V23990-P629-F72-PM Maximum Ratings

V23990-P629-F72-PM
datasheet
flow BOOST
1200 V / 40 A
Features
flow 0 12mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V Si diode
Target Applications
Schematic
● solar inverter
Types
● V23990-P629-F72-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
47
A
220
A
200
A 2s
41
62
W
Bypass Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
Tj=Tjmax
T h=80°C
T c=80°C
tp=10ms
T j=25°C
I2t-value
I 2t
Power dissipation
P tot
Maximum Junction Temperature
T jmax
150
°C
V CE
1200
V
Tj=Tjmax
T h=80°C
T c=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Pulsed collector current
I CRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Gate-emitter peak voltage
V GE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
t SC
V CC
Tj≤150°C
VGE=15V
T jmax
1
T h=80°C
T c=80°C
T h=80°C
T c=80°C
36
48
A
80
A
108
164
W
±25
V
10
600
µs
V
150
°C
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Boost IGBT Protection Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
Tj=Tjmax
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T h=80°C
34
T c=80°C
47
A
220
A
41
62
W
T jmax
150
°C
V RRM
1200
V
27
35
A
70
A
47
72
W
T h=80°C
T c=80°C
Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
T h=80°C
Tj=Tjmax
T c=80°C
Repetitive peak forward current
I FRM
tp limited by Tjmax
Power dissipation
P tot
Tj=Tjmax
Maximum Junction Temperature
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,55
mm
T h=80°C
T c=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
V is
t=2s
DC voltage
2
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Tj
Min
Unit
Typ
Max
1,13
1,09
0,93
0,80
0,008
0,011
1,21
Bypass Diode
Forward voltage
VF
8
Threshold voltage (for power loss calc. only)
V to
40
Slope resistance (for power loss calc. only)
rt
40
Reverse current
Ir
1600
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
Thermal grease
thickness≤50um
λ = 1 W/mK
V GE(th)
V CE=V GE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
Ω
0,05
mA
1,71
K/W
1,13
Boost IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
Collector-emitter cut-off
I CES
Gate-emitter leakage current
I GES
Integrated Gate resistor
R gint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
15
40
0
1200
25
0
tr
t d(off)
tf
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Rgoff=4 Ω
Rgon=4 Ω
Thermal resistance chip to heatsink
Thermal resistance chip to case
R th(j-c)
3,5
5,5
7,5
2,74
3,01
3,2
1
±250
±15
600
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
27
26
10
11
166
193
17
35
1,02
1,65
0,85
1,53
ns
mWs
3200
f=1MHz
0
Tj=25°C
30
370
pF
125
QG
R th(j-s)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
tbd.
t d(on)
Turn-on energy loss
Gate charge
0,00025
15
600
40
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
220
nC
0,65
K/W
0,43
Boost IGBT Protection Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
25
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
1,13
1,08
1,21
V
1,71
K/W
1,13
Boost FWD
Forward voltage
VF
Reverse leakage current
I rm
Peak recovery current
I RRM
Reverse recovery time
t rr
Reverse recovery charge
Q rr
Reverse recovered energy
E rec
Peak rate of fall of recovery current
1200
Rgon=4 Ω
±15
600
( di rf/dt )max
Thermal resistance chip to heatsink
R th(j-s)
Thermal resistance chip to case
R th(j-c)
copyright Vincotech
30
Thermal grease
thickness≤50um
λ = 1 W/mK
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,17
1,87
3,4
100
79
91
116
270
3,57
6,92
1,67
3,36
7485
3663
V
µA
A
ns
µC
mWs
A/µs
1,48
K/W
0,98
3
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V r [V] or I C [A] or
V GE [V] or
V CE [V] or I F [A] or
V GS [V]
V DS [V]
I D [A]
Value
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
Tj=25°C
R100=1486Ω
Tc=100°C
Power dissipation constant
22000
-12
Ω
+12
%
Tj=25°C
200
mW
Tj=25°C
2
mw/K
B-value
B (25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B (25/100) Tol. ±3%
Tj=25°C
3998
K
Vincotech NTC Reference
copyright Vincotech
B
4
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Boost IGBT Protection Diode
Figure 1
Boost IGBT Protection Diode
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
Figure 2
Boost IGBT Protection Diode
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
ZthJC (K/W)
IF (A)
101
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10
-1
10
-2
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
1
250
1,5
2
2,5
V F (V)
3
10
-5
At
D =
R thJH =
µs
Figure 3
Boost IGBT Protection Diode
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
tp/T
1,71
K/W
Figure 4
Boost IGBT Protection Diode
Forward current as a
function of heatsink temperature
I F = f(T h)
60
IF (A)
Ptot (W)
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
5
50
150
100
150
Th ( o C)
200
ºC
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 3
Typical output characteristics
I C = f(V CE)
BOOST IGBT
Figure 4
Typical output characteristics
I C = f(V CE)
120
IC(A)
IC (A)
120
BOOST FWD
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
V GS from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GS from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
BOOST IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical FWD forward current as
a function of forward voltage
I F = f(V F)
BOOST FWD
125
IC (A)
IF (A)
40
V CE (V)
100
30
75
20
Tj = 25°C
50
Tj = 125°C
Tj = Tjmax-25°C
10
Tj = 25°C
25
0
0
0
At
tp =
V DS =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
µs
V
6
1
250
2
3
4
V F (V)
5
µs
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(R G)
3,0
E (mWs)
E (mWs)
4
BOOST IGBT
2,5
Eon High T
Eon High T
3
2,0
Eoff High T
Eon Low T
Eoff High T
2
1,5
Eon Low T
Eoff Low T
Eoff Low T
1,0
1
0,5
0
0,0
0
15
30
45
60
75
0
I C (A)
With an inductive load at
Tj =
25/125
°C
V DS =
600
V
V GS =
15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
15
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
V DS =
600
V
V GS =
15
V
ID =
40
A
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
E rec = f(I C)
BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
5
BOOST IGBT
4
E (mWs)
E (mWs)
Erec High T
4
Erec High T
3
3
Erec Low T
2
2
Erec Low T
1
1
0
0
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
25/125
°C
V DS =
600
V
V GS =
15
V
R gon =
4
Ω
copyright Vincotech
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
V DS =
600
V
V GS =
15
V
ID =
40
A
7
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
BOOST IGBT
tdoff
tdoff
0,1
0,1
tf
tf
tdon
tdon
0,01
0,01
tr
tr
0,001
0,001
0
15
30
45
60
I C (A)
0
75
With an inductive load at
Tj =
125
°C
V DS =
600
V
V GS =
15
V
R gon =
4
Ω
R goff =
4
Ω
5
10
R G( Ω )
15
20
With an inductive load at
Tj =
125
°C
V DS =
600
V
V GS =
15
V
IC =
40
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,4
BOOST FWD
t rr( µs)
t rr( µs)
0,5
trr High T
trr High T
0,4
0,3
0,3
trr Low T
0,2
trr Low T
0,2
0,1
0,1
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
25/125
600
15
4
copyright Vincotech
30
45
60
I C (A)
75
0
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
8
5
25/125
600
40
15
10
15
R Gon ( Ω )
20
°C
V
A
V
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 13
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Q rr = f(R gon)
Qrr ( µC)
8
Qrr ( µC)
10
BOOST FWD
Qrr High T
Qrr High T
8
6
6
Qrr Low T
4
Qrr Low T
4
2
2
0
0
0
15
At
At
Tj =
V CE =
V GE =
R gon =
25/125
600
15
4
30
45
60
I C (A)
75
0
5
At
Tj =
°C
V
V
Ω
25/125
600
40
15
VR=
IF=
V GS =
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
BOOST FWD
10
15
20
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
BOOST FWD
IrrM (A)
125
IrrM (A)
125
R Gon ( Ω)
IRRM High T
100
100
IRRM Low T
75
75
50
50
IRRM High T
IRRM Low T
25
25
0
0
0
15
At
Tj =
V CE =
V GE =
R gon =
25/125
600
15
4
copyright Vincotech
30
45
60
I C (A)
75
0
At
Tj =
VR=
IF=
V GS =
°C
V
V
Ω
9
5
25/125
600
40
15
10
15
R Gon ( Ω )
20
°C
V
A
V
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I c)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
BOOST FWD
10000
dI0/dt
direc / dt (A/ µs)
direc / dt (A/ µs)
10000
BOOST FWD
dIrec/dt
8000
dI0/dt
dIrec/dt
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
V CE =
V GE =
R gon =
20
25/125
600
15
4
40
I C (A)
60
80
0
At
Tj =
°C
V
V
Ω
VR=
IF=
V GS =
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
BOOST IGBT
5
25/125
600
40
15
10
20
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
BOOST FWD
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
15
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D =
R thJH =
tp/T
0,65
K/W
10-4
10-3
1,48
R (K/W)
0,198
0,347
0,075
0,028
R (K/W)
0,050
0,121
0,335
0,489
0,283
0,123
0,081
10
100
t p (s)
10110
K/W
FWD thermal model values
copyright Vincotech
10-1
tp/T
IGBT thermal model values
Tau (s)
0,495
0,111
0,015
0,001
10-2
Tau (s)
5,601
0,913
0,195
0,067
0,015
0,003
0,001
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 21
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
I C = f(T h)
250
BOOST IGBT
IC (A)
Ptot (W)
75
200
60
150
45
100
30
50
15
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
V GS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
BOOST FWD
50
150
15
100
150
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
I F = f(T h)
BOOST FWD
50
Ptot (W)
IF (A)
125
Th ( o C)
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
11
50
150
100
150
T h ( o C)
200
ºC
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
INPUT BOOST
Figure 25
Safe operating area as a function
of drain-source voltage
I C = f(V CE)
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
BOOST IGBT
V GE = f(Q g)
103
15
IC (A)
VGE (V)
240V
960V
12
102
10uS
100uS
10mS
100mS
101
9
1mS
6
DC
10
0
3
1
0
10
1
102
10
0
3
50
100
At
D =
Th =
V GS =
Tj =
At
ID =
single pulse
80
ºC
V
15
T jmax
ºC
copyright Vincotech
150
200
250
Qg (nC)
V CE (V)
12
40
A
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Bypass Diode
Figure 1
Typical Diode forward current as
a function of forward voltage
I F= f(V F)
Bypass Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
100
Bypass Diode
ZthJC (K/W)
IF (A)
101
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10
-1
10
-2
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
At
tp =
0,5
250
1
1,5
V F (V)
2
10
-5
10
At
D =
R thJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
Bypass Diode
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp/T
1,71
K/W
Figure 4
Forward current as a
function of heatsink temperature
I F = f(T h)
Bypass Diode
70
Ptot (W)
IF (A)
100
0
60
80
50
60
40
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
R T = f(T )
Thermistor
NTC-typical temperature characteristic
R (Ω)
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Switching Definitions BOOST IGBT
General
Tj
R gon
R goff
conditions
= 125 °C
= 4Ω
= 4Ω
Figure 1
Boost IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
(t E off = integrating time for E off)
Figure 2
Boost IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E on = integrating time for E on)
125
350
tdoff
%
%
VCE
300
100
IC
VGE 90%
VCE 90%
250
75
200
IC
50
150
IC 1%
tEoff
VCE
100
25
VGE
tdon
50
VGE10%
0
VCE 3%
IC 10%
0
tEon
VGE
-25
-0,2
0
0,2
0,4
-50
2,95
0,6
3
3,05
3,1
3,15
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t doff =
t E off =
0
15
600
40
0,19
0,56
V
V
V
A
µs
µs
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
t don =
t E on =
Figure 3
Boost IGBT
Turn-off Switching Waveforms & definition of t f
0
15
600
40
0,03
0,15
V
V
V
A
µs
µs
Figure 4
Boost IGBT
Turn-on Switching Waveforms & definition of t r
125
%
3,2
time(us)
time (us)
350
fitted
IC
%
VCE
300
100
IC
250
IC 90%
75
200
IC 60%
150
50
VCE
IC 40%
100
tr
25
IC 90%
50
IC 10%
0
-25
0,05
V C (100%) =
I C (100%) =
tf =
copyright Vincotech
tf
0,1
0,15
600
40
0,04
IC10%
0
0,2
time (us)
-50
2,95
0,25
V
A
µs
V C (100%) =
I C (100%) =
tr =
15
3
3,05
600
40
0,01
3,1
time(us)
3,15
V
A
µs
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Switching Definitions BOOST IGBT
Figure 5
Boost IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Boost IGBT
Turn-on Switching Waveforms & definition of t Eon
120
250
%
IC 1%
Poff
100
Pon
%
200
Eoff
80
150
60
Eon
100
40
50
20
VGE 90%
VGE
VCE 3%
10%
tEon
0
0
tEoff
-20
-0,1
-50
0
0,1
0,2
0,3
0,4
0,5
2,9
time (us)
P off (100%) =
E off (100%) =
t E off =
24,23
1,53
0,56
kW
mJ
µs
2,95
P on (100%) =
E on (100%) =
t E on =
3
3,05
24,23
1,65
0,15
kW
mJ
µs
3,1
3,15
3,2
time(us)
Figure 7
Boost FWD
Turn-off Switching Waveforms & definition of t rr
200
%
Id
100
trr
fitted
0
IRRM 10%
Vd
-100
-200
IRRM 90%
IRRM 100%
-300
3
3,1
3,2
3,3
3,4
time(us)
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
16
600
40
-91
0,27
V
A
A
µs
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Switching Definitions BOOST FWD
Figure 9
Boost FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 10
Boost FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
200
%
150
%
Qrr
Id
Prec
125
100
Erec
tQrr
100
0
tErec
75
50
-100
25
-200
0
-300
-25
2,8
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3,2
3,6
40
6,92
1,00
4
time(us)
4,4
3
A
µC
µs
3,2
P rec (100%) =
E rec (100%) =
t E rec =
17
3,4
3,6
24,23
3,36
1,00
kW
mJ
µs
3,8
4
time(us)
4,2
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
in DataMatrix as
V23990-P629-F72-PM
P629-F72-PM
in packaging barcode as
P629-F72-PM
Outline
Pinout
copyright Vincotech
18
12 Mar. 2015 / Revision 5
V23990-P629-F72-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured
characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further
notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use
provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
12 Mar. 2015 / Revision 5