T h)
200
FWD
function of heatsink temperature
I F = f(T h)
80
IF (A)
Ptot (W)
150
120
60
90
40
60
20
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 25
Safe operating area as a function
IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
IGBT
16
IC (A)
VGE (V)
103
14
100uS
120V
102
12
1mS
100mS
DC
101
480V
10mS
10
8
100
6
4
10-1
2
0
100
102
101
At
D =
10
3
0
V CE (V)
At
IC =
single pulse
Th =
80
15
T jmax
V GE =
Tj =
100
75
200
300
400 Q (nC)
g
500
A
ºC
V
ºC
Figure 27
IGBT
Reverse bias safe operating area
I C = f(V CE)
IC (A)
180
160
ICMAX
120
Ic CHIP
Ic MODULE
140
100
VCEMAX
80
60
40
20
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
T jmax-25
DC link minus =DC link
Switching mode :
copyright Vincotech
ºC
plus
3 level switching
18
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Neutral point IGBT
General conditions
Tj
= 125 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
Neutral point IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Neutral point IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
125
350
tdoff
%
%
VCE
300
100
IC
VCE 90%
VGE 90%
250
75
200
IC
150
50
tEoff
VCE
100
25
VGE
tdon
50
IC 1%
0
VGE
-25
-0,2
0
0,2
0,4
0,6
-50
2,95
0,8
3
VCE 3%
IC 10%
VGE 10%
0
tEon
3,05
3,1
3,15
3,2
3,25
time(us)
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
350
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
56
A
I C (100%) =
56
A
t doff =
t E off =
0,21
0,58
µs
µs
t don =
t E on =
0,09
0,16
µs
µs
Figure 3
Neutral point IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
V
V
V
Figure 4
Neutral point IGBT
Turn-on Switching Waveforms & definition of t r
350
125
VCE
fitted
%
%
IC
300
100
IC
IC 90%
250
75
200
IC 60%
150
50
IC 40%
VCE
100
25
IC 90%
tr
50
IC10%
0
tf
0
-50
3,075
-25
0
0,1
0,2
0,3
time (us)
0,4
IC
10%
3,1
3,125
3,175
time(us)
V C (100%) =
I C (100%) =
350
56
V
A
V C (100%) =
I C (100%) =
350
56
V
A
tf =
0,11
µs
tr =
0,01
µs
copyright Vincotech
3,15
20
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Neutral point IGBT
Figure 5
Neutral point IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
IC 1%
Poff
Pon
%
Eon
Eoff
100
100
75
75
50
50
25
25
VGE
-25
-0,2
VCE 3%
VGE 10%
90%
0
0
tEon
tEoff
-25
0
P off (100%) =
E off (100%) =
t E off =
0,2
19,56
2,50
0,58
0,4
0,6
time (us)
2,9
0,8
3
3,2
3,3
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
3,1
Neutral point IGBT
19,56
0,75
0,16
kW
mJ
µs
Figure 8
Neutral point FWD
Turn-off Switching Waveforms & definition of t rr
Gate voltage vs Gate charge (measured)
150
VGE (V)
20
%
Id
15
100
10
50
5
0
0
-50
-5
-100
-10
-150
-15
-200
-20
-200
-250
3,05
trr
fitted
IRRM 10%
Vd
IRRM 90%
IRRM 100%
0
200
400
V GE off =
V GE on =
V C (100%) =
I C (100%) =
-15
15
350
56
V
V
V
A
Qg =
775,97
nC
copyright Vincotech
600
Qg (nC)
800
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
21
3,1
3,15
350
56
-118
0,15
3,2
3,25
time(us)
3,3
V
A
A
µs
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Neutral point IGBT
Figure 9
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
350
%
Id
Prec
%
Qrr
100
300
tQrr
50
250
0
200
-50
150
-100
100
-150
50
-200
0
Erec
tErec
-50
-250
3
I d (100%) =
Q rr (100%) =
t Q rr =
3,3
3,6
56
8,22
1,00
3,9
time(us)
3
4,2
A
µC
µs
3,3
P rec (100%) =
E rec (100%) =
t E rec =
3,6
19,56
2,42
1,00
3,9
time(us)
4,2
kW
mJ
µs
Measurement circuits
Figure 11
BOOST stage switching measurement circuit
copyright Vincotech
22
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Half Bridge IGBT
General conditions
Tj
= 125 °C
= 4Ω
R gon
R goff
= 4Ω
Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
125
250
tdoff
%
IC
%
200
100
VGE 90%
VCE 90%
75
150
IC
VGE
VCE
100
50
tEoff
VGE
tdon
VCE
50
25
IC 1%
VGE 10%
IC 10%
0
0
VCE 3%
tEon
-50
-25
-0,2
0
0,2
0,4
time (us)
2,9
0,6
V
V
V
3
V GE (0%) =
V GE (100%) =
V C (100%) =
3,1
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
700
56
A
I C (100%) =
56
A
t doff =
t E off =
0,15
0,51
µs
µs
t don =
t E on =
0,11
0,20
µs
µs
Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
700
3,2
time(us)
3,3
V
V
V
Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t r
125
250
fitted
%
%
IC
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
VCE
IC10%
0
IC
0
tf
10%
-50
-25
0
0,1
0,2
0,3
time (us)
3,1
0,4
3,125
3,15
V C (100%) =
I C (100%) =
700
56
V
A
V C (100%) =
I C (100%) =
700
56
V
A
tf =
0,05
µs
tr =
0,02
µs
copyright Vincotech
23
3,175
time(us)
3,2
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Half Bridge IGBT
Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
Eon
%
IC 1%
100
100
Eoff
75
75
50
50
25
25
VGE
90%
VCE 3%
VGE 10%
Poff
Pon
0
0
tEon
tEoff
-25
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
39,18
1,36
0,51
0,4
0,6
2,9
time (us) 0,8
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
Figure 7
Half Bridge IGBT
3,1
39,18
0,68
0,20
3,2
time(us)
3,3
kW
mJ
µs
Figure 8
Half Bridge FWD
Turn-off Switching Waveforms & definition of t rr
Gate voltage vs Gate charge (measured)
150
VGE (V)
20
%
Id
15
100
10
trr
50
5
Vd
0
fitted
0
IRRM 10%
-5
-50
-10
-100
-15
-20
-200
IRRM 90%
IRRM 100%
-150
0
200
400
600
800
1000
3,1
3,15
3,2
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
-15
15
700
56
V
V
V
A
Qg =
945,34
nC
copyright Vincotech
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
24
700
56
-74
0,08
time(us)
3,25
V
A
A
µs
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Switching Definitions Half Bridge IGBT
Figure 9
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
%
125
Id
%
Qrr
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
3,05
-25
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
3,15
3,2
56
2,33
0,16
A
µC
µs
3,25
3,3
time(us)
3,35
3
3,1
P rec (100%) =
E rec (100%) =
t E rec =
3,2
39,18
0,53
0,16
3,3
time(us)
3,4
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright Vincotech
25
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without thermal paste with solder pin
10-FZ12NMA080NS03-M260F38
M260F38
M260F38
without thermal paste with Press-fit pin
10-PZ12NMA080NS03-M260F38Y
M260F38Y
M260F38Y
Outline
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2
IGBT
1200 V
80 A
Half Bridge IGBT
D1,D2
FWD
1200 V
50 A
Half Bridge Diode
T3,T4
IGBT
600 V
75 A
Neutral Point IGBT
D3,D4
FWD
600 V
75 A
Neutral Point Diode
T
NTC
copyright Vincotech
Comment
Thermistor
26
17 Sep. 2015 / Revision 2
10-FZ12NMA080NS03-M260F38
10-PZ12NMA080NS03-M260F38Y
target datasheet
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”)
are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be
incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the
right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said
information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or
injury of any kind to persons or property or that the same will not infringe third parties rights or give desired
results. It is reader’s sole responsibility to test and determine the suitability of the information and the product
for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without
the express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with
instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
copyright Vincotech
27
17 Sep. 2015 / Revision 2