10-FZ06BIA041FS01-P898E10 preliminary datasheet flowSOL 0 BI 600V / 41mOhm Features flow0 12mm housing ● High efficiency ● Ultra fast switching frequency ● Low inductive design ● SiC in boost Target Applications Schematic ● Transformerless solar inverters Types ● 10-FZ06BIA041FS01-P898E10 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 46 A 370 A 370 A2s 39 59 W Tjmax 150 °C VDS 600 V 32 39 A 272 A 98 148 W Bypass FWD Repetitive peak reverse voltage VRRM Forward current per FWD IFAV Surge forward current IFSM I2t-value I2t Power dissipation per FWD Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Input Boost MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-source peak voltage VGS ±20 V Tjmax 150 °C Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C Power dissipation 1 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 24 31 A 171 A 49 74 W 175 °C 600 V Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Buck FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax 28 38 A 30 A 45 68 W 150 °C 600 V Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Th=80°C Tc=80°C 39 A 272 A 98 148 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 45 45 A 150 A 84 128 W ±20 V 6 360 μs V 175 °C Maximum Junction Temperature Tj=Tjmax 32 Polarity Switch IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj≤150°C VGE=15V Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 3 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,18 1,15 0,89 0,79 0,01 0,01 1,3 Bypass FWD Forward voltage solar inverte 35 Threshold voltage (for power loss calc. only) Vto 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 1600 V Ω 0,15 Thermal foil thickness=76um Kunze foil KUALF5 V mA 1,80 K/W 1,19 Input Boost MOSFET Static drain to source ON resistance Gate threshold voltage RDS(on) V(GS)th 10 44 VGS=VDS 0,00296 Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 400 Turn On Delay Time Rise Time Turn off delay time Fall time td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Reverse transfer capacitance Crss Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Rgoff=8 Ω Rgon=8 Ω 10 400 480 0/10 15 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 0,043 0,086 3 Ω 3,6 100 5000 34 33 8 10 276 300 87 93 0,20 0,15 0,06 0,07 290 V nA nA ns mWs nC 36 150 6530 f=1MHz 0 360 Tj=25°C 100 pF tbd. Thermal foil thickness=76um Kunze foil KUALF5 0,72 K/W 0,47 Input Boost FWD Forward voltage VF Reverse leakage current Irm Peak recovery current trr Reverse recovery charge Qrr Reverse recovered energy Erec 400 Rgon=8 Ω 10 400 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 10 15 IRRM Reverse recovery time Peak rate of fall of recovery current 24 Thermal foil thickness=76um Kunze foil KUALF5 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,56 1,82 1,9 150 18 8 15 14 0,24 0,13 0,04 0,03 4809 1562 V μA A ns μC mWs A/μs 1,95 K/W 1,28 4 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,58 1,80 10 29 11 38 0,12 0,62 2478 1706 0,03 0,08 2,8 Buck FWD FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 IRRM trr Qrr Rgon=8 Ω 400 10 15 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal foil thickness=76um Kunze foil KUALF5 V A ns μC A/μs mWs 1,57 K/W 1,03 Buck MOSFET Static drain to source ON resistance Rds(on) Gate threshold voltage V(GS)th Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time 10 44 VDS=VGS Igss 0 20 Idss 0,00296 0 400 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Rgoff=8 Ω Rgon=8 Ω 10 400 15 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 43 86 3 100 5000 34 33 9 9,4 275 302 139,2 4,5 0,138 0,355 0,055 0,075 480 0/10 44 Tj=25°C 36 Gate to drain charge Qgd 150 Ciss 6530 Output capacitance Coss Crss Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech V nA nA ns mWs 290 Input capacitance Reverse transfer capacitance mΩ 3,6 f=1MHz 100 0 Tj=25°C 360 nC pF tbd. Thermal foil thickness=76um Kunze foil KUALF5 0,72 K/W 0,47 5 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,58 1,78 2,05 Polarity Switch IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,00043 VCE(sat) 15 Collector-emitter cut-off incl FWD ICES 0 600 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,2 650 Rgoff=8 Ω Rgon=8 Ω V V mA nA Ω none Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C na. na. na. na. na. na. na. na. na. na. na. na. ns mWs 3140 f=1MHz 0 25 15 480 Tj=25°C 200 Tj=25°C 310 pF 93 50 Thermal grease thickness≤50um λ = 1 W/mK nC 1,13 K/W 0,74 Thermistor Rated resistance* R25 Deviation of R100 DR/R Power dissipation P B(25/100) B-value Copyright by Vincotech Tj=25°C 17,5 22 Tc=100°C R100=1503Ω Tol. ±3% 6 29 kΩ %/K Tj=25°C 210 mW Tj=25°C 4000 K Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 75 IC (A) IC (A) 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 3 V to 13 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 3 V to 13 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 35 5 Tj = Tjmax-25°C IF (A) IC (A) 90 Tj = Tjmax-25°C 30 75 25 60 Tj = 25°C 20 45 Tj = 25°C 15 30 10 15 5 0 0 0 1 2 At tp = VCE = 250 10 μs V Copyright by Vincotech 3 4 5 V GE (V) 6 0 At tp = 7 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 E (mWs) E (mWs) 0,8 Eon High T Eon High T 0,6 0,6 0,4 0,4 Eon Low T Eoff High T Eon Low T Eoff Low T 0,2 0,2 Eoff High T Eoff Low T 0 0 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = 10 V IC = 15 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,15 E (mWs) E (mWs) 0,15 Erec High T 0,12 0,12 0,09 0,09 0,06 0,06 Erec High T 0,03 0,03 Erec Low T Erec Low T 0 0 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 R G (W) 40 With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = 10 V IC = 15 A 8 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdoff 0,10 0,10 tdon tdon tr tr 0,01 0,01 0,00 0,00 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = 125 °C VCE = 400 V VGE = 10 V IC = 15 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,1 t rr(ms) 0,05 trr High T 0,04 0,08 trr High T 0,03 0,06 0,02 0,04 0,01 0,02 trr Low T trr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 23 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 9 8 25/125 400 15 10 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 1 Qrr (mC) 1,0 Qrr High T 0,8 0,8 0,6 0,6 Qrr High T 0,4 0,4 0,2 0,2 Qrr Low T Qrr Low T 0,0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 23 I C (A) 30 °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 8 At Tj = VR = IF = VGE = 25/125 400 15 10 16 24 32 R g on ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 60 IrrM (A) 40 40 IRRM High T 32 45 24 30 16 IRRM Low T 15 8 IRRM High T IRRM Low T 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 400 10 8 15 23 I C (A) 30 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 10 8 25/125 400 15 10 16 24 32 R gon (W) 40 °C V A V Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 dIrec/dtHigh T direc / dt (A/ms) direc / dt (A/ms) 4000 8000 3000 dIrec/dtLow T dIrec/dtHigh T 6000 dIo/dtLow T 2000 4000 1000 2000 di0/dtHigh T dIrec/dtLow T dI0/dtLow T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 I C (A) 23 0 30 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 400 15 10 16 24 R gon (W) 32 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 40 100 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -5 10 At D= RthJH = -4 10 -3 -2 10 -1 10 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0,72 K/W 10-4 10-3 1,57 R (C/W) 0,02 0,10 0,37 0,15 0,04 0,03 R (C/W) 0,06 0,18 0,76 0,35 0,16 0,06 11 100 t p (s) 1011 K/W FWD thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 8,7E+00 1,3E+00 2,0E-01 6,0E-02 8,2E-03 5,7E-04 10-2 Tau (s) 3,6E+00 4,9E-01 8,0E-02 1,6E-02 1,9E-03 3,9E-04 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 250 200 40 150 30 100 20 50 10 0 0 0 50 At Tj = 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 200 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 12 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Buck MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 3 8 IC (A) VGE (V) 10 7 100uS 102 120V 480V 6 10mS 1mS 100mS 5 101 4 DC 100 3 2 -1 10 1 0 100 At D= Th = VGE = Tj = 101 102 V CE (V) 0 103 At IC = single pulse 80 ºC 10 V Tjmax ºC Copyright by Vincotech 13 50 15 100 150 200 Q g (nC) 250 A Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Polarity Switch IGBT IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 125 125 100 100 75 75 50 50 25 25 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 250 μs 125 °C 7 V to 17 V in steps of 1 V IGBT Figure 4 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) IC (A) 45 40 Tj = Tjmax-25°C 35 Tj = 25°C 100 30 25 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 15 10 5 0 10-2 0 At tp = VCE = 2 250 10 4 6 8 10 V GE (V) 12 10-5 μs V Copyright by Vincotech At D= RthJH = 14 10 -4 tp / T 1,13 -3 10 -2 10 -1 10 10 0 t p (s) 1 10 1 K/W Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Polarity Switch IGBT IGBT Figure 5 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 6 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 175 150 40 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC Copyright by Vincotech 15 50 175 15 100 150 T h ( o C) 200 ºC V Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST MOSFET Figure 3 Typical output characteristics ID = f(VDS) BOOST FWD Figure 4 Typical output characteristics ID = f(VDS) 75 IC(A) IC (A) 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGS from 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGS from 250 μs 25 °C 3 V to 13 V in steps of 1 V MOSFET Figure 3 Typical transfer characteristics ID = f(VDS) 2 3 4 V CE (V) 5 250 μs 125 °C 3 V to 13 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IF (A) ID (A) 35 30 Tj = 25°C 60 Tj = Tjmax-25°C 25 Tj = Tjmax-25°C 45 20 Tj = 25°C 15 30 10 15 5 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 V GS (V) 6 0 At tp = μs V Copyright by Vincotech 16 0,8 250 1,6 2,4 3,2 V F (V) 4 μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,5 E (mWs) E (mWs) 0,5 Eon Low T Eon High T 0,4 0,3 Eon Low T 0,4 Eon High T 0,3 Eoff High T Eoff Low T 0,2 0,2 Eoff High T Eoff Low T 0,1 0,1 0 0 0 8 15 23 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,07 E (mWs) E (mWs) 0,05 0,06 0,04 Erec Low T 0,05 Erec Low T 0,03 0,04 Erec High T 0,03 0,02 Erec High T 0,02 0,01 0,01 0 0 0 7,5 15 22,5 I C (A) 30 0 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω Copyright by Vincotech 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 15 A 17 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST MOSFET Figure 9 Typical switching times as a function of collector current t = f(ID) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( μs) t ( μs) 1 tdoff 0,1 0,10 tdon tdon tr tr 0,01 0,01 0,001 0,00 0 7,5 15 22,5 I D (A) 30 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 15 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,03 t rr( μs) t rr( μs) 0,024 trr Low T 0,025 0,02 0,02 0,016 trr High T trr Low T 0,015 0,012 0,01 0,008 trr High T 0,005 0,004 0 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 23 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 18 8 25/125 400 15 10 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,4 Qrr ( μC) Qrr ( μC) 0,35 0,30 Qrr Low T 0,32 0,25 0,24 0,20 Qrr Low T 0,15 0,16 Qrr High T 0,10 Qrr High T 0,08 0,05 0 0,00 At 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 23 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 400 15 10 16 24 32 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 50 IrrM (A) 25 R Gon ( Ω) IrrM (A) IRRM Low T 20 40 15 30 10 20 IRRM High T 5 10 IRRM Low T IRRM High T 0 0 0 8 At Tj = VCE = VGE = Rgon = 25/125 400 10 8 15 23 I C (A) 30 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 19 8 25/125 400 15 10 16 24 32 R Gon ( Ω ) 40 °C V A V Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 10000 18000 direc / dt (A/ μs) direc / dt (A/ μs) BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt dI0/dt dIrec/dtLow T dIrec/dt 15000 8000 12000 dIrec/dtLow T 6000 9000 4000 dI0/dtLow T 6000 2000 di0/dtLow T 3000 dIrec/dtHigh T dIrec/dtHigh T di0/dtHigh T 0 dI0/dtHigh T 0 0 At Tj = VCE = VGE = Rgon = 8 25/125 400 10 8 15 I C (A) 23 30 0 At Tj = VR = IF = VGS = °C V V Ω MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 400 15 10 16 24 40 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 R Gon ( Ω) 32 0 10 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10 10-2 10-5 10-4 At D= RthJH = 10-3 10-1 100 t p (s) 101 1 tp / T 0,72 K/W IGBT thermal model values R (C/W) 0,01714 0,09725 0,3704 0,1548 0,04253 0,03357 10-2 ú 10-4 1,95 10-3 10-2 10-1 100 t p (s) 1011 tp / T K/W FWD thermal model values Tau (s) 8,749 1,33 0,2014 0,05998 0,008246 0,0005654 Copyright by Vincotech 10-5 At D= RthJH = R (C/W) 0,02765 0,1151 0,3598 0,8406 0,2989 0,1886 20 Tau (s) 9,595 1,46 0,3129 0,09758 0,02916 0,007121 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) IC (A) 50 Ptot (W) 250 200 40 150 30 100 20 50 10 0 0 0 50 At Tj = 150 100 150 Th ( o C) 200 0 50 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 10 100 150 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 100 Th ( o C) 35 80 30 25 60 20 40 15 10 20 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 21 50 175 100 150 T h ( o C) 200 ºC Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet INPUT BOOST MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) MOSFET Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 103 ID (A) UGS (V) 8 7 120V 102 480V 6 10uS 5 1mS 10mS 100uS 100mS 4 101 DC 3 2 100 1 0 10-1 100 At D= Th = VGS = Tj = 101 102 V DS (V) 0 103 At ID = single pulse 80 ºC V 10 Tjmax ºC Copyright by Vincotech 22 50 15 100 150 200 Qg (nC) 250 A Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Bypass Diode Bypass diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Bypass diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 1 ZthJC (K/W) IF (A) 10 40 Tj = Tjmax-25°C 100 30 Tj = 25°C 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10 0 0 At tp = 0,3 0,6 0,9 1,2 V F (V) -2 10 1,5 10-5 At D= RthJH = μs 250 Bypass diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 1011 tp / T 1,804 K/W Bypass diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) Ptot (W) IF (A) 60 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 23 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 22000 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 24 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 120 tdoff IC 250 100 IC VGE 90% VCE 90% 200 80 % 150 VGE 60 % IC 1% tEoff 40 VCE 100 tdon VGE 50 20 IC10% VGE10% VCE VCE5% 0 0 tEon -50 -20 -0,4 -0,3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -0,2 -0,1 0 10 400 15 0,30 0,32 V V V A μs μs 0 2,6 0,1 time (us) 0,2 2,65 2,7 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = BUCK MOSFET Figure 3 2,75 2,8 0 10 400 15 0,03 0,10 2,85 2,9 V V V A μs μs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 2,95 3 time(us) Turn-on Switching Waveforms & definition of tr 120 300 fitted IC VCE Ic 100 250 IC 90% 80 200 60 150 % IC 60% % 40 IC 40% VCE 100 IC90% tr 20 50 IC10% 0 IC10% 0 tf -20 -0,02 -50 0 0,02 0,04 0,06 0,08 0,1 0,12 2,6 2,65 2,7 2,75 2,8 time (us) VC (100%) = IC (100%) = tf = 400 15 0,004 Copyright by Vincotech VC (100%) = IC (100%) = tr = V A μs 25 400 15 0,01 2,85 2,9 2,95 3 time(us) V A μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions BUCK MOSFET BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 250 160 Pon 130 200 IC 1% Eoff 100 150 % % 70 Eon 100 40 50 VGE90% 10 Poff VCE5% VGE10% tEoff tEon 0 -20 -50 -50 -0,3 -0,2 Poff (100%) = Eoff (100%) = tEoff = -0,1 6,00 0,08 0,32 0 0,1 time (us) 2,7 0,2 2,75 2,85 2,9 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs BUCK FWD Figure 7 Gate voltage vs Gate charge (measured) 2,8 6,00 0,35 0,10 kW mJ μs BUCK MOSFET Figure 8 15 150 VGE (V) Turn-off Switching Waveforms & definition of trr 100 Id trr 10 50 Vd 0 % 5 IRRM 10% fitted -50 -100 0 -150 -5 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 0 10 400 15 209,77 Copyright by Vincotech 100 150 200 Qg (nC) -200 2,76 250 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 26 IRRM 90% IRRM 100% 2,77 2,78 2,79 400 15 -29 0,04 V A A μs 2,8 2,81 2,82 time(us) Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions BUCK MOSFET BUCK FWD Figure 9 BUCK FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec Id 100 100 tQrr 80 tErec 50 60 Qrr 0 % % 40 -50 20 Prec -100 0 -150 -20 -200 -40 2,7 Id (100%) = Qrr (100%) = tQrr = 2,75 2,8 15 0,62 0,08 Copyright by Vincotech 2,85 time(us) 2,9 2,7 Prec (100%) = Erec (100%) = tErec = A μC μs 27 2,75 2,8 6,00 0,08 0,08 2,85 2,9 time(us) 2,95 kW mJ μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions INP. BOOST General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω MOSFET Figure 1 MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 160 120 140 tdoff IC 120 100 IC VGE 90% VCE 90% VCE 100 80 VGE 80 60 % % IC 1% tdon 60 40 VGE tEoff 40 20 VCE 0 20 -20 0 VGE10% VCE3% IC10% tEon -40 -0,2 -20 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0 10 400 15 0,30 0,32 0,2 0,3 0,4 time (us) 2,8 0,5 2,85 2,95 3 3,05 3,1 3,15 3,2 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs MOSFET Figure 3 2,9 0 10 400 15 0,04 0,10 V V V A μs μs MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 180 120 fitted VCE IC 150 100 Ic 90% 80 120 60 90 VCE Ic 60% IC 90% % % tr 60 40 Ic 40% 30 20 Ic Ic 10% 0 IC 10% 0 tf -30 -20 0,2 VC (100%) = IC (100%) = tf = 0,24 0,28 400 15 0,03 Copyright by Vincotech 0,32 0,36 2,9 time (us) 0,4 2,93 2,96 2,99 3,02 3,05 3,08 time(us) VC (100%) = IC (100%) = tr = V A μs 28 400 15 0,01 V A μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions INP. BOOST MOSFET Figure 5 MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 140 120 Pon Ic 1% Eoff 100 120 Eon 80 100 60 80 % 60 40 % 40 20 U ge90% Poff 0 20 tEoff Uge 10% Uce 3% 0 -20 tEon -40 -0,1 -20 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,2 6,00 0,07 0,32 0,3 0,4 2,9 0,5 time (us) 0,6 2,95 Pon (100%) = Eon (100%) = tEon = kW mJ μs MOSFET Figure 7 3 3,05 6,0036 0,15 0,1025 3,1 3,15 3,2 kW mJ μs FWD Figure 8 Gate voltage vs Gate charge (measured) time(us) Turn-off Switching Waveforms & definition of trr 15 120 Uge (V) Id 80 trr 10 40 % Ud fitted 0 5 IRRM 10% -40 IRRM 90% IRRM 100% 0 -80 -120 -5 -50 0 50 100 150 200 2,9 250 2,95 3 3,05 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 400 15 216,35 Copyright by Vincotech 3,1 3,15 3,2 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 29 400 15 -6 0,03 V A A μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Switching Definitions INP. BOOST FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 120 Id 100 100 80 80 60 tQint tErec 60 % 40 % Erec 40 20 20 Qrr 0 Prec 0 -20 -20 -40 -60 2,95 Id (100%) = Qrr (100%) = tQint = -40 2,97 2,99 15 0,19 0,03 Copyright by Vincotech 3,01 3,03 time(us) 2,9 3,05 Prec (100%) = Erec (100%) = tErec = A μC μs 30 2,93 2,96 6,00 0,06 0,03 2,99 3,02 time(us) 3,05 kW mJ μs Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06BIA041FS01-P898E10 in DataMatrix as P898E10 in packaging barcode as P898E10 Outline Pinout Copyright by Vincotech 31 Revision: 1 10-FZ06BIA041FS01-P898E10 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 32 Revision: 1