10-FZ06NBA041FS01-P915L78 preliminary datasheet flowBOOST0 600V/41mΩ Features flow0 12mm housing ● High efficiency symmetric boost ● Ultrafast switching frequency with MOSFET ● Low Inductance Layout ● Tandem to NPC and MNPC modules Target Applications Schematic ● Solar inverters ● UPS Types ● 10-FZ06NBA041FS01-P915L78 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Th=80°C Tc=80°C 42 57 A Tj=25°C 370 A Tj=150°C 370 A2s Th=80°C 49 75 W Tjmax 150 °C VDS 600 V 32 39 A 272 A 97 147 W Bypass Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM DC current tp=10ms I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Tc=80°C Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C Power dissipation Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax 1 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost Diode Peak Repetitive Reverse Voltage Non DC forward current VRRM IF Tj=25°C Tj=Tjmax Non-Repetitive peak forward current IFSM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C 29 Tc=80°C 38 A 300 A 42 64 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 0,99 0,91 0,87 0,74 0,008 0,011 1,3 Bypass Diode Forward voltage VF 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 1600 V Ω 0,1 Thermal grease thickness≤50um λ = 1 W/mK V 1,42 mA K/W Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) V(GS)th 10 44,4 VGS=VDS 0,00296 Gate to Source Leakage Current Igss 0 600 Zero Gate Voltage Drain Current Idss 20 0 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Rgoff=8 Ω Rgon=8 Ω Rgon=8 Ω 10/0 400 480 10 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 0,040 0,079 3 Ω 3,6 100 5 35 33 9 10 275 300 4 5 0,18 0,34 0,07 0,08 290 V nA μA ns mWs 36 nC 150 6530 f=1MHz 0 Tj=25°C 100 360 pF tbd. Thermal grease thickness≤50um λ = 1 W/mK 0,72 K/W Input Boost Diode Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec Thermal resistance chip to heatsink per chip 10/0 400 IRRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=8 Ω 10/0 400 di(rec)max /dt RthJH 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,7 2,11 1,59 2,7 100 18 30 14 32 0,15 0,56 0,02 0,07 5321 1723 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC mWs A/μs 1,67 K/W Thermistor Rated resistance* R25 R100 Power dissipation P B(25/100) B-value Tol. ±5% Tj=25°C Tol. ±3% 20,9 22 1486 23,1 kΩ Ω Tj=25°C 200 mW Tj=25°C 3950 K * see details on Thermistor charts on Figure 2. Copyright by Vincotech 3 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 1 Typical output characteristics ID = f(VDS) 100 90 IC (A) IC(A) BOOST MOSFET Figure 2 Typical output characteristics ID = f(VDS) 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VDS from 1 2 3 0 V CE (V) 5 4 At tp = Tj = VDS from 250 μs 25 °C 3 V to 13 V in steps of 1 V BOOST MOSFET Figure 3 Typical transfer characteristics ID = f(VDS) 1 2 3 4 5 6 7 8 V CE (V) 9 250 μs 125 °C 3 V to 13 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 ID (A) IF (A) 20 16 80 12 60 8 40 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 4 Tj = 25°C Tj = 25°C 0 0 0 1 2 At tp = VDS = 250 μs 10 V Copyright by Vincotech 3 4 5 0 V GS (V) 6 At tp = 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 5 Typical switching energy losses BOOST MOSFET Figure 6 Typical switching energy losses as a function of collector current E = f(ID) as a function of gate resistor E = f(RG) 0,6 E (mWs) E (mWs) Eon High T 0,7 Eon High T 0,6 0,5 0,5 0,4 Eon Low T Eon Low T 0,4 0,3 Eoff High T 0,3 Eoff Low T Eoff High T 0,2 0,2 Eoff Low T 0,1 0,1 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +10/0 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G ( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = +10/0 V ID = 15 A BOOST MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,14 E (mWs) E (mWs) 0,12 Erec High T 0,1 0,12 0,1 0,08 0,08 0,06 0,06 0,04 Erec High T 0,04 Erec Low T 0,02 0,02 Erec Low T 0 0 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C 8 16 32 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VDS = 400 V VGS = Rgon = Rgoff = +10/0 8 V Ω VGS = ID = +10/0 15 V A 8 Ω Copyright by Vincotech 24 5 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 9 Typical switching times as a BOOST MOSFET Figure 10 Typical switching times as a function of collector current t = f(ID) function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdoff 0,1 tdon 0,1 tr tdon tf tr 0,01 0,01 tf 0,001 0,001 0 5 10 15 20 25 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +10/0 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 125 °C VDS = 400 V VGS = +10/0 V IC = 15 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,1 0,04 t rr( μs) t rr( μs) trr High T trr High T 0,08 0,03 0,06 0,02 0,04 trr Low T trr Low T 0,01 0,02 0 0 0 At Tj = VDS = VGS = Rgon = 5 10 25/125 °C 400 +10/0 V V 8 Ω Copyright by Vincotech 15 20 25 I C (A) 30 0 At Tj = VR = IF = VGS = 6 8 16 25/125 °C 400 15 V A +10/0 V 24 32 R Gon ( Ω ) 40 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) function of MOSFET turn on gate resistor Qrr = f(Rgon) 0,75 0,9 Qrr ( μC) Qrr ( μC) BOOST FWD Figure 14 Typical reverse recovery charge as a Qrr High T 0,75 0,6 0,6 Qrr High T 0,45 0,45 0,3 0,3 Qrr Low T 0,15 0,15 Qrr Low T 0 0 0 At At Tj = VDS = VGS = Rgon = 5 25/125 400 +10/0 8 10 15 20 25 I C (A) 0 30 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 400 15 +10/0 16 24 32 R Gon ( Ω) 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 75 IrrM (A) 40 IrrM (A) IRRM High T 60 30 IRRM Low T 45 20 30 10 15 IRRM High T IRRM Low T 0 0 0 5 At Tj = 10 VDS = 25/125 400 °C V VGS = Rgon = +10/0 8 V Ω Copyright by Vincotech 15 20 25 I C (A) 0 30 At Tj = 7 8 16 VR = 25/125 400 °C V IF = VGS = 15 +10/0 A V 24 32 R Gon ( Ω ) 40 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7000 direc / dt (A/ μs) direc / dt (A/ μs) 18000 dIrec/dtLow T dIrec/dtLow T 16000 6000 14000 5000 12000 4000 10000 8000 3000 dIrec/dtHigh T 6000 2000 di0/dtLow T 4000 dIrec/dtHigh T 1000 2000 di0/dtHigh T dI0/dtHigh T 0 0 At Tj = VCE = VGE = Rgon = 5 10 15 20 25 30 0 At Tj = dI0/dt 25/125 400 +10/0 8 °C V V Ω dIrec/dt 8 16 24 25/125 400 15 +10/0 °C V A V dIrec/dt BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 40 32 dI0/dt VR = IF = VGS = BOOST MOSFET Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 di0/dtLow T 0 I C (A) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 -2 10 -5 -4 10 10 At D= RthJH = tp / T 0,72 -3 10 K/W Copyright by Vincotech -2 10 10 -1 10 0 t p (s) 1 -5 10 1 10 At D= RthJH = IGBT thermal model values 10 -4 -3 10 -2 10 -1 10 10 0 t p (s) tp / T 1,67 K/W FWD thermal model values R (C/W) 0,019 0,106 Tau (s) 8,77E+00 1,31E+00 R (C/W) 0,06 0,24 Tau (s) 3,60E+00 4,21E-01 0,352 0,164 2,19E-01 6,50E-02 0,84 0,32 8,48E-02 1,50E-02 0,049 0,031 1,06E-02 7,41E-04 0,17 1,83E-03 8 1 10 1 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 21 Power dissipation as a BOOST MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature Ptot = f(Th) function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 250 200 40 150 30 100 20 50 10 0 0 0 25 At Tj = 150 50 75 100 125 o Th ( C) 150 0 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 Th ( o C) 80 40 60 30 40 20 20 10 0 0 0 At Tj = 25 150 50 75 100 o 125 T h ( C) 150 0 At Tj = ºC Copyright by Vincotech 9 25 50 150 ºC 75 100 o 125 T h ( C) 150 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet INPUT BOOST BOOST MOSFET Figure 25 BOOST MOSFET Figure 26 Safe operating area as a function Gate voltage vs Gate charge of drain-source voltage ID = f(VDS) VGS = f(Qg) 3 8 ID (A) UGS (V) 10 7 10uS 1mS 100uS 6 10mS 10 2 120V 5 480V 4 DC 3 100mS 101 2 1 0 100 101 At D= Th = VGS = single pulse 80 ºC V +10/0 Tj = Tjmax 2 10 V DS (V) 0 103 At ID = 50 15 100 150 200 Qg (nC) 250 A ºC Copyright by Vincotech 10 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as Bypass diode Figure 2 Diode transient thermal impedance a function of forward voltage IF= f(VF) as a function of pulse width ZthJH = f(tp) 100 ZthJC (K/W) IF (A) 101 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 1 1,5 VF (V) 10-2 2 t p (s) 10-5 At tp = 250 At D= RthJH = μs Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 101 tp / T 1,42 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 70 Ptot (W) IF (A) 120 60 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 o T h ( C) 0 150 At Tj = ºC Copyright by Vincotech 11 50 150 100 o T h ( C) 150 ºC Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic Thermistor Figure 2 Typical NTC resistance values R/Ω as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 R(T ) = R25 ⋅ e 22000 [Ω] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Switching Definitions Boost IGBT General conditions Tj Rgon Rgoff = = = BOOST IGBT Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 125 °C 8Ω 8Ω BOOST IGBT Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 120 tdoff IC 250 100 VGE 90% VCE 90% 200 80 VGE IC 60 150 % % tEoff 40 VCE 100 IC 1% tdon VGE 50 20 VCE 0 VGE 10% 0 VCE3% tEon -20 -0,2 Ic 10% -50 -0,1 0 0,1 0,2 0,3 0,4 2,8 2,9 3 3,1 3,2 VGE (0%) = 0 10 400 15 0,30 0,32 VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs BOOST IGBT Figure 3 Turn-off Switching Waveforms & definition of tf 3,3 time(us) time (us) 0 10 400 15 0,03 0,07 V V V A μs μs BOOST IGBT Figure 4 Turn-on Switching Waveforms & definition of tr 300 120 fitted IC 100 250 IC 90% 200 80 60 150 IC 60% % % 100 40 VCE IC 40% tr IC 90% 50 20 VCE Ic IC10% IC 10% 0 0 tf -20 0,25 VC (100%) = IC (100%) = tf = 0,275 0,3 400 15 0,0040 Copyright by Vincotech 0,325 time (us) -50 2,98 0,35 VC (100%) = V A μs IC (100%) = tr = 13 3 3,02 400 15 0,01 3,04 time(us) 3,06 V A μs Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Switching Definitions Boost IGBT BOOST IGBT Figure 5 Turn-off Switching Waveforms & definition of tEoff BOOST IGBT Figure 6 Turn-on Switching Waveforms & definition of tEon 250 120 Pon IC 1% Eoff 100 200 80 150 % 60 % Eon 100 40 50 20 Poff 0 0 tEon tEoff -20 -0,2 VCE3% VGE10% VGE90% -50 -0,1 Poff (100%) = Eoff (100%) = tEoff = 0 0,1 6,02 0,08 0,32 0,2 0,3 0,4 2,8 0,5 time (us) 2,88 3,04 3,12 3,2 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs BOOST IGBT Figure 7 Gate voltage vs Gate charge (measured) 2,96 6,02 0,34 0,07 kW mJ μs Figure 8 Turn-off Switching Waveforms & definition of trr 15 BOOST FWD 150 VGE (V) Id 100 trr 10 50 0 Vd IRRM10% % 5 -50 -100 0 fitted -150 -200 2,97 -5 -50 0 50 100 150 200 250 IRRM 90% IRRM 100% 2,99 3,01 3,03 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 V V 400 15 181,13 V A nC Copyright by Vincotech 3,05 3,07 3,09 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = 14 400 15 V A -30 0,03 A μs Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Switching Definitions Boost IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr BOOST FWD BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 150 120 Erec Id 100 90 tErec tQrr 50 60 Qrr 0 Prec % 30 % -50 0 -100 -30 -150 -200 2,98 Id (100%) = Qrr (100%) = tQrr = -60 3 3,02 3,04 15 0,56 0,06 A μC μs Copyright by Vincotech 3,06 3,08 time(us) 3 3,1 Prec (100%) = Erec (100%) = tErec = 15 3,02 3,04 6,02 0,08 0,06 3,06 3,08 time(us) 3,1 kW mJ μs Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow0 12mm housing Ordering Code 10-FZ06NBA041FS01-P915L78 in DataMatrix as in packaging barcode as P915L78 P915L78 Outline Pinout Copyright by Vincotech 16 Revision: 1 10-FZ06NBA041FS01-P915L78 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 1