10-FZ06BIA041FS01-P898E10 Maximum Ratings

10-FZ06BIA041FS01-P898E10
preliminary datasheet
flowSOL 0 BI
600V / 41mOhm
Features
flow0 12mm housing
● High efficiency
● Ultra fast switching frequency
● Low inductive design
● SiC in boost
Target Applications
Schematic
● Transformerless solar inverters
Types
● 10-FZ06BIA041FS01-P898E10
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
34
46
A
370
A
370
A2s
39
59
W
Tjmax
150
°C
VDS
600
V
32
39
A
272
A
98
148
W
Bypass FWD
Repetitive peak reverse voltage
VRRM
Forward current per FWD
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per FWD
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
1
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
24
31
A
171
A
49
74
W
175
°C
600
V
Input Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Buck FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
28
38
A
30
A
45
68
W
150
°C
600
V
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Th=80°C
Tc=80°C
39
A
272
A
98
148
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
45
45
A
150
A
84
128
W
±20
V
6
360
μs
V
175
°C
Maximum Junction Temperature
Tj=Tjmax
32
Polarity Switch IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj≤150°C
VGE=15V
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
3
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,7
1,18
1,15
0,89
0,79
0,01
0,01
1,3
Bypass FWD
Forward voltage
solar inverte
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
1600
V
Ω
0,15
Thermal foil
thickness=76um
Kunze foil KUALF5
V
mA
1,80
K/W
1,19
Input Boost MOSFET
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
V(GS)th
10
44
VGS=VDS
0,00296
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
400
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Rgoff=8 Ω
Rgon=8 Ω
10
400
480
0/10
15
44
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
0,043
0,086
3
Ω
3,6
100
5000
34
33
8
10
276
300
87
93
0,20
0,15
0,06
0,07
290
V
nA
nA
ns
mWs
nC
36
150
6530
f=1MHz
0
360
Tj=25°C
100
pF
tbd.
Thermal foil
thickness=76um
Kunze foil KUALF5
0,72
K/W
0,47
Input Boost FWD
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
400
Rgon=8 Ω
10
400
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
10
15
IRRM
Reverse recovery time
Peak rate of fall of recovery current
24
Thermal foil
thickness=76um
Kunze foil KUALF5
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1
1,56
1,82
1,9
150
18
8
15
14
0,24
0,13
0,04
0,03
4809
1562
V
μA
A
ns
μC
mWs
A/μs
1,95
K/W
1,28
4
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,58
1,80
10
29
11
38
0,12
0,62
2478
1706
0,03
0,08
2,8
Buck FWD
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
IRRM
trr
Qrr
Rgon=8 Ω
400
10
15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal foil
thickness=76um
Kunze foil KUALF5
V
A
ns
μC
A/μs
mWs
1,57
K/W
1,03
Buck MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
10
44
VDS=VGS
Igss
0
20
Idss
0,00296
0
400
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=8 Ω
Rgon=8 Ω
10
400
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
43
86
3
100
5000
34
33
9
9,4
275
302
139,2
4,5
0,138
0,355
0,055
0,075
480
0/10
44
Tj=25°C
36
Gate to drain charge
Qgd
150
Ciss
6530
Output capacitance
Coss
Crss
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
V
nA
nA
ns
mWs
290
Input capacitance
Reverse transfer capacitance
mΩ
3,6
f=1MHz
100
0
Tj=25°C
360
nC
pF
tbd.
Thermal foil
thickness=76um
Kunze foil KUALF5
0,72
K/W
0,47
5
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,58
1,78
2,05
Polarity Switch IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00043
VCE(sat)
15
Collector-emitter cut-off incl FWD
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,2
650
Rgoff=8 Ω
Rgon=8 Ω
V
V
mA
nA
Ω
none
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
na.
na.
na.
na.
na.
na.
na.
na.
na.
na.
na.
na.
ns
mWs
3140
f=1MHz
0
25
15
480
Tj=25°C
200
Tj=25°C
310
pF
93
50
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
1,13
K/W
0,74
Thermistor
Rated resistance*
R25
Deviation of R100
DR/R
Power dissipation
P
B(25/100)
B-value
Copyright by Vincotech
Tj=25°C
17,5
22
Tc=100°C
R100=1503Ω
Tol. ±3%
6
29
kΩ
%/K
Tj=25°C
210
mW
Tj=25°C
4000
K
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
75
IC (A)
IC (A)
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
3 V to 13 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
3 V to 13 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
35
5
Tj = Tjmax-25°C
IF (A)
IC (A)
90
Tj = Tjmax-25°C
30
75
25
60
Tj = 25°C
20
45
Tj = 25°C
15
30
10
15
5
0
0
0
1
2
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
3
4
5
V GE (V)
6
0
At
tp =
7
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
E (mWs)
E (mWs)
0,8
Eon High T
Eon High T
0,6
0,6
0,4
0,4
Eon Low T
Eoff High T
Eon Low T
Eoff Low T
0,2
0,2
Eoff High T
Eoff Low T
0
0
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
15
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,15
E (mWs)
E (mWs)
0,15
Erec High T
0,12
0,12
0,09
0,09
0,06
0,06
Erec High T
0,03
0,03
Erec Low T
Erec Low T
0
0
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
8
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
0,10
0,10
tdon
tdon
tr
tr
0,01
0,01
0,00
0,00
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
15
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,1
t rr(ms)
0,05
trr High T
0,04
0,08
trr High T
0,03
0,06
0,02
0,04
0,01
0,02
trr Low T
trr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
9
8
25/125
400
15
10
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
1
Qrr (mC)
1,0
Qrr High T
0,8
0,8
0,6
0,6
Qrr High T
0,4
0,4
0,2
0,2
Qrr Low T
Qrr Low T
0,0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
23
I C (A)
30
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
8
At
Tj =
VR =
IF =
VGE =
25/125
400
15
10
16
24
32
R g on ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
60
IrrM (A)
40
40
IRRM High T
32
45
24
30
16
IRRM Low T
15
8
IRRM High T
IRRM Low T
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
8
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
10
8
25/125
400
15
10
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10000
dIrec/dtHigh T
direc / dt (A/ms)
direc / dt (A/ms)
4000
8000
3000
dIrec/dtLow T
dIrec/dtHigh T
6000
dIo/dtLow T
2000
4000
1000
2000
di0/dtHigh T
dIrec/dtLow T
dI0/dtLow T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
I C (A)
23
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
400
15
10
16
24
R gon (W)
32
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
40
100
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-5
10
At
D=
RthJH =
-4
10
-3
-2
10
-1
10
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0,72
K/W
10-4
10-3
1,57
R (C/W)
0,02
0,10
0,37
0,15
0,04
0,03
R (C/W)
0,06
0,18
0,76
0,35
0,16
0,06
11
100
t p (s)
1011
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
8,7E+00
1,3E+00
2,0E-01
6,0E-02
8,2E-03
5,7E-04
10-2
Tau (s)
3,6E+00
4,9E-01
8,0E-02
1,6E-02
1,9E-03
3,9E-04
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
250
200
40
150
30
100
20
50
10
0
0
0
50
At
Tj =
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
200
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
12
50
150
100
150
T h ( o C)
200
°C
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Buck
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
3
8
IC (A)
VGE (V)
10
7
100uS
102
120V
480V
6
10mS
1mS
100mS
5
101
4
DC
100
3
2
-1
10
1
0
100
At
D=
Th =
VGE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
ºC
10
V
Tjmax
ºC
Copyright by Vincotech
13
50
15
100
150
200
Q g (nC)
250
A
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Polarity Switch IGBT
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
125
125
100
100
75
75
50
50
25
25
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 4
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
IC (A)
45
40
Tj = Tjmax-25°C
35
Tj = 25°C
100
30
25
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
15
10
5
0
10-2
0
At
tp =
VCE =
2
250
10
4
6
8
10
V GE (V)
12
10-5
μs
V
Copyright by Vincotech
At
D=
RthJH =
14
10
-4
tp / T
1,13
-3
10
-2
10
-1
10
10
0
t p (s)
1
10 1
K/W
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Polarity Switch IGBT
IGBT
Figure 5
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 6
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
175
150
40
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Copyright by Vincotech
15
50
175
15
100
150
T h ( o C)
200
ºC
V
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
MOSFET
Figure 3
Typical output characteristics
ID = f(VDS)
BOOST FWD
Figure 4
Typical output characteristics
ID = f(VDS)
75
IC(A)
IC (A)
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGS from
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGS from
250
μs
25
°C
3 V to 13 V in steps of 1 V
MOSFET
Figure 3
Typical transfer characteristics
ID = f(VDS)
2
3
4
V CE (V)
5
250
μs
125
°C
3 V to 13 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IF (A)
ID (A)
35
30
Tj = 25°C
60
Tj = Tjmax-25°C
25
Tj = Tjmax-25°C
45
20
Tj = 25°C
15
30
10
15
5
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
V GS (V) 6
0
At
tp =
μs
V
Copyright by Vincotech
16
0,8
250
1,6
2,4
3,2
V F (V)
4
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,5
E (mWs)
E (mWs)
0,5
Eon Low T
Eon High T
0,4
0,3
Eon Low T
0,4
Eon High T
0,3
Eoff High T
Eoff Low T
0,2
0,2
Eoff High T
Eoff Low T
0,1
0,1
0
0
0
8
15
23
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,07
E (mWs)
E (mWs)
0,05
0,06
0,04
Erec Low T
0,05
Erec Low T
0,03
0,04
Erec High T
0,03
0,02
Erec High T
0,02
0,01
0,01
0
0
0
7,5
15
22,5
I C (A)
30
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
Copyright by Vincotech
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
15
A
17
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( μs)
t ( μs)
1
tdoff
0,1
0,10
tdon
tdon
tr
tr
0,01
0,01
0,001
0,00
0
7,5
15
22,5
I D (A)
30
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
15
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,03
t rr( μs)
t rr( μs)
0,024
trr Low T
0,025
0,02
0,02
0,016
trr High T
trr Low T
0,015
0,012
0,01
0,008
trr High T
0,005
0,004
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
18
8
25/125
400
15
10
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,4
Qrr ( μC)
Qrr ( μC)
0,35
0,30
Qrr Low T
0,32
0,25
0,24
0,20
Qrr Low T
0,15
0,16
Qrr High T
0,10
Qrr High T
0,08
0,05
0
0,00
At 0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
400
15
10
16
24
32
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
50
IrrM (A)
25
R Gon ( Ω)
IrrM (A)
IRRM Low T
20
40
15
30
10
20
IRRM High T
5
10
IRRM Low T
IRRM High T
0
0
0
8
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
8
15
23
I C (A)
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
19
8
25/125
400
15
10
16
24
32
R Gon ( Ω )
40
°C
V
A
V
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000
18000
direc / dt (A/ μs)
direc / dt (A/ μs)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
dI0/dt
dIrec/dtLow T
dIrec/dt
15000
8000
12000
dIrec/dtLow T
6000
9000
4000
dI0/dtLow T
6000
2000
di0/dtLow T
3000
dIrec/dtHigh T
dIrec/dtHigh T
di0/dtHigh T
0
dI0/dtHigh T
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
400
10
8
15
I C (A)
23
30
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
400
15
10
16
24
40
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
R Gon ( Ω)
32
0
10
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-1
100
t p (s)
101 1
tp / T
0,72
K/W
IGBT thermal model values
R (C/W)
0,01714
0,09725
0,3704
0,1548
0,04253
0,03357
10-2
ú
10-4
1,95
10-3
10-2
10-1
100
t p (s)
1011
tp / T
K/W
FWD thermal model values
Tau (s)
8,749
1,33
0,2014
0,05998
0,008246
0,0005654
Copyright by Vincotech
10-5
At
D=
RthJH =
R (C/W)
0,02765
0,1151
0,3598
0,8406
0,2989
0,1886
20
Tau (s)
9,595
1,46
0,3129
0,09758
0,02916
0,007121
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
IC (A)
50
Ptot (W)
250
200
40
150
30
100
20
50
10
0
0
0
50
At
Tj =
150
100
150
Th ( o C)
200
0
50
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
10
100
150
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
100
Th ( o C)
35
80
30
25
60
20
40
15
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
21
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
INPUT BOOST
MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
103
ID (A)
UGS (V)
8
7
120V
102
480V
6
10uS
5
1mS
10mS
100uS
100mS
4
101
DC
3
2
100
1
0
10-1
100
At
D=
Th =
VGS =
Tj =
101
102
V DS (V)
0
103
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Copyright by Vincotech
22
50
15
100
150
200
Qg (nC)
250
A
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
1
ZthJC (K/W)
IF (A)
10
40
Tj = Tjmax-25°C
100
30
Tj = 25°C
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10
0
0
At
tp =
0,3
0,6
0,9
1,2
V F (V)
-2
10
1,5
10-5
At
D=
RthJH =
μs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
10-1
100
1011
tp / T
1,804
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
Ptot (W)
IF (A)
60
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
23
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
24
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
120
tdoff
IC
250
100
IC
VGE 90%
VCE 90%
200
80
%
150
VGE
60
%
IC 1%
tEoff
40
VCE
100
tdon
VGE
50
20
IC10%
VGE10%
VCE
VCE5%
0
0
tEon
-50
-20
-0,4
-0,3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-0,2
-0,1
0
10
400
15
0,30
0,32
V
V
V
A
μs
μs
0
2,6
0,1 time (us) 0,2
2,65
2,7
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
BUCK MOSFET
Figure 3
2,75
2,8
0
10
400
15
0,03
0,10
2,85
2,9
V
V
V
A
μs
μs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
2,95
3
time(us)
Turn-on Switching Waveforms & definition of tr
120
300
fitted
IC
VCE
Ic
100
250
IC 90%
80
200
60
150
%
IC 60%
%
40
IC 40%
VCE
100
IC90%
tr
20
50
IC10%
0
IC10%
0
tf
-20
-0,02
-50
0
0,02
0,04
0,06
0,08
0,1
0,12
2,6
2,65
2,7
2,75
2,8
time (us)
VC (100%) =
IC (100%) =
tf =
400
15
0,004
Copyright by Vincotech
VC (100%) =
IC (100%) =
tr =
V
A
μs
25
400
15
0,01
2,85
2,9
2,95
3
time(us)
V
A
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
250
160
Pon
130
200
IC 1%
Eoff
100
150
%
%
70
Eon
100
40
50
VGE90%
10
Poff
VCE5%
VGE10%
tEoff
tEon
0
-20
-50
-50
-0,3
-0,2
Poff (100%) =
Eoff (100%) =
tEoff =
-0,1
6,00
0,08
0,32
0
0,1 time (us)
2,7
0,2
2,75
2,85
2,9
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BUCK FWD
Figure 7
Gate voltage vs Gate charge (measured)
2,8
6,00
0,35
0,10
kW
mJ
μs
BUCK MOSFET
Figure 8
15
150
VGE (V)
Turn-off Switching Waveforms & definition of trr
100
Id
trr
10
50
Vd
0
%
5
IRRM 10%
fitted
-50
-100
0
-150
-5
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
0
10
400
15
209,77
Copyright by Vincotech
100
150
200
Qg (nC)
-200
2,76
250
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
26
IRRM 90%
IRRM 100%
2,77
2,78
2,79
400
15
-29
0,04
V
A
A
μs
2,8
2,81
2,82
time(us)
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK FWD
Figure 9
BUCK FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
Id
100
100
tQrr
80
tErec
50
60
Qrr
0
%
%
40
-50
20
Prec
-100
0
-150
-20
-200
-40
2,7
Id (100%) =
Qrr (100%) =
tQrr =
2,75
2,8
15
0,62
0,08
Copyright by Vincotech
2,85
time(us)
2,9
2,7
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
27
2,75
2,8
6,00
0,08
0,08
2,85
2,9
time(us)
2,95
kW
mJ
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions INP. BOOST
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
MOSFET
Figure 1
MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
160
120
140
tdoff
IC
120
100
IC
VGE 90%
VCE 90%
VCE
100
80
VGE
80
60
%
%
IC 1%
tdon
60
40
VGE
tEoff
40
20
VCE
0
20
-20
0
VGE10%
VCE3%
IC10%
tEon
-40
-0,2
-20
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0
10
400
15
0,30
0,32
0,2
0,3
0,4
time (us)
2,8
0,5
2,85
2,95
3
3,05
3,1
3,15
3,2
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
MOSFET
Figure 3
2,9
0
10
400
15
0,04
0,10
V
V
V
A
μs
μs
MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
180
120
fitted
VCE
IC
150
100
Ic 90%
80
120
60
90
VCE
Ic 60%
IC 90%
%
%
tr
60
40
Ic 40%
30
20
Ic
Ic 10%
0
IC 10%
0
tf
-30
-20
0,2
VC (100%) =
IC (100%) =
tf =
0,24
0,28
400
15
0,03
Copyright by Vincotech
0,32
0,36
2,9
time (us) 0,4
2,93
2,96
2,99
3,02
3,05
3,08
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
28
400
15
0,01
V
A
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions INP. BOOST
MOSFET
Figure 5
MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
140
120
Pon
Ic 1%
Eoff
100
120
Eon
80
100
60
80
%
60
40
%
40
20
U ge90%
Poff
0
20
tEoff
Uge 10%
Uce 3%
0
-20
tEon
-40
-0,1
-20
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
6,00
0,07
0,32
0,3
0,4
2,9
0,5 time (us) 0,6
2,95
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
MOSFET
Figure 7
3
3,05
6,0036
0,15
0,1025
3,1
3,15
3,2
kW
mJ
μs
FWD
Figure 8
Gate voltage vs Gate charge (measured)
time(us)
Turn-off Switching Waveforms & definition of trr
15
120
Uge (V)
Id
80
trr
10
40
%
Ud
fitted
0
5
IRRM 10%
-40
IRRM 90%
IRRM 100%
0
-80
-120
-5
-50
0
50
100
150
200
2,9
250
2,95
3
3,05
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
400
15
216,35
Copyright by Vincotech
3,1
3,15
3,2
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
29
400
15
-6
0,03
V
A
A
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Switching Definitions INP. BOOST
FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
120
Id
100
100
80
80
60
tQint
tErec
60
%
40
%
Erec
40
20
20
Qrr
0
Prec
0
-20
-20
-40
-60
2,95
Id (100%) =
Qrr (100%) =
tQint =
-40
2,97
2,99
15
0,19
0,03
Copyright by Vincotech
3,01
3,03
time(us)
2,9
3,05
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
30
2,93
2,96
6,00
0,06
0,03
2,99
3,02
time(us)
3,05
kW
mJ
μs
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06BIA041FS01-P898E10
in DataMatrix as
P898E10
in packaging barcode as
P898E10
Outline
Pinout
Copyright by Vincotech
31
Revision: 1
10-FZ06BIA041FS01-P898E10
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
32
Revision: 1