10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet flow MNPC 1 1200 V / 160 A Features flow 1 12mm housing ● mixed voltage NPC topology ● ● ● ● reactive power capability low inductance layout Split output enhanced LVRT capability Target Applications Schematic ● solar inverter ● UPS ● Active frontend Types ● 10-FY12NMA160SH01-M820F18 ● 10-PY12NMA160SH01-M820F18Y Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Halfbridge IGBT Inverse Diode Repetitive peak reverse voltage V RRM Forward current I FAV DC current Th=80°C Tc=80°C 14 19 A Repetitive peak forward current I FSM tp=10ms Tj=25°C 14 A Tj=Tjmax Th=80°C Tc=80°C 31 47 W Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CES 1200 V Halfbridge IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings Maximum Junction Temperature copyright Vincotech t SC V CC Tj=Tjmax Th=80°C Tc=80°C 117 151 A tp limited by Tjmax 480 A Tj≤150°C VCE<=VCES 480 A 260 394 W ±20 V 10 800 µs V 175 °C Tj=Tjmax Tj≤150°C VGE=15V T jmax 1 Th=80°C Tc=80°C 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 700 V NP Diode Peak Repetitive Reverse Voltage V RRM Th=80°C Tc=80°C Th=80°C Tc=80°C 53 72 63 96 IF Tj=Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 150 °C V CES 650 V 76 101 A 450 A 450 A 96 145 W ±20 V 6 360 µs V T jmax 175 °C V RRM 650 V DC forward current A W NP IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC I CRM Th=80°C Tc=80°C tp limited by Tjmax Tj≤150°C Turn off safe operating area VCE<=VCES Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V NP Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C 15 21 A 30 A 28 42 W T jmax 175 °C V RRM 1200 V Th=80°C Tc=80°C Halfbridge Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax copyright Vincotech 2 Th=80°C Tc=80°C Th=80°C Tc=80°C 31 46 A 140 A 61 92 W 150 °C 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 630 V DC link Capacitor Max.DC voltage V MAX Tc=25°C Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 8,06 mm Insulation Properties Insulation voltage copyright Vincotech V is t=2s DC voltage 3 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,97 1,65 2,7 Halfbridge IGBT Inverse Diode Forward voltage Reverse current Thermal resistance chip to heatsink VF 7 Ir 1200 R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK V GE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,25 2,24 V mA K/W Halfbridge IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,006 15 160 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 5 5,80 6,5 1 2,02 2,37 2,70 0,25 480 Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none t d(on) t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 127 129 26 30 219 274 45 59 1,52 2,60 2,69 4,19 ns mWs 9200 f=1MHz 0 25 Tj=25°C pF 600 540 ±15 960 160 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 740 nC 0,37 K/W NP Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech VF 150 Ir 700 I RRM t rr Q rr Rgon=4 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 2,00 1,88 50 86 113 57 109 2,93 7,16 3683 1519 0,53 1,38 1,11 4 2,6 V µA A ns µC A/µs mWs K/W 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,48 1,62 1,85 NP IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,008 15 150 Collector-emitter cut-off incl diode I CES 0 650 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink R th(j-s) 0,05 700 none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=4 Ω Rgon=4 Ω ±15 350 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 170 171 29 31 235 265 54 71 1,29 1,70 2,88 3,95 ns mWs 9240 f=1MHz 0 25 Tj=25°C pF 276 274 Thermal grease thickness≤50um λ = 1 W/mK 0,99 K/W NP Inverse Diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 15 Tj=25°C Tj=125°C 1,23 Thermal grease thickness≤50um λ = 1 W/mK 1,89 1,79 2,20 3,43 V K/W Halfbridge Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink VF 150 Ir 1200 I RRM t rr Q rr Rgon=4 Ω ±15 350 ( di rf/dt )max E rec R th(j-s) 100 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,46 2,07 3,5 200 83 116 113 136 6,17 12,86 2952 3586 1,66 3,63 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,15 K/W DC link Capacitor C value C 80 100 120 nF Thermistor Rated resistance T=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486 Ω T=100°C T=25°C B-value B(25/50) B-value B(25/100) T=25°C Power dissipation constant Vincotech NTC Reference copyright Vincotech 21511 -4,5 Ω +4,5 % 210 mW T=25°C 3,5 mW/K T=25°C 3884 K 3964 K F 5 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) IGBT 300 IC (A) IC (A) 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) FWD 450 IC (A) IF (A) 100 5 375 80 300 60 225 Tj = Tjmax-25°C 40 150 Tj = Tjmax-25°C 20 75 Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 6 1 250 2 3 V F (V) 4 µs 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) IGBT 8 8 E (mWs) E (mWs) Figure 5 Typical switching energy losses as a function of collector current E = f(I C) 7 7 Eon High T Eoff High T 6 6 Eon High T 5 Eon Low T 5 Eon Low T Eoff High T 4 4 Eoff Low T 3 3 2 2 1 1 0 Eoff Low T 0 0 50 100 150 I C (A) 200 0 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V IC = 100 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) FWD 2 E (mWs) E (mWs) 2,5 Erec High T 2 1,5 1,5 1 1 Erec Low T Erec High T 0,5 0,5 Erec Low T 0 0 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 100 A 7 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1,00 tdoff t (ms) t (ms) 1,00 IGBT tdon tdoff tdon 0,10 tr 0,10 tf tf tr 0,01 0,01 0,00 0,00 0 50 100 150 200 I C (A) 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G ( Ω) 20 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 100 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) FWD 0,25 t rr(ms) 0,15 t rr(ms) trr High T trr High T 0,20 0,12 trr Low T 0,15 0,09 trr Low T 0,06 0,10 0,03 0,05 0,00 0 0 At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 copyright Vincotech 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω 8 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (µC) 10 Qrr (µC) 12 FWD Qrr High T 10 8 8 6 Qrr High T 6 4 Qrr Low T 4 2 Qrr Low T 2 0 0 0 50 At Tj = V CE = V GE = R gon = 25/125 350 ±15 4 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD IrrM (A) 150 IrrM (A) 150 20 IRRM High T 120 120 IRRM Low T 90 90 60 60 IRRM High T IRRM Low T 30 30 0 0 0 At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR= IF= V GE = °C V V Ω 9 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 6000 FWD 7500 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) dIo/dt T 5000 dIrec/dt T dI0/dt T 6000 4000 4500 3000 3000 2000 1500 1000 0 0 0 At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 100 150 0 200 I C (A) At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 20 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-1 102 10 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 0,37 K/W IGBT thermal model values R (K/W) 0,06 0,15 0,12 0,03 0,01 Tau (s) 2,4E+00 4,0E-01 1,0E-01 1,3E-02 8,4E-04 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10-5 10-4 At D = R thJH = tp/T 1,11 10-3 10-2 10-1 100 t p (s) 101 K/W FWD thermal model values R (K/W) R (K/W) 0,07 0,25 0,57 0,12 0,06 0,03 10 Tau (s) 6,8E+00 1,2E+00 2,8E-01 6,0E-02 1,3E-02 1,1E-03 R (K/W) 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 200 Ptot (W) IC (A) 500 IGBT 400 160 300 120 200 80 100 40 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 100 IF (A) Ptot (W) 150 125 80 100 60 75 40 50 20 25 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Gate voltage vs Gate charge IGBT V GE = f(Q g) 16 3 IC (A) VGE (V) 10 IGBT 14 100mS 102 10mS 1mS 240V 100uS 12 960V 10 10 DC 1 8 6 100 4 10 -1 2 0 0 100 At D = Th = V GE = Tj = 10 1 10 2 V CE (V) At IC = single pulse 80 ºC ±15 V T jmax ºC copyright Vincotech 100 200 300 103 12 160 400 500 600 700 Q g (nC) 800 A 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 400 IC (A) IC (A) 400 IGBT 350 350 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 140 5 FWD IC (A) IF (A) 180 120 150 100 120 80 90 60 60 Tj = 25°C 40 Tj = Tjmax-25°C Tj = Tjmax-25°C 30 20 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 13 1 250 2 3 V F (V) 4 µs 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) E (mWs) E (mWs) 7 Eoff High T 6 IGBT 7 Eon High T 6 Eon Low T 5 5 Eoff Low T Eoff High T 4 4 Eoff Low T 3 3 Eon High T 2 2 Eon Low T 1 1 0 0 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 100 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 4 E (mWs) 5 FWD Erec High T Erec High T 4 3 3 Erec Low T 2 2 Erec Low T 1 1 0 0 0 50 100 150 I C (A) 0 200 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 100 A 14 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 IGBT 1 t ( µs) t ( µs) tdoff tdon tdoff tdon 0,1 tr 0,1 tf tf tr 0,01 0,01 0,001 0,001 0 50 100 150 200 I C (A) 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 100 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,20 FWD 0,8 t rr(ms) t rr(ms) trr High T trr High T 0,15 0,6 trr Low T trr Low T 0,10 0,4 0,05 0,2 0,00 0,0 0 At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR= IF= V GE = °C V V Ω 15 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr (µC) 20 Qrr (µC) 20 FWD Qrr High T 15 15 Qrr High T 10 10 Qrr Low T Qrr Low T 5 5 0 0 0 At At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 100 150 I C (A) 0 200 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 4 25/125 350 100 ±15 8 12 16 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 150 20 R gon ( Ω) FWD 150 IrrM (A) IrrM (A) IRRM High T 125 125 IRRM Low T 100 100 75 75 50 50 IRRM High T IRRM Low T 25 25 0 0 0 At Tj = V CE = V GE = R gon = 50 25/125 350 ±15 4 copyright Vincotech 100 150 I C (A) 200 0 At Tj = VR= IF= V GE = °C V V Ω 16 4 25/125 350 100 ±15 8 12 16 R gon ( Ω) 20 °C V A V 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) 6000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 9000 direc / dt (A/ms) dIrec/dt T direc / dt (A/ms) FWD di0/dt T 5000 dIrec/dt T dI0/dt T 7500 4000 6000 3000 4500 2000 3000 1000 1500 0 0 0 At Tj = V CE = V GE = R gon = 20 40 25/125 350 ±15 4 60 80 100 120 140 160 I C180 (A) 200 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 4 25/125 350 100 ±15 8 12 16 20 R gon ( Ω) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 101 10 10-5 At D = R thJH = tp/T 0,99 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 1,15 R (K/W) 0,08 0,24 0,52 0,09 0,05 0,02 R (K/W) 0,05 0,13 0,59 0,22 0,10 0,07 17 100 t p (s) 101 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 6,3E+00 1,1E+00 2,8E-01 6,6E-02 1,3E-02 1,2E-03 10-2 Tau (s) 4,9E+00 8,2E-01 1,8E-01 4,7E-02 7,8E-03 9,8E-04 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Neutral Point Neutral Point IGBT and Half Bridge FWD Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 120 IC (A) Ptot (W) 200 IGBT 100 150 80 100 60 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 75 IF (A) Ptot (W) 150 125 60 100 45 75 30 50 15 25 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 150 100 150 Th ( o C) 200 ºC 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet NP IGBT Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage I F = f(V F) NP IGBT Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 60 NP IGBT Inverse Diode ZthJC (K/W) IF (A) 101 50 40 10 0 10 -1 10 -2 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 1 250 2 3 V F (V) 4 µs Figure 27 Power dissipation as a function of heatsink temperature P tot = f(T h) NP IGBT Inverse Diode 10-5 10-4 At D = R thJH = tp/T 10-3 3,43 10-2 100 t p (s) 101 10 K/W Figure 28 Forward current as a function of heatsink temperature I F = f(T h) NP IGBT Inverse Diode 25 Ptot (W) IF (A) 60 10-1 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 19 50 175 100 150 Th ( o C) 200 ºC 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Half Bridge Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Half Bridge Inverse Diode Figure 2 Half Bridge Inverse Diode Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 ZthJC (K/W) IF (A) 25 20 100 15 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 Tj = Tjmax-25°C 10-1 Tj = 25°C 5 0 0 0,5 At tp = 1 250 1,5 2 2,5 3 V F (V) 3,5 10-2 µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Half Bridge Inverse Diode 10-5 10-4 At D = R thJH = tp/T 10-3 2,24 10-2 100 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Half Bridge Inverse Diode 25 Ptot (W) IF (A) 80 10-1 20 60 15 40 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 20 50 150 100 150 T h ( o C) 200 ºC 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 21 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 Half Bridge IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Half Bridge IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 250 % tdoff % IC 100 200 VGE 90% IC 75 150 VGE 50 VCE VCE 90% 100 VGE tEoff 25 tdon VCE 50 IC 1% -25 -0,2 VCE 3% IC 10% VGE 10% 0 0 tEon -50 0 0,2 0,4 0,6 0,8 2,9 time (us) V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 700 100 0,27 0,64 V V V A µs µs 3 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Half Bridge IGBT Turn-off Switching Waveforms & definition of t f 3,1 -15 15 700 100 0,13 0,28 3,2 time(us) 3,3 V V V A µs µs Figure 4 Half Bridge IGBT Turn-on Switching Waveforms & definition of t r 125 250 fitted % % IC 100 IC 200 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% VCE 50 25 IC10% 0 -25 0,15 tr IC 10% 0 tf -50 0,2 V C (100%) = I C (100%) = tf = copyright Vincotech 0,25 700 100 0,06 0,3 0,35 time (us) 3,1 0,4 V A µs V C (100%) = I C (100%) = tr = 22 3,15 3,2 700 100 0,03 3,25 time(us) 3,3 V A µs 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge Figure 5 Half Bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % IC 1% % Eoff 100 Eon 100 75 75 50 50 Poff Pon 25 25 VGE 90% -25 -0,2 VCE 3% VGE 10% 0 0 tEoff tEon -25 0 P off (100%) = E off (100%) = t E off = 0,2 70,11 4,19 0,64 0,4 0,6 time (us) 2,9 0,8 kW mJ µs 3 P on (100%) = E on (100%) = t E on = 3,1 70,11 2,60 0,28 3,2 3,3 time(us) 3,4 kW mJ µs Figure 7 Turn-off Switching Waveforms & definition of t rr NP FWD 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 23 3,15 3,2 700 100 -113 0,11 3,25 3,3 time(us) 3,35 V A A µs 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Switching Definitions Half Bridge Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) NP FWD Figure 9 NP FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % % Qrr Id 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 3,1 I d (100%) = Q rr (100%) = t Q rr = 3,2 3,3 100 7,16 0,22 3,4 time(us) 3,5 3,1 A µC µs P rec (100%) = E rec (100%) = t E rec = 3,2 3,3 70,11 1,38 0,22 3,4 time(us) 3,5 kW mJ µs Measurement circuits Figure 10 BUCK stage switching measurement circuit copyright Vincotech 24 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste with solder pins without thermal paste with pressfit pins Ordering Code in DataMatrix as 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y M820F M820FY in packaging barcode as M820-F M820-FY Outline Pinout copyright Vincotech 25 17 Apr. 2015 / Revision 2 10-FY12NMA160SH01-M820F18 10-PY12NMA160SH01-M820F18Y datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 26 17 Apr. 2015 / Revision 2