10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y flowNPC 0 600V/30A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ06NRA041FS03-P965F78 ● 10-PZ06NRA041FS03-P965F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Boost Inv. Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV DC current Maximum repetitive forward current IFRM Tjmax Th=80°C Tc=80°C 17 17 A 20 A I2t-value I2t tp=10ms Tj=25°C 9,5 A2s Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 44 61 W 175 °C Maximum Junction Temperature copyright Vincotech Tjmax 1 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Tc=80°C 25 35 A Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Th=80°C Non repetitive peack surge current IFSM tp limited by Tjmax 60Hz Single Half-Sine Wave Tc=25°C 300 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 40 61 W Tjmax 150 °C VDS 600 V Maximum Junction Temperature Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 29 36 A tp limited by Tjmax Tc=25°C 272 A Tj=Tjmax Th=80°C Tc=80°C 118 78 Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 58 77 A tp limited by Tjmax 225 A Tj≤175°C VCE<=VCES 225 A 93 141 W ±20 V 6 360 µs V 175 °C Maximum Junction Temperature W Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 2 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 17 23 A 36 A 33 50 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Tc=80°C Repetitive peak surge current IFRM 20kHz Square Wave Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 3 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 1,88 1,22 1,37 0,70 0,05 0,05 1,95 Boost Inv. Diode Forward voltage VF 10 Threshold voltage (for power loss calc. only) Vt0 10 Slope resistance (for power loss calc. only) rt 10 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 600 V Ω 0,027 Thermal grease thickness≤50um λ = 1 W/mK V 2,17 mA K/W Buck Diode Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 Ir 600 IRRM trr Qrr Rgon=2 Ω 350 10 30 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,28 1,76 2,8 100 58 75 14 24 0,38 0,95 17148 12194 0,06 0,14 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,74 K/W Buck MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th 30 10 VDS=VGS Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0,00296 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=2 Ω Rgon=2 Ω 350 10 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 41 82 3 mΩ 3,6 100 5000 23 22 5 6 123 134 5 7 0,15 0,28 0,05 0,07 V nA uA ns mWs 290 10 480 44,4 Tj=25°C 36 Gate to drain charge Qgd 150 Input capacitance Ciss 6530 Output capacitance Coss nC pF Gate resistor Thermal resistance chip to heatsink per chip copyright Vincotech f=1MHz 0 100 rG RthJH Thermal grease thickness≤50um λ = 1 W/mK 4 Tj=25°C 360 0,7 Ω 0,90 K/W Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,22 1,29 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 30 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,0038 600 Rgoff=4 Ω Rgon=4 Ω 350 ±15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 84 84 7 8 204 242 55 90 0,26 0,39 0,99 1,36 ns mWs 4620 f=1MHz 0 25 15 480 288 Tj=25°C pF 137 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,02 K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 18 Rgon=4 Ω ±15 350 di(rec)max /dt Erec RthJH 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,23 2,04 3,5 100 59 67 21 102 2,53 4,72 9919 5374 0,75 1,45 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 2,11 K/W 21511 Ω Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tj=25°C Power dissipation constant +4,5 -4,5 % Tj=25°C 210 mW Tj=25°C 4 mW/K B-value B(25/50) Tj=25°C 3884 K B-value B(25/100) Tj=25°C 3964 K Vincotech NTC Reference copyright Vincotech F 5 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 90 IC (A) IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 0 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 V CE (V) 5 250 µs 125 °C 0 V to 20 V in steps of 2 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IC (A) IF (A) 50 40 40 30 30 20 20 10 10 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 1 250 10 copyright Vincotech 2 3 4 5 V GE (V) 0,0 6 At tp = µs V 6 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 0,5 0,6 E (mWs) Eon High T E (mWs) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 0,5 0,4 0,4 0,3 Eon Low T Eon Low T 0,3 Eoff High T 0,2 0,2 Eoff High T Eoff Low T Eoff Low T 0,1 0,1 0,0 0 10 20 30 40 50 0,0 60 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 4 6 8 RG( Ω ) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V IC = 30 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,24 0,20 Erec High T E (mWs) E (mWs) 2 0,20 0,16 0,16 0,12 Erec High T 0,12 Erec Low T 0,08 0,08 0,04 0,04 Erec Low T 0,00 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 10 V Rgon = 2 Ω copyright Vincotech 2 4 6 8 RG( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 10 V IC = 30 A 7 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdoff tdoff 0,10 0,10 tdon tdon tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 10 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 RG( Ω ) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 10 V IC = 30 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,04 0,04 t rr(ms) t rr(ms) trr High T 0,03 0,03 trr High T 0,02 0,02 trr Low T trr Low T 0,01 0,01 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 10 2 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 8 2 25/125 350 30 10 4 6 8 R gon ( Ω ) 10 °C V A V Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of MOSFET turn on gate resistor Qrr = f(Rgon) Qrr (mC) 1,2 Qrr (mC) 1,5 Qrr High T 1,0 1,2 Qrr High T 0,8 0,9 0,6 Qrr Low T 0,6 0,4 Qrr Low T 0,3 0,2 0,0 0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 10 2 20 30 40 50 0 60 I C (A) At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25/125 350 30 10 4 6 8 R gon (Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of MOSFET turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 10 IRRM High T 80 80 60 60 IRRM Low T 40 40 20 20 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 10 2 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 9 2 25/125 350 30 10 4 6 8 R gon (Ω) 10 °C V A V Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) 20000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of MOSFET turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 16000 25000 20000 15000 12000 dIrec/dtHigh T 8000 10000 dIo/dtLow T dI0/dtLow T dIrec/dtLow T di0/dtHigh T 5000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 10 2 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 30 10 4 6 8 R gon (Ω) 10 °C V A V FWD ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 21 tp / T 0,90 K/W IGBT thermal model values R (C/W) Tau (s) 0,13 4,5E+00 0,26 1,1E+00 0,25 2,4E-01 0,18 8,4E-02 0,07 1,5E-02 0,03 1,1E-03 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10-2 10 2 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 dI0/dtHigh TdI /dt rec High T -2 10-5 10-4 At D= RthJH = tp / T 10-3 10-2 10-1 100 t p (s) 1021 1,74 K/W FWD thermal model values R (C/W) Tau (s) 0,09 3,4E+00 0,23 5,1E-01 0,85 1,0E-01 0,33 2,5E-02 0,13 4,5E-03 0,11 8,6E-04 10 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 50 160 40 120 30 80 20 40 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 200 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 11 50 150 100 150 T h ( o C) 200 °C Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Buck MOSFET Figure 25 IC = f(VCE) 3 8 IC (A) VGE (V) 10 MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) Safe operating area as a function of collector-emitter voltage 7 100uS 102 120V 6 100mS 10mS 480V 1mS DC 5 101 4 10 0 3 2 10-1 1 0 10 0 101 102 V CE (V) 103 0 At D= Th = VGE = Tj = At ID= single pulse 80 ºC 15 V Tjmax ºC copyright Vincotech 12 50 44,4 100 150 200 Q g (nC) 250 A Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 90 IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 60 V CE (V) IC (A) IF (A) 70 Tj = 25°C Tj = Tjmax-25°C 60 50 50 40 40 30 30 20 20 10 10 Tj = 25°C Tj = Tjmax-25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 0 10 At tp = µs V 13 1 250 2 3 4 V F (V) 5 µs Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 2,5 Eoff High T Eoff High T 2,0 1,2 1,5 0,9 Eon High T Eoff Low T Eon Low T Eoff Low T 1,0 0,6 Eon High T 0,5 0,3 Eon Low T 0,0 0,0 0 10 20 30 40 50 60 I C (A) 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,0 2,00 E (mWs) E (mWs) Erec High T 1,5 1,50 Erec High T 1,0 1,00 Erec Low T Erec Low T 0,5 0,50 0,0 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A 14 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost IGBT IGBT 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdon tf tdoff 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 30 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,35 t rr(ms) t rr(ms) 0,15 trr High T 0,30 trr High T 0,12 0,25 trr Low T 0,09 0,20 0,15 0,06 0,10 0,03 trr Low T 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 15 4 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 6 Qrr (mC) Qrr (mC) 8 Qrr High T 5 Qrr High T 6 4 3 4 Qrr Low T Qrr Low T 2 2 1 0 0 At 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 I C (A) 0 60 4 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 30 ±15 12 16 R gon (Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 90 IrrM (A) 90 20 IRRM High T 75 75 IRRM Low T 60 60 45 45 30 30 IRRM High T IRRM Low T 15 15 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 copyright Vincotech 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 16 4 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a and reverse recovery current dI0/dt,dIrec/dt = f(Rgon) 24000 direc / dt (A/ms) 12000 direc / dt (A/ms) dIrec/dtLow T 10000 dI0/dt T dIrec/dt T 20000 8000 16000 6000 12000 dIrec/dtHigh T dIo/dtLow T 4000 8000 di0/dtHigh T 2000 4000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 ±15 4 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 30 ±15 8 12 16 R gon (Ω) 20 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 4 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 At D= RthJH = 10-4 tp / T 1,02 10-3 10-2 10-1 100 t p (s) 101 10 K/W 10-5 10-4 10-3 At D= RthJH = tp / T 2,11 K/W IGBT thermal model values FWD thermal model values R (C/W) 0,08 0,12 0,47 0,26 0,08 0,04 R (C/W) 0,04 0,11 0,53 0,96 0,30 0,17 Tau (s) 4,30E+00 9,99E-01 1,48E-01 4,85E-02 8,38E-03 2,72E-04 copyright Vincotech 17 10-2 10-1 100 t p (s) 101 10 Tau (s) 6,53E+00 1,19E+00 1,77E-01 6,31E-02 5,77E-03 9,51E-04 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 90 Ptot (W) IC (A) 200 75 160 60 120 45 80 30 40 15 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 80 200 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 18 50 150 100 150 Th ( o C) 200 ºC Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Boost IGBT Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) 10 30 IF (A) IGBT Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJC (K/W) Tj = Tjmax-25°C 1 25 Tj = 25°C 20 100 15 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 5 0 0,0 At tp = 0,5 1,0 1,5 2,0 2,5 V F (V) 10-2 3,0 µs 250 IGBT Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 At D= RthJH = tp / T 2,17 10-2 10-1 100 t p (s) 1021 K/W IGBT Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 20 Ptot (W) IF (A) 100 80 16 60 12 40 8 20 4 0 0 0 50 100 150 Th ( o C) 200 0 At Tj = 10-3 50 100 150 Th ( o C) 200 At 175 copyright Vincotech Tj = ºC 19 175 ºC Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 20 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 2Ω Rgon IGBT Rgoff IGBT = 2Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 350 120 tdoff % IC % 300 100 VGE 90% 250 80 IC VGE 200 60 150 40 VCE 90% tEoff 100 IC 1% tdon VCE 20 50 0 VGE VCE VGE10% IC10% 0 -20 -0,1 0 0,1 0,2 -50 2,95 0,3 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 10 700 30 0,13 0,15 tEon 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BUCK MOSFET Figure 3 VCE3% 3,05 0 10 700 30 0,02 0,05 3,1 3,15 V V V A µs µs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 350 fitted IC % % IC 300 100 IC 90% 250 75 IC 60% 200 50 IC 40% 150 25 100 IC10% VCE 0 tr VCE tf IC90% 50 -25 IC10% 0 -50 -50 0,1 0,12 0,14 0,16 0,18 0,2 3 3,02 3,04 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 700 30 0,007 3,06 3,08 time(us) VC (100%) = IC (100%) = tr = V A µs 21 700 30 0,006 V A µs Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BUCK MOSFET BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 150 % % Eoff 125 Eon 100 100 80 IC 1% Pon 75 60 50 40 25 VGE90% Poff 20 0 VCE3% VGE10% tEoff 0 -25 tEon -20 2,98 -50 0 0,05 Poff (100%) = Eoff (100%) = tEoff = 0,1 21,23 0,070 0,15 0,15 time (us) 0,2 3,02 3,04 3,06 3,08 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs BUCK MOSFET Figure 7 21,23 0,28 0,05 kW mJ µs BUCK MOSFET Figure 8 Turn-off Switching Waveforms & definition of trr Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 150 Id % 3 150 % 100 Qrr Id 100 trr 50 tQrr 50 Vd fitted 0 0 IRRM 10% -50 -50 -100 -100 -150 -150 -200 -200 IRRM 90% IRRM 100% -250 3 3,02 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3,04 700 30 -75 0,02 3,06 -250 3,08 time(us) 3,1 3 Id (100%) = Qrr (100%) = tQrr = V A A µs 22 3,02 3,04 30 0,95 0,05 3,06 3,08 time(us) 3,1 A µC µs Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BUCK MOSFET BUCK FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 Erec % 125 100 tErec 75 50 Prec 25 0 -25 -50 3 3,02 Prec (100%) = Erec (100%) = tErec = 3,04 21,23 0,14 0,05 3,06 3,08 time(us) 3,1 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech Figure 12 BOOST stage switching measurement circuit 23 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BOOST General conditions = 125 °C Tj = 4Ω Rgon IGBT Rgoff IGBT = 4Ω BOOST IGBT Figure 1 BOOST IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 350 % % IC 300 tdoff 250 100 VCE 90% VGE 90% 200 IC 150 50 tEoff IC 1% tdon VCE 0 VGE VCE 100 50 VCE3% VGE Ic 10% VGE10% 0 tEon -50 -50 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 350 30 0,24 0,52 0,4 time (us) 3 0,6 3,1 3,15 3,2 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs BOOST IGBT Figure 3 -15 15 350 30 0,08 0,10 V V V A µs µs BOOST IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 % 3,05 350 % fitted Ic VCE IC 300 100 IC 90% 250 75 200 IC 60% 50 150 IC 40% 100 VCE 25 IC90% tr 50 IC10% 0 tf -25 0 0,1 0,2 0,3 0,4 -50 3,06 0,5 time (us) VC (100%) = IC (100%) = tf = copyright Vincotech 350 30 0,090 IC10% 0 VC (100%) = IC (100%) = tr = V A µs 24 3,08 3,1 350 30 0,01 3,12 time(us) 3,14 V A µs Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BOOST BOOST IGBT Figure 5 BOOST IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 200 % % IC 1% Poff 100 Pon Eoff 150 75 Eon 100 50 50 25 VCE 3% VGE 10% VGE 90% 0 0 tEon tEoff -25 -0,2 -50 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 10,46 1,36 0,52 0,4 time (us) 0,6 3 3,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs BOOST IGBT Figure 7 3,1 10,46 0,39 0,10 3,15 time(us) kW mJ µs BOOST FWD Figure 8 Turn-off Switching Waveforms & definition of trr 3,2 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 150 % 150 % Id 100 Id Qrr 100 trr 50 tQrr 50 0 Vd fitted 0 IRRM 10% -50 -50 -100 -100 -150 -150 -200 -200 IRRM 90% IRRM 100% -250 3,05 -250 3,1 3,15 3,2 3,25 3 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 350 30 -67 0,10 Id (100%) = Qrr (100%) = tQrr = V A A µs 25 3,25 3,5 30 4,72 1,00 3,75 4 time(us) 4,25 A µC µs Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Switching Definitions BOOST BOOST FWD Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 300 % Erec 250 200 150 100 tErec 50 Prec 0 -50 3 3,25 Prec (100%) = Erec (100%) = tErec = 3,5 10,46 1,45 1,00 3,75 4 time(us) 4,25 kW mJ µs Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit Cg is included in the module copyright Vincotech 26 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing solder pin w/o thermal paste 12mm housing Press-fit pin Ordering Code 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y in DataMatrix as P965F78 P965F78Y in packaging barcode as P965F78 P965F78Y Outline Pinout copyright Vincotech 27 Revision: 4 10-FZ06NRA041FS03-P965F78 10-PZ06NRA041FS03-P965F78Y DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 28 Revision: 4