10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet flow MNPC 0 1200 V / 80 A Features flow 0 12mm housing ● mixed voltage component topology ● neutral point clamped inverter ● reactive power capability ● low inductance layout Solder pin Target Applications Pressfit pin Schematic ● solar inverter ● UPS Types ● 10-FZ12NMA080NS03-M260F38 ● 10-PZ12NMA080NS03-M260F38Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Half Bridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation per IGBT P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j=T jmax T s=80°C T c=80°C t p limited by T jmax T j=T jmax T s=80°C T c=80°C T j≤150°C V GE=15V T jmax 57 76 A 240 A 112 169 W ±20 V 10 600 µs V 175 °C 600 V Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature copyright Vincotech V RRM IF T j=T jmax P tot T j=T jmax T jmax T s=80°C T c=80°C T s=80°C T c=80°C 34 46 59 90 175 1 A W °C 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 52 68 A 225 A 72 109 W Neutral Point IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation per IGBT P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Turn off safe operating area (RBSOA) I cmax Maximum Junction Temperature T jmax T s=80°C T c=80°C T j=T jmax t p limited by T jmax T s=80°C T c=80°C T j=T jmax T j≤150°C V GE=15V V CE max = 600V T vj max≤ 150°C ±20 V 6 360 µs V 150 A 175 °C 1200 V Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current V RRM IF I FRM T s=80°C T c=80°C T j=T jmax t p limited by T jmax 47 62 A 100 A 79 119 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature P tot T s=80°C T c=80°C T j=T jmax Thermal Properties Creepage distance Insulation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 4000 V min 12,7 mm 8,95 mm 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5,5 6,5 Half Bridge IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0006 15 80 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink per chip R th(j-s) 4,5 2,02 2,17 R goff=4 Ω R gon=4 Ω ±15 350 56 25 125 25 125 25 125 25 125 25 125 25 125 400 113 113 15 17 128 149 28 45 0,41 0,68 0,73 1,36 V V 2 none tr t d(off) 25 125 25 125 25 125 25 125 mA nA Ω ns mWs 15000 f=1MHz 25 0 25 400 pF 280 15 600 80 25 Thermal grease thickness≤50um λ = 1 W/mK 626 nC 0,85 K/W Neutral Point FWD Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip copyright Vincotech 75 R gon=4 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 56 25 125 25 125 25 125 25 125 25 125 25 125 2,15 2,36 72 74 40 79 1 2 5066 3825 0,32 0,53 1,6 3 V A ns µC A/µs mWs K/W 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 5 5,8 6,5 1,05 1,45 1,59 1,85 Neutral Point IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,0012 15 75 Collector-emitter cut-off incl diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink per chip R th(j-s) 15 600 none tr t d(off) 25 125 25 125 25 125 25 125 R goff=4 Ω R gon=4 Ω 350 ±15 56 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 84 85 11 12 177 205 87 105 0,53 0,75 1,86 2,50 ns mWs 4620 f=1MHz 0 25 288 25 pF 137 ±15 480 75 25 Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,32 K/W Half Bridge FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 I RRM Reverse recovery time Peak rate of fall of recovery current 50 ±15 350 ( di rf/dt )max E rec R th(j-s) 56 25 125 25 125 25 125 25 125 25 125 25 125 25 125 1,35 1,73 1,70 2,05 10 106 118 102 148 5,32 8,22 6904 4951 1,55 2,42 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,21 K/W Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100=1486Ω 100 25 Power dissipation constant Ω 22000 12 -12 % 200 mW 25 2 mW/K B-value B (25/50) Tol. ±3% 25 3950 K B-value B (25/100) Tol. ±3% 25 3996 K Vincotech NTC Reference copyright Vincotech B 4 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 IGBT Typical output characteristics I C = f(V CE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 175 IC (A) IF (A) 90 5 150 75 125 60 100 45 75 Tj = 25°C Tj = Tjmax-25°C 30 50 Tj = Tjmax-25°C 15 25 Tj = 25°C 0 0 0 2 4 At tp = V CE = 250 1 µs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 5 1 250 2 3 V F (V) 4 µs 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 2,5 E (mWs) E (mWs) 2,5 Eoff High T 2,0 Eon High T 2,0 Eon Low T 1,5 Eoff High T 1,5 Eoff Low T Eon High T 1,0 1,0 Eoff Low T Eon Low T 0,5 0,5 0,0 0,0 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V IC = 56 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 0,6 E (mWs) 0,8 FWD Erec High T 0,5 0,6 0,4 Erec Low T Erec High T 0,3 0,4 0,2 0,2 Erec Low T 0,1 0,0 0,0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 5 10 15 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A 6 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 tdon t (µ s) t (µ s) 1,00 tdoff tdoff tdon 0,10 0,10 tr tf tf tr 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 20 R G ( Ω) With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,12 trr High T 0,10 trr High T t rr(µ s) t rr(µ s) 0,12 FWD 0,09 0,08 trr Low T 0,06 0,06 trr Low T 0,04 0,03 0,02 0,00 0,00 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 7 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 2,5 Qrr (µ C) Qrr (µ C) 4 2 Qrr High T Qrr High T 3 1,5 Qrr Low T 2 Qrr Low T 1 1 0,5 0 0 At 0 20 At Tj = V CE = V GE = R gon = 40 60 80 0 100 I C (A) 5 10 25/125 350 °C V At Tj = VR= 25/125 350 °C V ±15 4 V Ω IF= V GE = 56 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 15 R gon ( Ω ) Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 100 IrrM (A) IrrM (A) 100 20 80 80 IRRM High T 60 60 IRRM Low T 40 40 IRRM High T IRRM Low T 20 20 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 8 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 17 FWD Figure 18 FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 7000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) 7000 di0/dt T dIrec/dt T dI0/dt T 6000 6000 5000 5000 4000 4000 3000 3000 2000 2000 1000 1000 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 80 I C (A) 0 100 5 10 25/125 350 °C V At Tj = VR= 25/125 350 °C V ±15 4 V Ω IF= V GE = 56 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 15 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 20 R gon ( Ω) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R = thJH 10-4 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D = R thJH = tp/T 0,85 K/W 10-4 10-3 1,60 100 t p (s) 101 10 K/W FWD thermal model values R (K/W) 0,14 0,32 0,30 Tau (s) 1,8E+00 2,9E-01 1,0E-01 R (K/W) 0,07 0,16 0,64 Tau (s) 5,7E+00 1,2E+00 2,0E-01 0,07 0,02 1,4E-02 1,7E-03 0,50 0,13 0,10 6,6E-02 9,1E-03 1,5E-03 9 10-1 tp/T IGBT thermal model values copyright Vincotech 10-2 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 90 IC (A) Ptot (W) 250 75 200 60 150 45 100 30 50 15 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 50 At Tj = V GE = °C Figure 23 FWD 175 15 100 150 T h ( o C) °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T h) 200 FWD Forward current as a function of heatsink temperature I F = f(T h) 60 IF (A) Ptot (W) 125 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) IGBT 15 IC (A) VGE (V) 103 12,5 100uS 102 600V 1mS 100mS 10 10mS 101 7,5 DC 100 5 2,5 10-1 0 0 100 10 At D = 1 10 102 At IC = single pulse Th = 80 ±15 T jmax V GE = Tj = 50 100 V CE (V) 3 80 150 200 250 300 Q g (nC) 350 A ºC V ºC Figure 27 IGBT Reverse bias safe operating area I C = f(V CE) IC (A) 180 ICMAX 160 Ic CHIP 140 Ic MODULE 120 100 VCEMAX 80 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC DC link minus =DC link plus Switching mode : copyright Vincotech 3 level switching 11 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 1 IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT Typical output characteristics I C = f(V CE) 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 IGBT 1 2 3 4 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) 5 V CE (V) FWD Typical diode forward current as a function of forward voltage I F = f(V F) 100 IF (A) IC (A) 250 80 200 60 150 Tj = 25°C Tj = Tjmax-25°C 40 100 Tj = Tjmax-25°C 20 50 Tj = 25°C 0 0 0 2 4 At tp = V CE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 12 1 250 2 3 V F (V) 4 µs 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 5 IGBT Figure 6 IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) E (mWs) 4 E (mWs) 4 Eoff High T 3 3 Eon High T Eoff Low T Eoff High T Eon Low T 2 2 Eoff Low T Eon High T 1 1 Eon Low T 0 0 0 20 40 60 80 0 100 I C (A) With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 3 E (mWs) E (mWs) 4 FWD 2,5 Erec High T Erec High T 3 2 2 1,5 Erec Low T Erec Low T 1 1 0,5 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 5 10 15 RG (Ω) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A 13 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 9 IGBT Figure 10 IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,5 t rr(µ s) t rr(µ s) 0,20 FWD trr High T trr High T 0,4 trr Low T 0,3 0,15 trr Low T 0,10 0,2 0,05 0,1 0,00 0,0 0 20 At Tj = V CE = V GE = R gon = 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 14 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 13 FWD Figure 14 FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (µ C) 10 Qrr (µ C) 12 Qrr High T Qrr High T 10 8 8 6 Qrr Low T Qrr Low T 6 4 4 2 2 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 80 100 I C (A) 0 4 8 25/125 350 °C V At Tj = VR= 25/125 350 °C V ±15 4 V Ω IF= V GE = 56 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 12 16 R gon ( Ω ) Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 150 20 FWD 150 IrrM (A) IrrM (A) IRRM High T IRRM Low T 120 120 90 90 60 60 IRRM High T IRRM Low T 30 30 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 15 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 17 FWD Figure 18 FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 dIrec/dt T dIo/dt T direc / dt (A/ms) direc / dt (A/ms) 10000 8000 dIrec/dt T dI0/dt T 10000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 40 60 80 100 I C (A) 0 5 10 25/125 350 °C V At Tj = VR= 25/125 350 °C V ±15 4 V Ω IF= V GE = 56 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 15 R gon ( Ω) Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 20 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D = R thJH = tp/T 1,32 K/W 10-4 10-3 1,21 100 t p (s) 101 10 K/W FWD thermal model values R (K/W) 0,06 0,17 0,35 Tau (s) 6,4E+00 1,3E+00 2,5E-01 R (K/W) 0,03 0,11 0,34 Tau (s) 6,2E+00 1,1E+00 2,0E-01 0,60 0,13 8,5E-02 8,9E-03 0,54 0,14 0,05 6,8E-02 1,2E-02 2,8E-03 16 10-1 tp/T IGBT thermal model values copyright Vincotech 10-2 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 21 IGBT Figure 22 IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 80 Ptot (W) IC (A) 150 120 60 90 40 60 20 30 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a FWD 50 175 15 100 150 o T h ( C) ºC V Figure 24 Forward current as a function of heatsink temperature P tot = f(T h) 200 FWD function of heatsink temperature I F = f(T h) 80 IF (A) Ptot (W) 150 120 60 90 40 60 20 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 25 Safe operating area as a function IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) IGBT 16 IC (A) VGE (V) 103 14 100uS 120V 102 12 1mS 100mS DC 101 480V 10mS 10 8 100 6 4 10-1 2 0 100 102 101 At D = 10 3 0 V CE (V) At IC = single pulse Th = 80 15 T jmax V GE = Tj = 100 75 200 300 400 Q (nC) g 500 A ºC V ºC Figure 27 IGBT Reverse bias safe operating area I C = f(V CE) IC (A) 180 160 ICMAX 120 Ic CHIP Ic MODULE 140 100 VCEMAX 80 60 40 20 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = T jmax-25 DC link minus =DC link Switching mode : copyright Vincotech ºC plus 3 level switching 18 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Neutral point IGBT General conditions Tj = 125 °C = 4Ω R gon R goff = 4Ω Figure 1 Neutral point IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Neutral point IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 350 tdoff % % VCE 300 100 IC VCE 90% VGE 90% 250 75 200 IC 150 50 tEoff VCE 100 25 VGE tdon 50 IC 1% 0 VGE -25 -0,2 0 0,2 0,4 0,6 -50 2,95 0,8 3 VCE 3% IC 10% VGE 10% 0 tEon 3,05 3,1 3,15 3,2 3,25 time(us) time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 350 V V V V GE (0%) = V GE (100%) = V C (100%) = 56 A I C (100%) = 56 A t doff = t E off = 0,21 0,58 µs µs t don = t E on = 0,09 0,16 µs µs Figure 3 Neutral point IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 V V V Figure 4 Neutral point IGBT Turn-on Switching Waveforms & definition of t r 350 125 VCE fitted % % IC 300 100 IC IC 90% 250 75 200 IC 60% 150 50 IC 40% VCE 100 25 IC 90% tr 50 IC10% 0 tf 0 -50 3,075 -25 0 0,1 0,2 0,3 time (us) 0,4 IC 10% 3,1 3,125 3,175 time(us) V C (100%) = I C (100%) = 350 56 V A V C (100%) = I C (100%) = 350 56 V A tf = 0,11 µs tr = 0,01 µs copyright Vincotech 3,15 20 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Neutral point IGBT Figure 5 Neutral point IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Neutral point IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % IC 1% Poff Pon % Eon Eoff 100 100 75 75 50 50 25 25 VGE -25 -0,2 VCE 3% VGE 10% 90% 0 0 tEon tEoff -25 0 P off (100%) = E off (100%) = t E off = 0,2 19,56 2,50 0,58 0,4 0,6 time (us) 2,9 0,8 3 3,2 3,3 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 3,1 Neutral point IGBT 19,56 0,75 0,16 kW mJ µs Figure 8 Neutral point FWD Turn-off Switching Waveforms & definition of t rr Gate voltage vs Gate charge (measured) 150 VGE (V) 20 % Id 15 100 10 50 5 0 0 -50 -5 -100 -10 -150 -15 -200 -20 -200 -250 3,05 trr fitted IRRM 10% Vd IRRM 90% IRRM 100% 0 200 400 V GE off = V GE on = V C (100%) = I C (100%) = -15 15 350 56 V V V A Qg = 775,97 nC copyright Vincotech 600 Qg (nC) 800 V d (100%) = I d (100%) = I RRM (100%) = t rr = 21 3,1 3,15 350 56 -118 0,15 3,2 3,25 time(us) 3,3 V A A µs 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Neutral point IGBT Figure 9 Neutral point IGBT Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Neutral point IGBT Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 350 % Id Prec % Qrr 100 300 tQrr 50 250 0 200 -50 150 -100 100 -150 50 -200 0 Erec tErec -50 -250 3 I d (100%) = Q rr (100%) = t Q rr = 3,3 3,6 56 8,22 1,00 3,9 time(us) 3 4,2 A µC µs 3,3 P rec (100%) = E rec (100%) = t E rec = 3,6 19,56 2,42 1,00 3,9 time(us) 4,2 kW mJ µs Measurement circuits Figure 11 BOOST stage switching measurement circuit copyright Vincotech 22 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Half Bridge IGBT General conditions Tj = 125 °C = 4Ω R gon R goff = 4Ω Figure 1 Half Bridge IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Half Bridge IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 250 tdoff % IC % 200 100 VGE 90% VCE 90% 75 150 IC VGE VCE 100 50 tEoff VGE tdon VCE 50 25 IC 1% VGE 10% IC 10% 0 0 VCE 3% tEon -50 -25 -0,2 0 0,2 0,4 time (us) 2,9 0,6 V V V 3 V GE (0%) = V GE (100%) = V C (100%) = 3,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 700 56 A I C (100%) = 56 A t doff = t E off = 0,15 0,51 µs µs t don = t E on = 0,11 0,20 µs µs Figure 3 Half Bridge IGBT Turn-off Switching Waveforms & definition of t f -15 15 700 3,2 time(us) 3,3 V V V Figure 4 Half Bridge IGBT Turn-on Switching Waveforms & definition of t r 125 250 fitted % % IC IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 VCE IC10% 0 IC 0 tf 10% -50 -25 0 0,1 0,2 0,3 time (us) 3,1 0,4 3,125 3,15 V C (100%) = I C (100%) = 700 56 V A V C (100%) = I C (100%) = 700 56 V A tf = 0,05 µs tr = 0,02 µs copyright Vincotech 23 3,175 time(us) 3,2 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Half Bridge IGBT Figure 5 Half Bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % Eon % IC 1% 100 100 Eoff 75 75 50 50 25 25 VGE 90% VCE 3% VGE 10% Poff Pon 0 0 tEon tEoff -25 -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 39,18 1,36 0,51 0,4 0,6 2,9 time (us) 0,8 kW mJ µs 3 P on (100%) = E on (100%) = t E on = Figure 7 Half Bridge IGBT 3,1 39,18 0,68 0,20 3,2 time(us) 3,3 kW mJ µs Figure 8 Half Bridge FWD Turn-off Switching Waveforms & definition of t rr Gate voltage vs Gate charge (measured) 150 VGE (V) 20 % Id 15 100 10 trr 50 5 Vd 0 fitted 0 IRRM 10% -5 -50 -10 -100 -15 -20 -200 IRRM 90% IRRM 100% -150 0 200 400 600 800 1000 3,1 3,15 3,2 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = -15 15 700 56 V V V A Qg = 945,34 nC copyright Vincotech V d (100%) = I d (100%) = I RRM (100%) = t rr = 24 700 56 -74 0,08 time(us) 3,25 V A A µs 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Switching Definitions Half Bridge IGBT Figure 9 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 % 125 Id % Qrr 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 3,05 -25 3,1 I d (100%) = Q rr (100%) = t Q rr = 3,15 3,2 56 2,33 0,16 A µC µs 3,25 3,3 time(us) 3,35 3 3,1 P rec (100%) = E rec (100%) = t E rec = 3,2 39,18 0,53 0,16 3,3 time(us) 3,4 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech 25 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste with solder pin 10-FZ12NMA080NS03-M260F38 M260F38 M260F38 without thermal paste with Press-fit pin 10-PZ12NMA080NS03-M260F38Y M260F38Y M260F38Y Outline Pinout Identification ID Component Voltage Current Function T1,T2 IGBT 1200 V 80 A Half Bridge IGBT D1,D2 FWD 1200 V 50 A Half Bridge Diode T3,T4 IGBT 600 V 75 A Neutral Point IGBT D3,D4 FWD 600 V 75 A Neutral Point Diode T NTC copyright Vincotech Comment Thermistor 26 17 Sep. 2015 / Revision 2 10-FZ12NMA080NS03-M260F38 10-PZ12NMA080NS03-M260F38Y target datasheet Handling instruction Handling instructions for flow 0 packages see vincotech.com website. DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 27 17 Sep. 2015 / Revision 2