10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet flowMNPC 0 1200 V / 80 A Features flow0 12mm housing ● mixed voltage component topology ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ12NMA080SH01-M260F ● 10-PZ12NMA080SH01-M260FY Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 69 88 A 240 A 158 239 W ±20 V 10 800 µs V 160 A Half Bridge IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM T j=Tjmax T h=80°C T c=80°C t p limited by T jmax T j=Tjmax T h=80°C T c=80°C Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Turn off safe operating area (RBSOA) I cmax Maximum Junction Temperature T jmax 175 °C V RRM 600 V 47 62 A 600 A 1490 A2s 120 A T j≤150°C V GE=15V V CE max = 1200V T vj max≤ 150°C Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value Repetitive peak forward current IF T h=80°C T c=80°C t p=8,3ms , sin 180° T c=25°C I FSM I 2t I FRM Power dissipation P tot Maximum Junction Temperature T jmax copyright Vincotech T j=Tjmax Square wave, 20 kHz T j=Tjmax T h=80°C 58 T c=80°C 88 175 1 W °C 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 52 68 A 225 A Neutral Point IGBT Collector-emitter break down voltage DC collector current V CE IC T h=80°C T c=80°C T j=Tjmax Repetitive peak collector current I CRM t p limited by T jmax Power dissipation P tot T j=Tjmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC T h=80°C T c=80°C T j≤150°C V GE=15V V CE max = 600V 72 109 W ±20 V 6 360 µs V 150 A Turn off safe operating area (RBSOA) I cmax Maximum Junction Temperature T jmax 175 °C V RRM 1200 V 47 62 A 335 A 560 A2s 100 A 79 119 W T vj max≤ 150°C Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value IF T j=Tjmax T h=80°C T c=80°C t p=10ms , sin 180° T j=125°C I FSM I 2t Repetitive peak forward current I FRM t p limited by T jmax Power dissipation P tot T j=Tjmax Maximum Junction Temperature T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 8,95 mm T h=80°C T c=80°C Thermal Properties Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,2 5,8 6,4 1,7 1,99 2,33 2,5 Half Bridge IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,003 15 80 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 240 Rgoff=4 Ω Rgon=4 Ω 350 ±15 56 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr t d(off) 0,02 V 77 78 12 16 173 225 49 67 0,46 0,96 1,34 2,24 ns mWs 4660 f=1MHz 0 Tj=25°C 25 300 pF 260 ±15 960 80 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 370 nC 0,60 K/W Neutral Point FWD Diode forward voltage VF Peak reverse recovery current Ir Reverse recovery time t rr Reverse recovered charge 60 600 Q rr Rgon=4 Ω Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech ±15 350 ( di rf/dt )max E rec R th(j-s) Thermal grease thickness≤50um λ = 1 W/mK 56 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,27 1,68 64 83 29 74 1 3 8651 3565 0,18 0,53 1,63 3 2,8 V A ns µC A/µs mWs K/W 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] I C [A] or V GE [V] or or I [A] or V CE [V] or F V GS [V] I D [A] V DS [V] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,45 1,59 1,85 Neutral Point IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) VCE=VGE V CEsat 0,0012 15 75 Collector-emitter cut-off incl diode I CES 0 600 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) 15 600 Rgoff=4 Ω Rgon=4 Ω 350 ±15 56 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr t d(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 84 85 11 12 177 205 87 105 0,53 0,75 1,86 2,50 ns mWs 4620 f=1MHz 0 25 pF 288 Tj=25°C 137 ±15 480 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,32 K/W Half Bridge FWD Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink VF 50 Ir 1200 I RRM t rr Q rr ±15 350 ( di rf/dt )max E rec R th(j-s) 56 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,35 1,73 1,70 2,1 10 106 118 102 148 5,32 8,22 6904 4951 1,55 2,42 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,21 K/W Rated resistance Rated resistance Tj=25°C R Deviation of R100 Δ R/R Power dissipation P R100=1486Ω Tj=100°C Tj=25°C Power dissipation constant Ω 22000 11 -12 % 200 mW Tj=25°C 2 mW/K B-value B (25/50) Tol. ±3% Tj=25°C 3950 K B-value B (25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright Vincotech B 4 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 350 IC (A) IC (A) 350 IGBT 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 4 V CE (V) 5 0 At tp = 250 µs Tj = 25 °C V GE from 7 V to 17 V in steps of 1 V 1 2 3 4 V CE (V) 5 At tp = 250 µs Tj = 125 °C V GE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 90 FWD IF (A) IC (A) 250 75 200 60 150 45 100 30 Tj = Tjmax-25°C 50 Tj = Tjmax-25°C 15 Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 5 1 250 2 3 V F (V) 4 µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) IGBT 2,5 E (mWs) E (mWs) 4 Eoff High T Eoff High T Eon High T 2,0 3 1,5 Eoff Low T Eoff Low T 2 Eon High T 1,0 Eon Low T 1 Eon Low T 0,5 0 0,0 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G ( Ω) 20 With an inductive load at Tj = °C 25/125 V CE = 350 V V GE = ±15 V IC = 56 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 0,8 FWD 0,8 E (mWs) E (mWs) Erec High T 0,6 0,6 0,4 0,4 Erec High T Erec Low T 0,2 0,2 0,0 0,0 Erec Low T 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 5 10 15 R G ( Ω) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A 6 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) IGBT 1,00 t (µ s) t (µ s) 1,00 tdoff tdoff tdon tdon 0,10 0,10 tf tf tr tr 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 20 R G ( Ω) With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,10 FWD 0,15 t rr(µ s) t rr(µ s) trr High T 0,08 0,12 0,06 0,09 0,04 trr High T 0,06 trr Low T 0,02 0,03 0,00 trr Low T 0,00 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 7 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 4 FWD 4 Qrr (µ C) Qrr (µ C) Qrr High T 3 3 Qrr High T 2 2 Qrr Low T 1 1 Qrr Low T 0 0 0 At At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 40 60 80 0 100 I C (A) At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 5 25/125 350 56 ±15 10 15 R gon ( Ω ) 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) FWD 100 IrrM (A) IrrM (A) 100 IRRM High T 80 80 IRRM Low T 60 60 IRRM High T 40 40 IRRM Low T 20 20 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 8 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) dIrec/dt T di0/dt T 10000 FWD 14000 dIrec/dt T dI0/dt T 12000 10000 8000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 40 60 80 0 100 I C (A) At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 25/125 350 56 ±15 10 15 °C V A V FWD 1 ZthJH (K/W) ZthJH (K/W) 10 20 R gon ( Ω) Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 10 5 100 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 At D= R thJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-5 1 1010 At D= R thJH = tp / T 0,60 K/W 10-4 10-3 R (K/W) 0,10 0,23 0,21 0,05 0,01 R (K/W) 0,07 0,17 0,65 0,51 0,13 0,11 9 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,63 IGBT thermal model values Tau (s) 1,8E+00 2,9E-01 1,0E-01 1,4E-02 1,7E-03 10-2 Tau (s) 5,7E+00 1,2E+00 2,0E-01 6,6E-02 9,1E-03 1,5E-03 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) 300 IGBT IC (A) Ptot (W) 120 250 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) °C V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) 120 200 FWD IF (A) Ptot (W) 80 100 60 80 60 40 40 20 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Half Bridge Half Bridge IGBT and Neutral Point FWD Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Gate voltage vs Gate charge 10 IGBT V GE = f(Q g) 16 VGE (V) 3 IC (A) 10 IGBT 14 100uS 2 240V 960V 12 1mS 100mS 10 10mS 10 1 DC 8 100 6 4 10-1 2 0 100 101 At D= Th = 0 V CE (V) 103 102 At IC = single pulse 80 ºC ±15 V T jmax ºC V GE = Tj = Figure 27 Reverse bias safe operating area 100 80 200 300 Q g (nC) 400 A IGBT I C = f(V CE) IC (A) 180 ICMAX 160 Ic MODULE 120 Ic CHIP 140 100 VCEMAX 80 60 40 20 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 ºC DC link minus =DC link plus Switching mode : copyright Vincotech 3 level switching 11 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 1 Typical output characteristics I C = f(V CE) IGBT Figure 2 Typical output characteristics I C = f(V CE) 350 IC (A) IC (A) 350 IGBT 300 300 250 250 200 200 150 150 100 100 50 50 0 0 0 1 2 3 4 V CE (V) 5 0 At tp = 250 µs Tj = 25 °C V GE from 7 V to 17 V in steps of 1 V 1 2 3 4 V CE (V) 5 At tp = 250 µs Tj = 125 °C V GE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) IGBT Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 100 FWD IF (A) IC (A) 250 80 200 60 150 Tj = 25°C Tj = Tjmax-25°C 40 100 Tj = Tjmax-25°C 20 50 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 12 1 250 2 3 V F (V) 4 µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 5 Typical switching energy losses as a function of collector current E = f(I C) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 4 IGBT E (mWs) E (mWs) 4 Eoff High T 3 3 Eon High T Eoff Low T Eoff High T Eon Low T 2 2 Eoff Low T Eon High T 1 1 Eon Low T 0 0 0 20 40 60 80 0 100 I C (A) With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I c) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) FWD 4 E (mWs) E (mWs) 4 Erec High T 3 3 Erec High T 2 2 Erec Low T Erec Low T 1 1 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω copyright Vincotech 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V CE = 350 V V GE = ±15 V IC = 56 A 13 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 9 Typical switching times as a function of collector current t = f(I C) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 IGBT t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 20 40 60 80 100 I C (A) 0 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 125 °C V CE = 350 V V GE = ±15 V IC = 56 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,5 t rr(µ s) t rr(µ s) 0,20 FWD trr High T 0,4 trr Low T 0,3 trr High T 0,15 trr Low T 0,10 0,2 0,05 0,1 0,00 0,0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 14 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) FWD 10 Qrr (µ C) Qrr (µ C) 12 Qrr High T Qrr High T 10 8 8 6 Qrr Low T Qrr Low T 6 4 4 2 2 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 40 60 80 100 I C (A) 0 At Tj = VR= IF= V GE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) FWD 4 8 25/125 350 56 ±15 12 16 R gon ( Ω ) °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 150 20 FWD 150 IrrM (A) IrrM (A) IRRM High T IRRM Low T 120 120 90 90 60 60 IRRM High T IRRM Low T 30 30 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR= IF= V GE = °C V V Ω 15 5 25/125 350 56 ±15 10 15 R gon ( Ω) 20 °C V A V 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 12000 dIrec/dt T dIo/dt T direc / dt (A/ms) direc / dt (A/ms) 10000 FWD 8000 dIrec/dt T dI0/dt T 10000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 350 ±15 4 40 60 80 100 I C (A) 0 At Tj = VR= IF= V GE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) IGBT 5 25/125 350 56 ±15 10 15 R gon ( Ω) °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) FWD 101 ZthJH (K/W) ZthJH (K/W) 101 20 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 10-5 101 10 At D= R thJH = tp / T 1,32 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 10-4 10-3 R (K/W) 0,06 0,17 0,35 0,60 0,13 R (K/W) 0,03 0,11 0,34 0,54 0,14 0,05 16 100 t p (s) 101 10 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,21 IGBT thermal model values Tau (s) 6,4E+00 1,3E+00 2,5E-01 8,5E-02 8,9E-03 10-2 Tau (s) 6,2E+00 1,1E+00 2,0E-01 6,8E-02 1,2E-02 2,8E-03 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) IGBT Figure 22 Collector current as a function of heatsink temperature I C = f(T h) IGBT 80 IC (A) Ptot (W) 150 120 60 90 40 60 20 30 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) FWD 50 175 15 100 150 T h ( o C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) FWD 80 IF (A) Ptot (W) 150 120 60 90 40 60 20 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Neutral point Neutral Point IGBT and Half Bridge FWD Figure 25 Safe operating area as a function of collector-emitter voltage I C = f(V CE) Figure 26 Gate voltage vs Gate charge 16 VGE (V) 14 100uS 10 IGBT V GE = f(Q g) 3 IC (A) 10 IGBT 120V 2 12 480V 1mS 100mS DC 10 10mS 10 1 8 100 6 4 10 -1 2 0 100 At D= Th = V GE = Tj = 0 102 101 103 50 100 150 V CE (V) At IC = single pulse 80 ºC 15 V T jmax ºC Figure 27 Reverse bias safe operating area 75 200 250 300 350 400 450 500 Q g (nC) A IGBT I C = f(V CE) IC (A) 180 160 ICMAX 120 Ic CHIP Ic MODULE 140 100 VCEMAX 80 60 40 20 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = T jmax-25 ºC DC link minus =DC link plus Switching mode : copyright Vincotech 3 level switching 18 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Neutral point IGBT General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 Neutral point IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Neutral point IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 350 tdoff % % VCE 300 100 IC VGE 90% VCE 90% 250 IC 200 75 150 50 tEoff VCE 100 25 VGE tdon 50 IC 1% 0 VGE -25 -0,2 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 350 56 0,21 0,58 0,4 0,6 time (us) -50 2,95 0,8 3 VCE 3% IC 10% VGE 10% 0 tEon 3,05 3,1 3,15 3,2 3,25 time(us) V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Neutral point IGBT Turn-off Switching Waveforms & definition of t f -15 15 350 56 0,09 0,16 V V V A µs µs Figure 4 Neutral point IGBT Turn-on Switching Waveforms & definition of t r 350 125 % VCE fitted % IC 300 100 IC IC 90% 250 75 200 IC 60% 150 50 IC 40% VCE 100 25 IC 90% tr 50 IC10% 0 tf 0 -50 3,075 -25 0 0,1 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 350 56 0,11 0,3 time (us) 0,4 IC 10% 3,1 3,125 3,15 3,175 time(us) V A µs V C (100%) = I C (100%) = tr = 20 350 56 0,01 V A µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Neutral point IGBT Figure 5 Neutral point IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Neutral point IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % IC 1% Poff Pon % Eon Eoff 100 100 75 75 50 50 25 25 VGE 0 0 -25 -0,2 VCE 3% VGE 10% 90% tEon tEoff -25 0 P off (100%) = E off (100%) = t E off = 0,2 19,56 2,50 0,58 0,4 0,6 time (us) 2,9 0,8 3 3,1 3,2 3,3 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Neutral point IGBT Gate voltage vs Gate charge (measured) 19,56 0,75 0,16 kW mJ µs Figure 8 Neutral point FWD Turn-off Switching Waveforms & definition of t rr 20 VGE (V) 150 % 15 100 10 50 5 0 0 -50 -5 -100 -10 -150 -15 -200 Id trr fitted IRRM 10% Vd IRRM 90% -20 -200 0 V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech 200 -15 15 350 56 775,97 400 600 Qg (nC) IRRM 100% -250 3,05 800 V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 21 3,1 3,15 350 56 -118 0,15 3,2 3,25 time(us) 3,3 V A A µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Neutral point IGBT Figure 9 Neutral point IGBT Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Neutral point IGBT Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 % Id 350 % Qrr 100 Prec 300 tQrr 50 250 0 200 -50 150 -100 100 -150 50 -200 0 -250 Erec tErec -50 3 3,3 I d (100%) = Q rr (100%) = t Q rr = 3,6 56 8,22 1,00 3,9 time(us) 4,2 3 A µC µs 3,3 P rec (100%) = E rec (100%) = t E rec = 3,6 19,56 2,42 1,00 3,9 time(us) 4,2 kW mJ µs Measurement circuits Figure 11 BOOST stage switching measurement circuit copyright Vincotech 22 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Half Bridge IGBT General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 Half Bridge IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Half Bridge IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 250 125 % IC % tdoff VCE 200 100 VGE 90% VCE 90% 150 75 IC VCE 100 50 tEoff VGE tdon 50 25 IC 1% VGE 0 -25 -0,2 VCE 3% IC 10% VGE 10% 0 tEon -50 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = -15 15 700 56 0,23 0,60 0,4 0,6 time (us) 2,9 0,8 V V V A µs µs 3 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Half Bridge IGBT Turn-off Switching Waveforms & definition of t f 3,1 -15 15 700 56 0,08 0,21 3,2 time(us) 3,3 V V V A µs µs Figure 4 Half Bridge IGBT Turn-on Switching Waveforms & definition of tr 250 125 fitted % IC % VCE IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC10% 0 IC 10% 0 tf -50 -25 0 0,1 V C (100%) = I C (100%) = tf = copyright Vincotech 0,2 700 56 0,07 0,3 time (us) 3 0,4 V A µs V C (100%) = I C (100%) = tr = 23 3,05 3,1 700 56 0,02 3,15 time(us) 3,2 V A µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Half Bridge IGBT Figure 5 Half Bridge IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Eon 125 125 % Eon Eoff Poff 100 100 75 75 50 50 25 25 VGE Pon % IC 1% VCE 3% VGE 10% 90% 0 0 tEon tEoff -25 -25 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 39,44 2,24 0,60 0,4 0,6 2,9 time (us) 0,8 kW mJ µs 3 P on (100%) = E on (100%) = t E on = Figure 7 Gate voltage vs Gate charge (measured) Half Bridge IGBT 3,1 39,44 0,96 0,21 3,2 time(us) 3,3 kW mJ µs Figure 8 Half Bridge FWD Turn-off Switching Waveforms & definition of t rr 150 VGE (V) 20 % Id 15 100 10 trr 50 5 0 fitted 0 IRRM 10% -5 Vd -50 -10 -100 -15 -20 -100 IRRM 90% IRRM 100% -150 0 100 200 300 400 500 600 3 3,05 3,1 3,15 Qg (nC) V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech -15 15 700 56 596,49 V V V A nC V d (100%) = I d (100%) = I RRM (100%) = t rr = 24 700 56 -83 0,07 3,2 time(us) 3,25 V A A µs 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Switching Definitions Half Bridge IGBT Figure 9 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Half Bridge IGBT Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 % Qrr Id Prec % 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 -150 3,05 3,1 I d (100%) = Q rr (100%) = t Q rr = 3,15 56 2,74 0,16 3,2 3,25 time(us) -25 3,05 3,3 A µC µs tErec 3,1 P rec (100%) = E rec (100%) = t E rec = 3,15 3,2 39,44 0,53 0,16 kW mJ µs 3,25 3,3 time(us) 3,35 Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech 25 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing without thermal paste 12mm housing Ordering Code in DataMatrix as 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY M260F M260FY in packaging barcode as M260F M260FY Outline Pinout copyright Vincotech 26 13 May. 2015 / Revision 10 10-FZ12NMA080SH01-M260F 10-PZ12NMA080SH01-M260FY datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 27 13 May. 2015 / Revision 10