10-FZ06NBA041FS01-P915L78 Maximum Ratings

10-FZ06NBA041FS01-P915L78
preliminary datasheet
flowBOOST0
600V/41mΩ
Features
flow0 12mm housing
● High efficiency symmetric boost
● Ultrafast switching frequency with MOSFET
● Low Inductance Layout
● Tandem to NPC and MNPC modules
Target Applications
Schematic
● Solar inverters
● UPS
Types
● 10-FZ06NBA041FS01-P915L78
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Th=80°C
Tc=80°C
42
57
A
Tj=25°C
370
A
Tj=150°C
370
A2s
Th=80°C
49
75
W
Tjmax
150
°C
VDS
600
V
32
39
A
272
A
97
147
W
Bypass Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
DC current
tp=10ms
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
1
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost Diode
Peak Repetitive Reverse Voltage
Non DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Non-Repetitive peak forward current
IFSM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
29
Tc=80°C
38
A
300
A
42
64
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
0,99
0,91
0,87
0,74
0,008
0,011
1,3
Bypass Diode
Forward voltage
VF
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
1600
V
Ω
0,1
Thermal grease
thickness≤50um
λ = 1 W/mK
V
1,42
mA
K/W
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
V(GS)th
10
44,4
VGS=VDS
0,00296
Gate to Source Leakage Current
Igss
0
600
Zero Gate Voltage Drain Current
Idss
20
0
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=8 Ω
Rgon=8 Ω
Rgon=8 Ω
10/0
400
480
10
15
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
0,040
0,079
3
Ω
3,6
100
5
35
33
9
10
275
300
4
5
0,18
0,34
0,07
0,08
290
V
nA
μA
ns
mWs
36
nC
150
6530
f=1MHz
0
Tj=25°C
100
360
pF
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
0,72
K/W
Input Boost Diode
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
10/0
400
IRRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=8 Ω
10/0
400
di(rec)max
/dt
RthJH
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,7
2,11
1,59
2,7
100
18
30
14
32
0,15
0,56
0,02
0,07
5321
1723
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
mWs
A/μs
1,67
K/W
Thermistor
Rated resistance*
R25
R100
Power dissipation
P
B(25/100)
B-value
Tol. ±5%
Tj=25°C
Tol. ±3%
20,9
22
1486
23,1
kΩ
Ω
Tj=25°C
200
mW
Tj=25°C
3950
K
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
3
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
100
90
IC (A)
IC(A)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
90
80
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VDS from
1
2
3
0
V CE (V) 5
4
At
tp =
Tj =
VDS from
250
μs
25
°C
3 V to 13 V in steps of 1 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VDS)
1
2
3
4
5
6
7
8
V CE (V)
9
250
μs
125
°C
3 V to 13 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
ID (A)
IF (A)
20
16
80
12
60
8
40
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
4
Tj = 25°C
Tj = 25°C
0
0
0
1
2
At
tp =
VDS =
250
μs
10
V
Copyright by Vincotech
3
4
5
0
V GS (V) 6
At
tp =
4
0,5
250
1
1,5
2
2,5
3
V F (V) 3,5
μs
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of collector current
E = f(ID)
as a function of gate resistor
E = f(RG)
0,6
E (mWs)
E (mWs)
Eon High T
0,7
Eon High T
0,6
0,5
0,5
0,4
Eon Low T
Eon Low T
0,4
0,3
Eoff High T
0,3
Eoff Low T
Eoff High T
0,2
0,2
Eoff Low T
0,1
0,1
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+10/0
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G ( Ω ) 40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
+10/0
V
ID =
15
A
BOOST MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,14
E (mWs)
E (mWs)
0,12
Erec High T
0,1
0,12
0,1
0,08
0,08
0,06
0,06
0,04
Erec High T
0,04
Erec Low T
0,02
0,02
Erec Low T
0
0
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
8
16
32
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VDS =
400
V
VGS =
Rgon =
Rgoff =
+10/0
8
V
Ω
VGS =
ID =
+10/0
15
V
A
8
Ω
Copyright by Vincotech
24
5
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
BOOST MOSFET
Figure 10
Typical switching times as a
function of collector current
t = f(ID)
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdoff
0,1
tdon
0,1
tr
tdon
tf
tr
0,01
0,01
tf
0,001
0,001
0
5
10
15
20
25
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+10/0
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
+10/0
V
IC =
15
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,1
0,04
t rr( μs)
t rr( μs)
trr High T
trr High T
0,08
0,03
0,06
0,02
0,04
trr Low T
trr Low T
0,01
0,02
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
5
10
25/125
°C
400
+10/0
V
V
8
Ω
Copyright by Vincotech
15
20
25
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
6
8
16
25/125
°C
400
15
V
A
+10/0
V
24
32
R Gon ( Ω )
40
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,75
0,9
Qrr ( μC)
Qrr ( μC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
Qrr High T
0,75
0,6
0,6
Qrr High T
0,45
0,45
0,3
0,3
Qrr Low T
0,15
0,15
Qrr Low T
0
0
0
At
At
Tj =
VDS =
VGS =
Rgon =
5
25/125
400
+10/0
8
10
15
20
25
I C (A)
0
30
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
400
15
+10/0
16
24
32
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
75
IrrM (A)
40
IrrM (A)
IRRM High T
60
30
IRRM Low T
45
20
30
10
15
IRRM High T
IRRM Low T
0
0
0
5
At
Tj =
10
VDS =
25/125
400
°C
V
VGS =
Rgon =
+10/0
8
V
Ω
Copyright by Vincotech
15
20
25
I C (A)
0
30
At
Tj =
7
8
16
VR =
25/125
400
°C
V
IF =
VGS =
15
+10/0
A
V
24
32
R Gon ( Ω ) 40
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7000
direc / dt (A/ μs)
direc / dt (A/ μs)
18000
dIrec/dtLow T
dIrec/dtLow T
16000
6000
14000
5000
12000
4000
10000
8000
3000
dIrec/dtHigh T
6000
2000
di0/dtLow T
4000
dIrec/dtHigh T
1000
2000
di0/dtHigh T
dI0/dtHigh T
0
0
At
Tj =
VCE =
VGE =
Rgon =
5
10
15
20
25
30
0
At
Tj =
dI0/dt
25/125
400
+10/0
8
°C
V
V
Ω
dIrec/dt
8
16
24
25/125
400
15
+10/0
°C
V
A
V
dIrec/dt
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω) 40
32
dI0/dt
VR =
IF =
VGS =
BOOST MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
di0/dtLow T
0
I C (A)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
-2
10
-5
-4
10
10
At
D=
RthJH =
tp / T
0,72
-3
10
K/W
Copyright by Vincotech
-2
10
10
-1
10
0
t p (s)
1
-5
10 1
10
At
D=
RthJH =
IGBT thermal model values
10
-4
-3
10
-2
10
-1
10
10
0
t p (s)
tp / T
1,67
K/W
FWD thermal model values
R (C/W)
0,019
0,106
Tau (s)
8,77E+00
1,31E+00
R (C/W)
0,06
0,24
Tau (s)
3,60E+00
4,21E-01
0,352
0,164
2,19E-01
6,50E-02
0,84
0,32
8,48E-02
1,50E-02
0,049
0,031
1,06E-02
7,41E-04
0,17
1,83E-03
8
1
10 1
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
Ptot = f(Th)
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
250
200
40
150
30
100
20
50
10
0
0
0
25
At
Tj =
150
50
75
100
125
o
Th ( C) 150
0
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
Th ( o C)
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
25
150
50
75
100
o
125 T h ( C) 150
0
At
Tj =
ºC
Copyright by Vincotech
9
25
50
150
ºC
75
100
o
125 T h ( C)
150
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 25
BOOST MOSFET
Figure 26
Safe operating area as a function
Gate voltage vs Gate charge
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
3
8
ID (A)
UGS (V)
10
7
10uS
1mS
100uS
6
10mS
10
2
120V
5
480V
4
DC
3
100mS
101
2
1
0
100
101
At
D=
Th =
VGS =
single pulse
80
ºC
V
+10/0
Tj =
Tjmax
2
10
V DS (V)
0
103
At
ID =
50
15
100
150
200
Qg (nC)
250
A
ºC
Copyright by Vincotech
10
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
Bypass diode
Figure 2
Diode transient thermal impedance
a function of forward voltage
IF= f(VF)
as a function of pulse width
ZthJH = f(tp)
100
ZthJC (K/W)
IF (A)
101
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
1
1,5
VF (V)
10-2
2
t p (s)
10-5
At
tp =
250
At
D=
RthJH =
μs
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
101
tp / T
1,42
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
70
Ptot (W)
IF (A)
120
60
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
o
T h ( C)
0
150
At
Tj =
ºC
Copyright by Vincotech
11
50
150
100
o
T h ( C)
150
ºC
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
R(T ) = R25 ⋅ e
22000
[Ω]
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Switching Definitions Boost IGBT
General conditions
Tj
Rgon
Rgoff
=
=
=
BOOST IGBT
Figure 1
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
125 °C
8Ω
8Ω
BOOST IGBT
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
120
tdoff
IC
250
100
VGE 90%
VCE 90%
200
80
VGE
IC
60
150
%
%
tEoff
40
VCE
100
IC 1%
tdon
VGE
50
20
VCE
0
VGE 10%
0
VCE3%
tEon
-20
-0,2
Ic 10%
-50
-0,1
0
0,1
0,2
0,3
0,4
2,8
2,9
3
3,1
3,2
VGE (0%) =
0
10
400
15
0,30
0,32
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BOOST IGBT
Figure 3
Turn-off Switching Waveforms & definition of tf
3,3
time(us)
time (us)
0
10
400
15
0,03
0,07
V
V
V
A
μs
μs
BOOST IGBT
Figure 4
Turn-on Switching Waveforms & definition of tr
300
120
fitted
IC
100
250
IC 90%
200
80
60
150
IC 60%
%
%
100
40
VCE
IC 40%
tr
IC 90%
50
20
VCE
Ic
IC10%
IC 10%
0
0
tf
-20
0,25
VC (100%) =
IC (100%) =
tf =
0,275
0,3
400
15
0,0040
Copyright by Vincotech
0,325
time (us)
-50
2,98
0,35
VC (100%) =
V
A
μs
IC (100%) =
tr =
13
3
3,02
400
15
0,01
3,04
time(us)
3,06
V
A
μs
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Switching Definitions Boost IGBT
BOOST IGBT
Figure 5
Turn-off Switching Waveforms & definition of tEoff
BOOST IGBT
Figure 6
Turn-on Switching Waveforms & definition of tEon
250
120
Pon
IC 1%
Eoff
100
200
80
150
%
60
%
Eon
100
40
50
20
Poff
0
0
tEon
tEoff
-20
-0,2
VCE3%
VGE10%
VGE90%
-50
-0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0
0,1
6,02
0,08
0,32
0,2
0,3
0,4
2,8
0,5
time (us)
2,88
3,04
3,12
3,2
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BOOST IGBT
Figure 7
Gate voltage vs Gate charge (measured)
2,96
6,02
0,34
0,07
kW
mJ
μs
Figure 8
Turn-off Switching Waveforms & definition of trr
15
BOOST FWD
150
VGE (V)
Id
100
trr
10
50
0
Vd
IRRM10%
%
5
-50
-100
0
fitted
-150
-200
2,97
-5
-50
0
50
100
150
200
250
IRRM 90%
IRRM 100%
2,99
3,01
3,03
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
V
V
400
15
181,13
V
A
nC
Copyright by Vincotech
3,05
3,07
3,09
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
14
400
15
V
A
-30
0,03
A
μs
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Switching Definitions Boost IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
BOOST FWD
BOOST FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
(tQrr = integrating time for Qrr)
150
120
Erec
Id
100
90
tErec
tQrr
50
60
Qrr
0
Prec
%
30
%
-50
0
-100
-30
-150
-200
2,98
Id (100%) =
Qrr (100%) =
tQrr =
-60
3
3,02
3,04
15
0,56
0,06
A
μC
μs
Copyright by Vincotech
3,06
3,08
time(us)
3
3,1
Prec (100%) =
Erec (100%) =
tErec =
15
3,02
3,04
6,02
0,08
0,06
3,06
3,08
time(us)
3,1
kW
mJ
μs
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow0 12mm housing
Ordering Code
10-FZ06NBA041FS01-P915L78
in DataMatrix as
in packaging barcode as
P915L78
P915L78
Outline
Pinout
Copyright by Vincotech
16
Revision: 1
10-FZ06NBA041FS01-P915L78
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 1