10 xY12NMA160SH01 M820F18x D2 14 1

10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
flow MNPC 1
1200 V / 160 A
Features
flow 1 12mm housing
● mixed voltage NPC topology
●
●
●
●
reactive power capability
low inductance layout
Split output
enhanced LVRT capability
Target Applications
Schematic
● solar inverter
● UPS
● Active frontend
Types
● 10-FY12NMA160SH01-M820F18
● 10-PY12NMA160SH01-M820F18Y
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Halfbridge IGBT Inverse Diode
Repetitive peak reverse voltage
V RRM
Forward current
I FAV
DC current
Th=80°C
Tc=80°C
14
19
A
Repetitive peak forward current
I FSM
tp=10ms
Tj=25°C
14
A
Tj=Tjmax
Th=80°C
Tc=80°C
31
47
W
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CES
1200
V
Halfbridge IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
t SC
V CC
Tj=Tjmax
Th=80°C
Tc=80°C
117
151
A
tp limited by Tjmax
480
A
Tj≤150°C
VCE<=VCES
480
A
260
394
W
±20
V
10
800
µs
V
175
°C
Tj=Tjmax
Tj≤150°C
VGE=15V
T jmax
1
Th=80°C
Tc=80°C
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
700
V
NP Diode
Peak Repetitive Reverse Voltage
V RRM
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
53
72
63
96
IF
Tj=Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
150
°C
V CES
650
V
76
101
A
450
A
450
A
96
145
W
±20
V
6
360
µs
V
T jmax
175
°C
V RRM
650
V
DC forward current
A
W
NP IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
I CRM
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj≤150°C
Turn off safe operating area
VCE<=VCES
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
NP Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
15
21
A
30
A
28
42
W
T jmax
175
°C
V RRM
1200
V
Th=80°C
Tc=80°C
Halfbridge Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
copyright Vincotech
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
31
46
A
140
A
61
92
W
150
°C
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
630
V
DC link Capacitor
Max.DC voltage
V MAX
Tc=25°C
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 8,06
mm
Insulation Properties
Insulation voltage
copyright Vincotech
V is
t=2s
DC voltage
3
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,97
1,65
2,7
Halfbridge IGBT Inverse Diode
Forward voltage
Reverse current
Thermal resistance chip to heatsink
VF
7
Ir
1200
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
V GE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,25
2,24
V
mA
K/W
Halfbridge IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,006
15
160
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
5
5,80
6,5
1
2,02
2,37
2,70
0,25
480
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
t d(on)
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
127
129
26
30
219
274
45
59
1,52
2,60
2,69
4,19
ns
mWs
9200
f=1MHz
0
25
Tj=25°C
pF
600
540
±15
960
160
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
740
nC
0,37
K/W
NP Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
VF
150
Ir
700
I RRM
t rr
Q rr
Rgon=4 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
2,00
1,88
50
86
113
57
109
2,93
7,16
3683
1519
0,53
1,38
1,11
4
2,6
V
µA
A
ns
µC
A/µs
mWs
K/W
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,48
1,62
1,85
NP IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,008
15
150
Collector-emitter cut-off incl diode
I CES
0
650
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance chip to heatsink
R th(j-s)
0,05
700
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=4 Ω
Rgon=4 Ω
±15
350
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
170
171
29
31
235
265
54
71
1,29
1,70
2,88
3,95
ns
mWs
9240
f=1MHz
0
25
Tj=25°C
pF
276
274
Thermal grease
thickness≤50um
λ = 1 W/mK
0,99
K/W
NP Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink
VF
R th(j-s)
15
Tj=25°C
Tj=125°C
1,23
Thermal grease
thickness≤50um
λ = 1 W/mK
1,89
1,79
2,20
3,43
V
K/W
Halfbridge Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink
VF
150
Ir
1200
I RRM
t rr
Q rr
Rgon=4 Ω
±15
350
( di rf/dt )max
E rec
R th(j-s)
100
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,46
2,07
3,5
200
83
116
113
136
6,17
12,86
2952
3586
1,66
3,63
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,15
K/W
DC link Capacitor
C value
C
80
100
120
nF
Thermistor
Rated resistance
T=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486 Ω
T=100°C
T=25°C
B-value
B(25/50)
B-value
B(25/100)
T=25°C
Power dissipation constant
Vincotech NTC Reference
copyright Vincotech
21511
-4,5
Ω
+4,5
%
210
mW
T=25°C
3,5
mW/K
T=25°C
3884
K
3964
K
F
5
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
IGBT
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
FWD
450
IC (A)
IF (A)
100
5
375
80
300
60
225
Tj = Tjmax-25°C
40
150
Tj = Tjmax-25°C
20
75
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
6
1
250
2
3
V F (V)
4
µs
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
IGBT
8
8
E (mWs)
E (mWs)
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
7
7
Eon High T
Eoff High T
6
6
Eon High T
5
Eon Low T
5
Eon Low T
Eoff High T
4
4
Eoff Low T
3
3
2
2
1
1
0
Eoff Low T
0
0
50
100
150
I C (A)
200
0
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
FWD
2
E (mWs)
E (mWs)
2,5
Erec High T
2
1,5
1,5
1
1
Erec Low T
Erec High T
0,5
0,5
Erec Low T
0
0
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
7
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1,00
tdoff
t (ms)
t (ms)
1,00
IGBT
tdon
tdoff
tdon
0,10
tr
0,10
tf
tf
tr
0,01
0,01
0,00
0,00
0
50
100
150
200
I C (A)
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G ( Ω)
20
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
FWD
0,25
t rr(ms)
0,15
t rr(ms)
trr High T
trr High T
0,20
0,12
trr Low T
0,15
0,09
trr Low T
0,06
0,10
0,03
0,05
0,00
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
copyright Vincotech
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (µC)
10
Qrr (µC)
12
FWD
Qrr High T
10
8
8
6
Qrr High T
6
4
Qrr Low T
4
2
Qrr Low T
2
0
0
0
50
At
Tj =
V CE =
V GE =
R gon =
25/125
350
±15
4
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
IrrM (A)
150
IrrM (A)
150
20
IRRM High T
120
120
IRRM Low T
90
90
60
60
IRRM High T
IRRM Low T
30
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
9
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
6000
FWD
7500
dIrec/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
dIo/dt T
5000
dIrec/dt T
dI0/dt T
6000
4000
4500
3000
3000
2000
1500
1000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
100
150
0
200
I C (A)
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
20
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-1
102
10
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
0,37
K/W
IGBT thermal model values
R (K/W)
0,06
0,15
0,12
0,03
0,01
Tau (s)
2,4E+00
4,0E-01
1,0E-01
1,3E-02
8,4E-04
copyright Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10-5
10-4
At
D =
R thJH =
tp/T
1,11
10-3
10-2
10-1
100
t p (s)
101
K/W
FWD thermal model values
R (K/W)
R (K/W)
0,07
0,25
0,57
0,12
0,06
0,03
10
Tau (s)
6,8E+00
1,2E+00
2,8E-01
6,0E-02
1,3E-02
1,1E-03
R (K/W)
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
200
Ptot (W)
IC (A)
500
IGBT
400
160
300
120
200
80
100
40
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
100
IF (A)
Ptot (W)
150
125
80
100
60
75
40
50
20
25
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
°C
11
50
150
100
150
T h ( o C)
200
°C
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Gate voltage vs Gate charge
IGBT
V GE = f(Q g)
16
3
IC (A)
VGE (V)
10
IGBT
14
100mS
102
10mS
1mS
240V
100uS
12
960V
10
10
DC
1
8
6
100
4
10
-1
2
0
0
100
At
D =
Th =
V GE =
Tj =
10
1
10
2
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
copyright Vincotech
100
200
300
103
12
160
400
500
600
700
Q g (nC)
800
A
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
400
IC (A)
IC (A)
400
IGBT
350
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
140
5
FWD
IC (A)
IF (A)
180
120
150
100
120
80
90
60
60
Tj = 25°C
40
Tj = Tjmax-25°C
Tj = Tjmax-25°C
30
20
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
13
1
250
2
3
V F (V)
4
µs
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
E (mWs)
E (mWs)
7
Eoff High T
6
IGBT
7
Eon High T
6
Eon Low T
5
5
Eoff Low T
Eoff High T
4
4
Eoff Low T
3
3
Eon High T
2
2
Eon Low T
1
1
0
0
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
4
E (mWs)
5
FWD
Erec High T
Erec High T
4
3
3
Erec Low T
2
2
Erec Low T
1
1
0
0
0
50
100
150
I C (A)
0
200
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
14
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
IGBT
1
t ( µs)
t ( µs)
tdoff
tdon
tdoff
tdon
0,1
tr
0,1
tf
tf
tr
0,01
0,01
0,001
0,001
0
50
100
150
200
I C (A)
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
100
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,20
FWD
0,8
t rr(ms)
t rr(ms)
trr High T
trr High T
0,15
0,6
trr Low T
trr Low T
0,10
0,4
0,05
0,2
0,00
0,0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr (µC)
20
Qrr (µC)
20
FWD
Qrr High T
15
15
Qrr High T
10
10
Qrr Low T
Qrr Low T
5
5
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
100
150
I C (A)
0
200
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
4
25/125
350
100
±15
8
12
16
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
150
20
R gon ( Ω)
FWD
150
IrrM (A)
IrrM (A)
IRRM High T
125
125
IRRM Low T
100
100
75
75
50
50
IRRM High T
IRRM Low T
25
25
0
0
0
At
Tj =
V CE =
V GE =
R gon =
50
25/125
350
±15
4
copyright Vincotech
100
150
I C (A)
200
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
16
4
25/125
350
100
±15
8
12
16
R gon ( Ω)
20
°C
V
A
V
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
6000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
9000
direc / dt (A/ms)
dIrec/dt T
direc / dt (A/ms)
FWD
di0/dt T
5000
dIrec/dt T
dI0/dt T
7500
4000
6000
3000
4500
2000
3000
1000
1500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
40
25/125
350
±15
4
60
80
100
120
140
160
I C180
(A)
200
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
4
25/125
350
100
±15
8
12
16
20
R gon ( Ω)
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
101 10
10-5
At
D =
R thJH =
tp/T
0,99
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
1,15
R (K/W)
0,08
0,24
0,52
0,09
0,05
0,02
R (K/W)
0,05
0,13
0,59
0,22
0,10
0,07
17
100
t p (s)
101
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
6,3E+00
1,1E+00
2,8E-01
6,6E-02
1,3E-02
1,2E-03
10-2
Tau (s)
4,9E+00
8,2E-01
1,8E-01
4,7E-02
7,8E-03
9,8E-04
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Neutral Point
Neutral Point IGBT and Half Bridge FWD
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
120
IC (A)
Ptot (W)
200
IGBT
100
150
80
100
60
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
75
IF (A)
Ptot (W)
150
125
60
100
45
75
30
50
15
25
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
150
100
150
Th ( o C)
200
ºC
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
NP IGBT Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
I F = f(V F)
NP IGBT Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
60
NP IGBT Inverse Diode
ZthJC (K/W)
IF (A)
101
50
40
10
0
10
-1
10
-2
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
1
250
2
3
V F (V)
4
µs
Figure 27
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
NP IGBT Inverse Diode
10-5
10-4
At
D =
R thJH =
tp/T
10-3
3,43
10-2
100
t p (s)
101 10
K/W
Figure 28
Forward current as a
function of heatsink temperature
I F = f(T h)
NP IGBT Inverse Diode
25
Ptot (W)
IF (A)
60
10-1
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
19
50
175
100
150
Th ( o C)
200
ºC
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Half Bridge Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
I F= f(V F)
Half Bridge Inverse Diode
Figure 2
Half Bridge Inverse Diode
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
ZthJC (K/W)
IF (A)
25
20
100
15
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
Tj = Tjmax-25°C
10-1
Tj = 25°C
5
0
0
0,5
At
tp =
1
250
1,5
2
2,5
3
V F (V)
3,5
10-2
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Half Bridge Inverse Diode
10-5
10-4
At
D =
R thJH =
tp/T
10-3
2,24
10-2
100
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Half Bridge Inverse Diode
25
Ptot (W)
IF (A)
80
10-1
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
20
50
150
100
150
T h ( o C)
200
ºC
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
21
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
250
%
tdoff
%
IC
100
200
VGE 90%
IC
75
150
VGE
50
VCE
VCE 90%
100
VGE
tEoff
25
tdon
VCE
50
IC 1%
-25
-0,2
VCE 3%
IC 10%
VGE 10%
0
0
tEon
-50
0
0,2
0,4
0,6
0,8
2,9
time (us)
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
700
100
0,27
0,64
V
V
V
A
µs
µs
3
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t f
3,1
-15
15
700
100
0,13
0,28
3,2
time(us)
3,3
V
V
V
A
µs
µs
Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t r
125
250
fitted
%
%
IC
100
IC
200
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
VCE
50
25
IC10%
0
-25
0,15
tr
IC 10%
0
tf
-50
0,2
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,25
700
100
0,06
0,3
0,35
time (us)
3,1
0,4
V
A
µs
V C (100%) =
I C (100%) =
tr =
22
3,15
3,2
700
100
0,03
3,25
time(us)
3,3
V
A
µs
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
IC 1%
%
Eoff
100
Eon
100
75
75
50
50
Poff
Pon
25
25
VGE 90%
-25
-0,2
VCE 3%
VGE 10%
0
0
tEoff
tEon
-25
0
P off (100%) =
E off (100%) =
t E off =
0,2
70,11
4,19
0,64
0,4
0,6
time (us)
2,9
0,8
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
3,1
70,11
2,60
0,28
3,2
3,3
time(us)
3,4
kW
mJ
µs
Figure 7
Turn-off Switching Waveforms & definition of t rr
NP FWD
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
23
3,15
3,2
700
100
-113
0,11
3,25
3,3
time(us)
3,35
V
A
A
µs
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Switching Definitions Half Bridge
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
NP FWD
Figure 9
NP FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
%
Qrr
Id
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
3,2
3,3
100
7,16
0,22
3,4
time(us)
3,5
3,1
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
3,2
3,3
70,11
1,38
0,22
3,4
time(us)
3,5
kW
mJ
µs
Measurement circuits
Figure 10
BUCK stage switching measurement circuit
copyright Vincotech
24
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste with solder pins
without thermal paste with pressfit pins
Ordering Code
in DataMatrix as
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
M820F
M820FY
in packaging barcode as
M820-F
M820-FY
Outline
Pinout
copyright Vincotech
25
17 Apr. 2015 / Revision 2
10-FY12NMA160SH01-M820F18
10-PY12NMA160SH01-M820F18Y
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
26
17 Apr. 2015 / Revision 2