V23990-P629-F72-PM datasheet flow BOOST 1200 V / 40 A Features flow 0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V Si diode Target Applications Schematic ● solar inverter Types ● V23990-P629-F72-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 47 A 220 A 200 A 2s 41 62 W Bypass Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM Tj=Tjmax T h=80°C T c=80°C tp=10ms T j=25°C I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V CE 1200 V Tj=Tjmax T h=80°C T c=80°C Boost IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Pulsed collector current I CRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Gate-emitter peak voltage V GE Short circuit ratings Maximum Junction Temperature copyright Vincotech t SC V CC Tj≤150°C VGE=15V T jmax 1 T h=80°C T c=80°C T h=80°C T c=80°C 36 48 A 80 A 108 164 W ±25 V 10 600 µs V 150 °C 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Boost IGBT Protection Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF Tj=Tjmax Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T h=80°C 34 T c=80°C 47 A 220 A 41 62 W T jmax 150 °C V RRM 1200 V 27 35 A 70 A 47 72 W T h=80°C T c=80°C Boost FWD Peak Repetitive Reverse Voltage DC forward current IF T h=80°C Tj=Tjmax T c=80°C Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 9,55 mm T h=80°C T c=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech V is t=2s DC voltage 2 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,13 1,09 0,93 0,80 0,008 0,011 1,21 Bypass Diode Forward voltage VF 8 Threshold voltage (for power loss calc. only) V to 40 Slope resistance (for power loss calc. only) rt 40 Reverse current Ir 1600 Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) Thermal grease thickness≤50um λ = 1 W/mK V GE(th) V CE=V GE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V Ω 0,05 mA 1,71 K/W 1,13 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat Collector-emitter cut-off I CES Gate-emitter leakage current I GES Integrated Gate resistor R gint Turn-on delay time Rise time Turn-off delay time Fall time 15 40 0 1200 25 0 tr t d(off) tf E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Rgoff=4 Ω Rgon=4 Ω Thermal resistance chip to heatsink Thermal resistance chip to case R th(j-c) 3,5 5,5 7,5 2,74 3,01 3,2 1 ±250 ±15 600 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 27 26 10 11 166 193 17 35 1,02 1,65 0,85 1,53 ns mWs 3200 f=1MHz 0 Tj=25°C 30 370 pF 125 QG R th(j-s) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tbd. t d(on) Turn-on energy loss Gate charge 0,00025 15 600 40 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 220 nC 0,65 K/W 0,43 Boost IGBT Protection Diode Diode forward voltage VF Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) 25 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,13 1,08 1,21 V 1,71 K/W 1,13 Boost FWD Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy E rec Peak rate of fall of recovery current 1200 Rgon=4 Ω ±15 600 ( di rf/dt )max Thermal resistance chip to heatsink R th(j-s) Thermal resistance chip to case R th(j-c) copyright Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,17 1,87 3,4 100 79 91 116 270 3,57 6,92 1,67 3,36 7485 3663 V µA A ns µC mWs A/µs 1,48 K/W 0,98 3 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Characteristic Values Parameter Conditions Symbol V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Value Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P Tj=25°C R100=1486Ω Tc=100°C Power dissipation constant 22000 -12 Ω +12 % Tj=25°C 200 mW Tj=25°C 2 mw/K B-value B (25/50) Tol. ±3% Tj=25°C 3950 K B-value B (25/100) Tol. ±3% Tj=25°C 3998 K Vincotech NTC Reference copyright Vincotech B 4 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Boost IGBT Protection Diode Figure 1 Boost IGBT Protection Diode Typical FWD forward current as a function of forward voltage I F = f(V F) Figure 2 Boost IGBT Protection Diode Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 ZthJC (K/W) IF (A) 101 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10 -1 10 -2 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 250 1,5 2 2,5 V F (V) 3 10 -5 At D = R thJH = µs Figure 3 Boost IGBT Protection Diode Power dissipation as a function of heatsink temperature P tot = f(T h) 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp/T 1,71 K/W Figure 4 Boost IGBT Protection Diode Forward current as a function of heatsink temperature I F = f(T h) 60 IF (A) Ptot (W) 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 5 50 150 100 150 Th ( o C) 200 ºC 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 3 Typical output characteristics I C = f(V CE) BOOST IGBT Figure 4 Typical output characteristics I C = f(V CE) 120 IC(A) IC (A) 120 BOOST FWD 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = V GS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GS from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) BOOST IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical FWD forward current as a function of forward voltage I F = f(V F) BOOST FWD 125 IC (A) IF (A) 40 V CE (V) 100 30 75 20 Tj = 25°C 50 Tj = 125°C Tj = Tjmax-25°C 10 Tj = 25°C 25 0 0 0 At tp = V DS = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 6 1 250 2 3 4 V F (V) 5 µs 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 5 Typical switching energy losses as a function of collector current E = f(I C) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 3,0 E (mWs) E (mWs) 4 BOOST IGBT 2,5 Eon High T Eon High T 3 2,0 Eoff High T Eon Low T Eoff High T 2 1,5 Eon Low T Eoff Low T Eoff Low T 1,0 1 0,5 0 0,0 0 15 30 45 60 75 0 I C (A) With an inductive load at Tj = 25/125 °C V DS = 600 V V GS = 15 V R gon = 4 Ω R goff = 4 Ω 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 600 V V GS = 15 V ID = 40 A Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current E rec = f(I C) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 5 BOOST IGBT 4 E (mWs) E (mWs) Erec High T 4 Erec High T 3 3 Erec Low T 2 2 Erec Low T 1 1 0 0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = 25/125 °C V DS = 600 V V GS = 15 V R gon = 4 Ω copyright Vincotech 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C V DS = 600 V V GS = 15 V ID = 40 A 7 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 9 Typical switching times as a function of collector current t = f(I C) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 BOOST IGBT tdoff tdoff 0,1 0,1 tf tf tdon tdon 0,01 0,01 tr tr 0,001 0,001 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = 125 °C V DS = 600 V V GS = 15 V R gon = 4 Ω R goff = 4 Ω 5 10 R G( Ω ) 15 20 With an inductive load at Tj = 125 °C V DS = 600 V V GS = 15 V IC = 40 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,4 BOOST FWD t rr( µs) t rr( µs) 0,5 trr High T trr High T 0,4 0,3 0,3 trr Low T 0,2 trr Low T 0,2 0,1 0,1 0 0 0 At Tj = V CE = V GE = R gon = 15 25/125 600 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR= IF= V GS = °C V V Ω 8 5 25/125 600 40 15 10 15 R Gon ( Ω ) 20 °C V A V 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) Qrr ( µC) 8 Qrr ( µC) 10 BOOST FWD Qrr High T Qrr High T 8 6 6 Qrr Low T 4 Qrr Low T 4 2 2 0 0 0 15 At At Tj = V CE = V GE = R gon = 25/125 600 15 4 30 45 60 I C (A) 75 0 5 At Tj = °C V V Ω 25/125 600 40 15 VR= IF= V GS = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) BOOST FWD 10 15 20 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) BOOST FWD IrrM (A) 125 IrrM (A) 125 R Gon ( Ω) IRRM High T 100 100 IRRM Low T 75 75 50 50 IRRM High T IRRM Low T 25 25 0 0 0 15 At Tj = V CE = V GE = R gon = 25/125 600 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR= IF= V GS = °C V V Ω 9 5 25/125 600 40 15 10 15 R Gon ( Ω ) 20 °C V A V 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) BOOST FWD 10000 dI0/dt direc / dt (A/ µs) direc / dt (A/ µs) 10000 BOOST FWD dIrec/dt 8000 dI0/dt dIrec/dt 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = V CE = V GE = R gon = 20 25/125 600 15 4 40 I C (A) 60 80 0 At Tj = °C V V Ω VR= IF= V GS = Figure 19 IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) BOOST IGBT 5 25/125 600 40 15 10 20 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) BOOST FWD 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 15 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D = R thJH = tp/T 0,65 K/W 10-4 10-3 1,48 R (K/W) 0,198 0,347 0,075 0,028 R (K/W) 0,050 0,121 0,335 0,489 0,283 0,123 0,081 10 100 t p (s) 10110 K/W FWD thermal model values copyright Vincotech 10-1 tp/T IGBT thermal model values Tau (s) 0,495 0,111 0,015 0,001 10-2 Tau (s) 5,601 0,913 0,195 0,067 0,015 0,003 0,001 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature I C = f(T h) 250 BOOST IGBT IC (A) Ptot (W) 75 200 60 150 45 100 30 50 15 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = V GS = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) BOOST FWD 50 150 15 100 150 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) BOOST FWD 50 Ptot (W) IF (A) 125 Th ( o C) 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 11 50 150 100 150 T h ( o C) 200 ºC 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet INPUT BOOST Figure 25 Safe operating area as a function of drain-source voltage I C = f(V CE) BOOST IGBT Figure 26 Gate voltage vs Gate charge BOOST IGBT V GE = f(Q g) 103 15 IC (A) VGE (V) 240V 960V 12 102 10uS 100uS 10mS 100mS 101 9 1mS 6 DC 10 0 3 1 0 10 1 102 10 0 3 50 100 At D = Th = V GS = Tj = At ID = single pulse 80 ºC V 15 T jmax ºC copyright Vincotech 150 200 250 Qg (nC) V CE (V) 12 40 A 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Bypass Diode Figure 1 Typical Diode forward current as a function of forward voltage I F= f(V F) Bypass Diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 100 Bypass Diode ZthJC (K/W) IF (A) 101 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10 -1 10 -2 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 250 1 1,5 V F (V) 2 10 -5 10 At D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Bypass Diode -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp/T 1,71 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Bypass Diode 70 Ptot (W) IF (A) 100 0 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R (Ω) 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Switching Definitions BOOST IGBT General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 Boost IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 Boost IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 125 350 tdoff % % VCE 300 100 IC VGE 90% VCE 90% 250 75 200 IC 50 150 IC 1% tEoff VCE 100 25 VGE tdon 50 VGE10% 0 VCE 3% IC 10% 0 tEon VGE -25 -0,2 0 0,2 0,4 -50 2,95 0,6 3 3,05 3,1 3,15 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = t E off = 0 15 600 40 0,19 0,56 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 Boost IGBT Turn-off Switching Waveforms & definition of t f 0 15 600 40 0,03 0,15 V V V A µs µs Figure 4 Boost IGBT Turn-on Switching Waveforms & definition of t r 125 % 3,2 time(us) time (us) 350 fitted IC % VCE 300 100 IC 250 IC 90% 75 200 IC 60% 150 50 VCE IC 40% 100 tr 25 IC 90% 50 IC 10% 0 -25 0,05 V C (100%) = I C (100%) = tf = copyright Vincotech tf 0,1 0,15 600 40 0,04 IC10% 0 0,2 time (us) -50 2,95 0,25 V A µs V C (100%) = I C (100%) = tr = 15 3 3,05 600 40 0,01 3,1 time(us) 3,15 V A µs 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Switching Definitions BOOST IGBT Figure 5 Boost IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Boost IGBT Turn-on Switching Waveforms & definition of t Eon 120 250 % IC 1% Poff 100 Pon % 200 Eoff 80 150 60 Eon 100 40 50 20 VGE 90% VGE VCE 3% 10% tEon 0 0 tEoff -20 -0,1 -50 0 0,1 0,2 0,3 0,4 0,5 2,9 time (us) P off (100%) = E off (100%) = t E off = 24,23 1,53 0,56 kW mJ µs 2,95 P on (100%) = E on (100%) = t E on = 3 3,05 24,23 1,65 0,15 kW mJ µs 3,1 3,15 3,2 time(us) Figure 7 Boost FWD Turn-off Switching Waveforms & definition of t rr 200 % Id 100 trr fitted 0 IRRM 10% Vd -100 -200 IRRM 90% IRRM 100% -300 3 3,1 3,2 3,3 3,4 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 16 600 40 -91 0,27 V A A µs 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Switching Definitions BOOST FWD Figure 9 Boost FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 10 Boost FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 % 150 % Qrr Id Prec 125 100 Erec tQrr 100 0 tErec 75 50 -100 25 -200 0 -300 -25 2,8 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3,2 3,6 40 6,92 1,00 4 time(us) 4,4 3 A µC µs 3,2 P rec (100%) = E rec (100%) = t E rec = 17 3,4 3,6 24,23 3,36 1,00 kW mJ µs 3,8 4 time(us) 4,2 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code in DataMatrix as V23990-P629-F72-PM P629-F72-PM in packaging barcode as P629-F72-PM Outline Pinout copyright Vincotech 18 12 Mar. 2015 / Revision 5 V23990-P629-F72-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 12 Mar. 2015 / Revision 5