10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01

10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
flowMNPC 0
1200 V / 80 A
Features
flow0 12mm housing
● mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ12NMA080SH01-M260F
● 10-PZ12NMA080SH01-M260FY
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
69
88
A
240
A
158
239
W
±20
V
10
800
µs
V
160
A
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
T j=Tjmax
T h=80°C
T c=80°C
t p limited by T jmax
T j=Tjmax
T h=80°C
T c=80°C
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Turn off safe operating area (RBSOA)
I cmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
600
V
47
62
A
600
A
1490
A2s
120
A
T j≤150°C
V GE=15V
V CE max = 1200V
T vj max≤ 150°C
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
Repetitive peak forward current
IF
T h=80°C
T c=80°C
t p=8,3ms , sin 180°
T c=25°C
I FSM
I 2t
I FRM
Power dissipation
P tot
Maximum Junction Temperature
T jmax
copyright Vincotech
T j=Tjmax
Square wave, 20 kHz
T j=Tjmax
T h=80°C
58
T c=80°C
88
175
1
W
°C
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
52
68
A
225
A
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
V CE
IC
T h=80°C
T c=80°C
T j=Tjmax
Repetitive peak collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
T h=80°C
T c=80°C
T j≤150°C
V GE=15V
V CE max = 600V
72
109
W
±20
V
6
360
µs
V
150
A
Turn off safe operating area (RBSOA)
I cmax
Maximum Junction Temperature
T jmax
175
°C
V RRM
1200
V
47
62
A
335
A
560
A2s
100
A
79
119
W
T vj max≤ 150°C
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
IF
T j=Tjmax
T h=80°C
T c=80°C
t p=10ms , sin 180°
T j=125°C
I FSM
I 2t
Repetitive peak forward current
I FRM
t p limited by T jmax
Power dissipation
P tot
T j=Tjmax
Maximum Junction Temperature
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
8,95
mm
T h=80°C
T c=80°C
Thermal Properties
Insulation Properties
Insulation voltage
V is
t=2s
DC voltage
Creepage distance
Clearance
copyright Vincotech
2
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,2
5,8
6,4
1,7
1,99
2,33
2,5
Half Bridge IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,003
15
80
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
240
Rgoff=4 Ω
Rgon=4 Ω
350
±15
56
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
t d(off)
0,02
V
77
78
12
16
173
225
49
67
0,46
0,96
1,34
2,24
ns
mWs
4660
f=1MHz
0
Tj=25°C
25
300
pF
260
±15
960
80
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
370
nC
0,60
K/W
Neutral Point FWD
Diode forward voltage
VF
Peak reverse recovery current
Ir
Reverse recovery time
t rr
Reverse recovered charge
60
600
Q rr
Rgon=4 Ω
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
±15
350
( di rf/dt )max
E rec
R th(j-s)
Thermal grease
thickness≤50um
λ = 1 W/mK
56
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,27
1,68
64
83
29
74
1
3
8651
3565
0,18
0,53
1,63
3
2,8
V
A
ns
µC
A/µs
mWs
K/W
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V]
I C [A] or
V GE [V] or or
I [A] or
V CE [V] or F
V GS [V]
I D [A]
V DS [V]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,45
1,59
1,85
Neutral Point IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
VCE=VGE
V CEsat
0,0012
15
75
Collector-emitter cut-off incl diode
I CES
0
600
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink
R th(j-s)
15
600
Rgoff=4 Ω
Rgon=4 Ω
350
±15
56
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
t d(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
84
85
11
12
177
205
87
105
0,53
0,75
1,86
2,50
ns
mWs
4620
f=1MHz
0
25
pF
288
Tj=25°C
137
±15
480
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,32
K/W
Half Bridge FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovery energy
Thermal resistance chip to heatsink
VF
50
Ir
1200
I RRM
t rr
Q rr
±15
350
( di rf/dt )max
E rec
R th(j-s)
56
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,35
1,73
1,70
2,1
10
106
118
102
148
5,32
8,22
6904
4951
1,55
2,42
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,21
K/W
Rated resistance
Rated resistance
Tj=25°C
R
Deviation of R100
Δ R/R
Power dissipation
P
R100=1486Ω
Tj=100°C
Tj=25°C
Power dissipation constant
Ω
22000
11
-12
%
200
mW
Tj=25°C
2
mW/K
B-value
B (25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B (25/100) Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
B
4
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
350
IC (A)
IC (A)
350
IGBT
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
V CE (V)
5
0
At
tp =
250
µs
Tj =
25
°C
V GE from 7 V to 17 V in steps of 1 V
1
2
3
4
V CE (V)
5
At
tp =
250
µs
Tj =
125
°C
V GE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
90
FWD
IF (A)
IC (A)
250
75
200
60
150
45
100
30
Tj = Tjmax-25°C
50
Tj = Tjmax-25°C
15
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
5
1
250
2
3
V F (V)
4
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
IGBT
2,5
E (mWs)
E (mWs)
4
Eoff High T
Eoff High T
Eon High T
2,0
3
1,5
Eoff Low T
Eoff Low T
2
Eon High T
1,0
Eon Low T
1
Eon Low T
0,5
0
0,0
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
°C
25/125
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
0,8
FWD
0,8
E (mWs)
E (mWs)
Erec High T
0,6
0,6
0,4
0,4
Erec High T
Erec Low T
0,2
0,2
0,0
0,0
Erec Low T
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
5
10
15
R G ( Ω)
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
6
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
IGBT
1,00
t (µ s)
t (µ s)
1,00
tdoff
tdoff
tdon
tdon
0,10
0,10
tf
tf
tr
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
I C (A)
0
100
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
20
R G ( Ω)
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,10
FWD
0,15
t rr(µ s)
t rr(µ s)
trr High T
0,08
0,12
0,06
0,09
0,04
trr High T
0,06
trr Low T
0,02
0,03
0,00
trr Low T
0,00
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
4
FWD
4
Qrr (µ C)
Qrr (µ C)
Qrr High T
3
3
Qrr High T
2
2
Qrr Low T
1
1
Qrr Low T
0
0
0
At
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
40
60
80
0
100
I C (A)
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
5
25/125
350
56
±15
10
15
R gon ( Ω )
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
FWD
100
IrrM (A)
IrrM (A)
100
IRRM High T
80
80
IRRM Low T
60
60
IRRM High T
40
40
IRRM Low T
20
20
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
dIrec/dt T
di0/dt T
10000
FWD
14000
dIrec/dt T
dI0/dt T
12000
10000
8000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
40
60
80
0
100
I C (A)
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
25/125
350
56
±15
10
15
°C
V
A
V
FWD
1
ZthJH (K/W)
ZthJH (K/W)
10
20
R gon ( Ω)
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
101
10
5
100
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
At
D=
R thJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-5
1
1010
At
D=
R thJH =
tp / T
0,60
K/W
10-4
10-3
R (K/W)
0,10
0,23
0,21
0,05
0,01
R (K/W)
0,07
0,17
0,65
0,51
0,13
0,11
9
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,63
IGBT thermal model values
Tau (s)
1,8E+00
2,9E-01
1,0E-01
1,4E-02
1,7E-03
10-2
Tau (s)
5,7E+00
1,2E+00
2,0E-01
6,6E-02
9,1E-03
1,5E-03
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
300
IGBT
IC (A)
Ptot (W)
120
250
100
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
°C
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
120
200
FWD
IF (A)
Ptot (W)
80
100
60
80
60
40
40
20
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Half Bridge
Half Bridge IGBT and Neutral Point FWD
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Gate voltage vs Gate charge
10
IGBT
V GE = f(Q g)
16
VGE (V)
3
IC (A)
10
IGBT
14
100uS
2
240V
960V
12
1mS
100mS
10
10mS
10
1
DC
8
100
6
4
10-1
2
0
100
101
At
D=
Th =
0
V CE (V)
103
102
At
IC =
single pulse
80
ºC
±15
V
T jmax
ºC
V GE =
Tj =
Figure 27
Reverse bias safe operating area
100
80
200
300
Q g (nC)
400
A
IGBT
I C = f(V CE)
IC (A)
180
ICMAX
160
Ic MODULE
120
Ic CHIP
140
100
VCEMAX
80
60
40
20
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25 ºC
DC link minus =DC link plus
Switching mode :
copyright Vincotech
3 level switching
11
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 1
Typical output characteristics
I C = f(V CE)
IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
350
IC (A)
IC (A)
350
IGBT
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
1
2
3
4
V CE (V)
5
0
At
tp =
250
µs
Tj =
25
°C
V GE from 7 V to 17 V in steps of 1 V
1
2
3
4
V CE (V)
5
At
tp =
250
µs
Tj =
125
°C
V GE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
100
FWD
IF (A)
IC (A)
250
80
200
60
150
Tj = 25°C
Tj = Tjmax-25°C
40
100
Tj = Tjmax-25°C
20
50
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
12
1
250
2
3
V F (V)
4
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
4
IGBT
E (mWs)
E (mWs)
4
Eoff High T
3
3
Eon High T
Eoff Low T
Eoff High T
Eon Low T
2
2
Eoff Low T
Eon High T
1
1
Eon Low T
0
0
0
20
40
60
80
0
100
I C (A)
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I c)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
FWD
4
E (mWs)
E (mWs)
4
Erec High T
3
3
Erec High T
2
2
Erec Low T
Erec Low T
1
1
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
copyright Vincotech
5
10
15
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
13
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
IGBT
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
0,01
0,01
tr
0,001
0,001
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
125
°C
V CE =
350
V
V GE =
±15
V
IC =
56
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I c)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,5
t rr(µ s)
t rr(µ s)
0,20
FWD
trr High T
0,4
trr Low T
0,3
trr High T
0,15
trr Low T
0,10
0,2
0,05
0,1
0,00
0,0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
14
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
FWD
10
Qrr (µ C)
Qrr (µ C)
12
Qrr High T
Qrr High T
10
8
8
6
Qrr Low T
Qrr Low T
6
4
4
2
2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
40
60
80
100
I C (A)
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
FWD
4
8
25/125
350
56
±15
12
16
R gon ( Ω )
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
150
20
FWD
150
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
120
120
90
90
60
60
IRRM High T
IRRM Low T
30
30
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
15
5
25/125
350
56
±15
10
15
R gon ( Ω)
20
°C
V
A
V
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
12000
dIrec/dt T
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
10000
FWD
8000
dIrec/dt T
dI0/dt T
10000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
350
±15
4
40
60
80
100
I C (A)
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
IGBT
5
25/125
350
56
±15
10
15
R gon ( Ω)
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
20
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10-5
101 10
At
D=
R thJH =
tp / T
1,32
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
R (K/W)
0,06
0,17
0,35
0,60
0,13
R (K/W)
0,03
0,11
0,34
0,54
0,14
0,05
16
100
t p (s)
101 10
K/W
FWD thermal model values
copyright Vincotech
10-1
tp / T
1,21
IGBT thermal model values
Tau (s)
6,4E+00
1,3E+00
2,5E-01
8,5E-02
8,9E-03
10-2
Tau (s)
6,2E+00
1,1E+00
2,0E-01
6,8E-02
1,2E-02
2,8E-03
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
I C = f(T h)
IGBT
80
IC (A)
Ptot (W)
150
120
60
90
40
60
20
30
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
FWD
50
175
15
100
150
T h ( o C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
FWD
80
IF (A)
Ptot (W)
150
120
60
90
40
60
20
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Neutral point
Neutral Point IGBT and Half Bridge FWD
Figure 25
Safe operating area as a function
of collector-emitter voltage
I C = f(V CE)
Figure 26
Gate voltage vs Gate charge
16
VGE (V)
14
100uS
10
IGBT
V GE = f(Q g)
3
IC (A)
10
IGBT
120V
2
12
480V
1mS
100mS
DC
10
10mS
10
1
8
100
6
4
10
-1
2
0
100
At
D=
Th =
V GE =
Tj =
0
102
101
103
50
100
150
V CE (V)
At
IC =
single pulse
80
ºC
15
V
T jmax
ºC
Figure 27
Reverse bias safe operating area
75
200
250
300
350
400
450
500
Q g (nC)
A
IGBT
I C = f(V CE)
IC (A)
180
160
ICMAX
120
Ic CHIP
Ic MODULE
140
100
VCEMAX
80
60
40
20
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
T jmax-25 ºC
DC link minus =DC link plus
Switching mode :
copyright Vincotech
3 level switching
18
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Neutral point IGBT
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
Neutral point IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Neutral point IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
350
tdoff
%
%
VCE
300
100
IC
VGE 90%
VCE 90%
250
IC
200
75
150
50
tEoff
VCE
100
25
VGE
tdon
50
IC 1%
0
VGE
-25
-0,2
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
350
56
0,21
0,58
0,4
0,6
time (us)
-50
2,95
0,8
3
VCE 3%
IC 10%
VGE 10%
0
tEon
3,05
3,1
3,15
3,2
3,25
time(us)
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Neutral point IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
350
56
0,09
0,16
V
V
V
A
µs
µs
Figure 4
Neutral point IGBT
Turn-on Switching Waveforms & definition of t r
350
125
%
VCE
fitted
%
IC
300
100
IC
IC 90%
250
75
200
IC 60%
150
50
IC 40%
VCE
100
25
IC 90%
tr
50
IC10%
0
tf
0
-50
3,075
-25
0
0,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
350
56
0,11
0,3
time (us)
0,4
IC
10%
3,1
3,125
3,15
3,175
time(us)
V
A
µs
V C (100%) =
I C (100%) =
tr =
20
350
56
0,01
V
A
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Neutral point IGBT
Figure 5
Neutral point IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
IC 1%
Poff
Pon
%
Eon
Eoff
100
100
75
75
50
50
25
25
VGE
0
0
-25
-0,2
VCE 3%
VGE 10%
90%
tEon
tEoff
-25
0
P off (100%) =
E off (100%) =
t E off =
0,2
19,56
2,50
0,58
0,4
0,6
time (us)
2,9
0,8
3
3,1
3,2
3,3
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Neutral point IGBT
Gate voltage vs Gate charge (measured)
19,56
0,75
0,16
kW
mJ
µs
Figure 8
Neutral point FWD
Turn-off Switching Waveforms & definition of t rr
20
VGE (V)
150
%
15
100
10
50
5
0
0
-50
-5
-100
-10
-150
-15
-200
Id
trr
fitted
IRRM 10%
Vd
IRRM 90%
-20
-200
0
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
200
-15
15
350
56
775,97
400
600
Qg (nC)
IRRM 100%
-250
3,05
800
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
21
3,1
3,15
350
56
-118
0,15
3,2
3,25
time(us)
3,3
V
A
A
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Neutral point IGBT
Figure 9
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Neutral point IGBT
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
%
Id
350
%
Qrr
100
Prec
300
tQrr
50
250
0
200
-50
150
-100
100
-150
50
-200
0
-250
Erec
tErec
-50
3
3,3
I d (100%) =
Q rr (100%) =
t Q rr =
3,6
56
8,22
1,00
3,9
time(us)
4,2
3
A
µC
µs
3,3
P rec (100%) =
E rec (100%) =
t E rec =
3,6
19,56
2,42
1,00
3,9
time(us)
4,2
kW
mJ
µs
Measurement circuits
Figure 11
BOOST stage switching measurement circuit
copyright Vincotech
22
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Half Bridge IGBT
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
250
125
%
IC
%
tdoff
VCE
200
100
VGE 90%
VCE 90%
150
75
IC
VCE
100
50
tEoff
VGE
tdon
50
25
IC 1%
VGE
0
-25
-0,2
VCE 3%
IC 10%
VGE 10%
0
tEon
-50
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
-15
15
700
56
0,23
0,60
0,4
0,6
time (us)
2,9
0,8
V
V
V
A
µs
µs
3
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t f
3,1
-15
15
700
56
0,08
0,21
3,2
time(us)
3,3
V
V
V
A
µs
µs
Figure 4
Half Bridge IGBT
Turn-on Switching Waveforms & definition of tr
250
125
fitted
%
IC
%
VCE
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
tr
50
25
IC10%
0
IC
10%
0
tf
-50
-25
0
0,1
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
0,2
700
56
0,07
0,3
time (us)
3
0,4
V
A
µs
V C (100%) =
I C (100%) =
tr =
23
3,05
3,1
700
56
0,02
3,15
time(us)
3,2
V
A
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Half Bridge IGBT
Figure 5
Half Bridge IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Eon
125
125
%
Eon
Eoff
Poff
100
100
75
75
50
50
25
25
VGE
Pon
%
IC 1%
VCE 3%
VGE 10%
90%
0
0
tEon
tEoff
-25
-25
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
39,44
2,24
0,60
0,4
0,6
2,9
time (us) 0,8
kW
mJ
µs
3
P on (100%) =
E on (100%) =
t E on =
Figure 7
Gate voltage vs Gate charge (measured)
Half Bridge IGBT
3,1
39,44
0,96
0,21
3,2
time(us)
3,3
kW
mJ
µs
Figure 8
Half Bridge FWD
Turn-off Switching Waveforms & definition of t rr
150
VGE (V)
20
%
Id
15
100
10
trr
50
5
0
fitted
0
IRRM 10%
-5
Vd
-50
-10
-100
-15
-20
-100
IRRM 90%
IRRM 100%
-150
0
100
200
300
400
500
600
3
3,05
3,1
3,15
Qg (nC)
V GE off =
V GE on =
V C (100%) =
I C (100%) =
Qg =
copyright Vincotech
-15
15
700
56
596,49
V
V
V
A
nC
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
24
700
56
-83
0,07
3,2
time(us)
3,25
V
A
A
µs
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Switching Definitions Half Bridge IGBT
Figure 9
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Half Bridge IGBT
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
125
%
Qrr
Id
Prec
%
100
Erec
100
tQrr
50
75
0
50
-50
25
-100
0
-150
3,05
3,1
I d (100%) =
Q rr (100%) =
t Q rr =
3,15
56
2,74
0,16
3,2
3,25
time(us)
-25
3,05
3,3
A
µC
µs
tErec
3,1
P rec (100%) =
E rec (100%) =
t E rec =
3,15
3,2
39,44
0,53
0,16
kW
mJ
µs
3,25
3,3
time(us)
3,35
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright Vincotech
25
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing
Ordering Code
in DataMatrix as
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
M260F
M260FY
in packaging barcode as
M260F
M260FY
Outline
Pinout
copyright Vincotech
26
13 May. 2015 / Revision 10
10-FZ12NMA080SH01-M260F
10-PZ12NMA080SH01-M260FY
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
27
13 May. 2015 / Revision 10