FZ06NRA045FH01 preliminary datasheet flowNPC 0 600V/30A Features flow0 12mm housing ● neutral point clamped inverter ● reactive power capability ● clip-in pcb mounting ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● FZ06NRA045FH01 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 25 34 A 120 A 36 54 W Tjmax 150 °C VDS 600 V 36 44 A 230 A 125 189 W Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C Power dissipation 1 Revision: 2 FZ06NRA045FH01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 47 50 A 225 A 85 129 W ±20 V Tj≤150°C 6 μs VGE=15V 360 V 175 °C 600 V Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tc=80°C Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Inverse Diode VRRM Tc=25°C DC forward current IF Tj=Tjmax Boost Inverse Diode Ptot Tj=Tjmax Peak Repetitive Reverse Voltage Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax 2 21 A W 150 °C 1200 V 16 21 A 36 A 30 46 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2 FZ06NRA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 1 2,25 1,66 57 82 14 22 0,43 0,99 16743 15517 0,070 0,137 2,7 Buck Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 30 IRRM trr Qrr Rgon=8 Ω 350 30 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK V A ns μC A/μs mWs 1,95 K/W Buck MOSFET Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current Zero Gate Voltage Drain Current Turn On Delay Time Rise Time Turn off delay time Fall time Rds(on) 10 44 VDS=VGS VDS=VGS V(GS)th Igss 20 Idss 0,003 0 0 600 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Rgon=8 Ω Rgoff=8 Ω 350 15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,1 42 83 3 200 25 30 31 8 8 269 295 7 140 0,161 0,265 0,085 0,104 150 Gate to source charge Qgs Gate to drain charge Qgd 51 Input capacitance Ciss 6800 Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH 15 f=1MHz copyright Vincotech 350 100 0 30 Tj=25°C mΩ 3,9 34 Tj=25°C V nA μA ns mWs 190 nC pF 320 Thermal grease thickness≤50um λ = 1 W/mK 0,56 3 K/W Revision: 2 FZ06NRA045FH01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,14 1,19 1,8 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 30 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 30 650 Rgon=8 Ω Rgoff=8 Ω 350 15 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V μA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 40 37 10 13 454 502 64 87 0,719 0,959 0,854 1,163 ns mWs 4620 f=1MHz 0 25 15 480 288 Tj=25°C pF 137 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1,11 K/W 9,07 9,43 V Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 20 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK K/W Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 18 Rgon=8 Ω 350 di(rec)max /dt Erec RthJH 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 3,14 2,71 3,5 100 92 112 37 52 2,8 5,7 20796 20514 0,538 1,387 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 2,32 K/W Thermistor Rated resistance* Power dissipation B-value R25 Tol. ±13% Tj=25°C R100 Tol. ±5% Tj=100°C P B(25/100) Tol. ±3% 19,14 1411 22 1486 24,86 1560 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. copyright Vincotech 4 Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck MOSFET MOSFET 100 100 IC (A) Figure 2 Typical output characteristics IC = f(VCE) IC (A) Figure 1 Typical output characteristics IC = f(VCE) 80 80 60 60 40 40 ●20FZ06NRA045FH01-P965F10 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 4 V to 14 V i Condition MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 250 μs 125 °C 4 V to 14 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 IF (A) IC (A) 30 Tj = Tjmax-25°C Tj = Tjmax-25°C 25 80 20 60 Tj = 25°C 15 Tj = 25°C 40 10 20 5 0 0 0 At tp = VCE = 1 250 10 copyright Vincotech 2 3 4 5 V GE (V) 0 6 At tp = μs V 5 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) E (mWs) 0,600 0,600 0,500 0,500 Eon High T Eon High T 0,400 0,400 Eoff High T 0,300 Eon Low T 0,300 Eoff Low T 0,200 Eoff High T Eoff Low T 0,200 Eon Low T 0,100 0,100 0,000 0,000 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = 15 V IC = 30 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,20 E (mWs) E (mWs) 0,20 0,16 0,16 0,12 0,12 Erec High T Erec High T 0,08 0,08 0,04 0,04 Erec Low T 0,00 0,00 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 R G (W) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A 6 Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff tf 0,10 tdoff t (ms) t (ms) 1,00 tdon 0,10 tdon tf tr 0,01 0,01 tr 0,00 0,00 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V IC = 30 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,040 t rr(ms) t rr(ms) 0,040 0,032 trr High T 0,032 trr High T 0,024 0,024 0,016 0,016 trr Low T trr Low T 0,008 0,008 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/125 350 30 15 16 24 32 R gon (W) 40 °C V A V Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,50 Qrr (mC) 1,5 Qrr (mC) Qrr High T 1,20 1,2 0,90 0,9 Qrr High T Qrr Low T 0,60 0,6 0,30 0,3 Qrr Low T 0,00 0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω FRED 25/125 350 30 15 16 24 32 R g on ( Ω) 100 120 IrrM (A) 40 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 100 80 IRRM High T 80 IRRM Low T 60 60 40 40 IRRM High T 20 20 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 I C (A) 60 °C V V Ω 8 0 8 At Tj = VR = IF = VGE = 25/125 350 30 15 16 24 32 R gon (W) 40 °C V A V Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FRED 25000 30000 direc / dt (A/ms) direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 20000 dIrec/dtLow T 25000 20000 15000 dIrec/dtHigh T 15000 dIrec/dtHigh T 10000 10000 dIo/dtLow T di0/dtHigh T 5000 5000 dI0/dtHigh T dI0/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω MOSFET Figure 19 8 25/125 350 30 15 16 24 R gon (W) 32 °C V A V FRED Figure 20 IGBT transient thermal impedance as a function of pulse width FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 40 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10 10-2 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,56 K/W IGBT thermal model values R (C/W) Tau (s) 0,04 8,6E+00 0,13 1,4E+00 0,23 2,2E-01 0,09 3,6E-02 0,03 5,0E-03 0,05 2,6E-04 copyright Vincotech 10-4 10-3 10-2 10-1 100 t p (s) 1011 tp / T 1,95 K/W FRED thermal model values R (C/W) Tau (s) 0,06 7,9E+00 0,24 1,0E+00 0,90 1,4E-01 0,50 3,1E-02 0,17 3,7E-03 0,09 5,7E-04 9 Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 300 250 40 200 30 150 20 100 10 50 0 0 0 At Tj = 50 150 100 °C 150 T h ( o C) 0 200 At Tj = VGE = single heating overall heating FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 80 200 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 °C 150 T h ( o C) 200 0 At Tj = single heating overall heating 10 50 150 100 150 T h ( o C) 200 °C Revision: 2 FZ06NRA045FH01 preliminary datasheet Buck MOSFET Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) MOSFET Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 VGE (V) 10 IC (A) 9 10uS 8 102 7 DC 120V 100uS 10mS 480V 6 1mS 100mS 5 101 4 3 2 100 1 0 0 15 30 45 60 75 90 105 120 135 150 Q g (nC) 10-1 10 At D= Th = VGE = Tj = 0 101 102 V CE (V) 103 At IC = single pulse 80 ºC 15 V Tjmax ºC copyright Vincotech 11 30 A Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 60 60 40 40 20 20 0 0 0,0 1,0 At tp = Tj = VGE from 2,0 3,0 4,0 V CE (V) 5,0 0,0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1,0 2,0 3,0 4,0 5,0 250 μs 125 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 V CE (V) IF (A) IC (A) 60 25 Tj = 25°C 50 Tj = Tjmax-25°C 20 40 Tj = Tjmax-25°C Tj = 25°C 15 30 10 20 5 10 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = μs V 12 1 250 2 3 4 V F (V) 5 μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2,5 E (mWs) E (mWs) 2,5 Eoff High T 2 Eon High T 1,5 Eon High T Eoff High T 2 1,5 Eoff Low T 1 Eoff Low T 1 Eon Low T 0,5 0,5 Eon Low T 0 0 0 10 20 30 40 50 I C (A) 0 60 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2 Erec High T 2 1,6 1,5 1,2 Erec High T 1 0,8 Erec Low T 0,5 0,4 0 Erec Low T 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A 13 Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 10 t ( μs) 10 tdoff 1 1 tdoff tf 0,1 tdon 0,1 tf tdon tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 30 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,080 trr High T t rr(ms) t rr(ms) 0,070 trr High T 0,070 0,060 0,060 0,050 trr Low T trr Low T 0,050 0,040 0,040 0,030 0,030 0,020 0,020 0,010 0,010 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 I C (A) 0 60 At Tj = VR = IF = VGE = °C V V Ω 14 8 25/125 350 30 15 16 24 32 R gon (W) 40 °C V A V Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (mC) 9,00 FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 7 Qrr (mC) Qrr High T 8,00 Qrr High T 6 7,00 5 6,00 4 5,00 4,00 3 Qrr Low T Qrr Low T 3,00 2 2,00 1 1,00 0,00 0 At 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 20 30 40 50 I C (A) 60 0 8 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 30 15 24 32 R g on ( Ω) 40 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 160 140 IrrM (A) IrrM (A) 160 120 120 IRRM High T 140 IRRM High T IRRM Low T 100 100 80 80 60 60 40 40 20 20 IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 copyright Vincotech 20 30 40 50 I C (A) 60 °C V V Ω 15 0 8 At Tj = VR = IF = VGE = 25/125 350 30 15 16 24 32 R gon (W) 40 °C V A V Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 25000 direc / dt (A/ms) 25000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 20000 dIrec/dtLow T 20000 dIrec/dtHigh T dIrec/dtHigh T 15000 15000 10000 10000 dIo/dtLow T 5000 5000 dI0/dtLow T di0/dtHigh T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 350 15 8 20 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 25/125 350 30 15 16 24 R gon (W) 32 40 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 1,11 10-3 10-2 10-1 100 t p (s) 101 1 K/W IGBT thermal model values R (C/W) Tau (s) 0,06 9,9E+00 0,22 1,2E+00 0,59 1,4E-01 0,17 2,2E-02 0,03 2,7E-03 0,04 2,7E-04 copyright Vincotech 10-5 10-4 10-3 At D= RthJH = tp / T 2,32 K/W 10-2 10-1 100 t p (s) 101 1 FRED thermal model values R (C/W) Tau (s) 0,04 9,8E+00 0,25 7,7E-01 1,24 1,2E-01 0,44 2,0E-02 0,25 2,6E-03 0,09 4,3E-04 16 Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 160 140 40 120 100 30 80 20 60 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 30 IF (A) Ptot (W) 75 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 150 100 150 Th ( o C) 200 ºC Revision: 2 FZ06NRA045FH01 preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) IF (A) 12 Tj = 25°C 10 100 8 6 -1 10 4 2 Tj = Tjmax-25°C 0 0 At tp = 2 250 copyright Vincotech 4 6 8 10 VF (V) 10-2 12 μs 18 10-5 10-4 10-3 At D= RthJH = tp / T 4,36 K/W 10-2 10-1 100 t p (s) 101 1 Revision: 2 FZ06NRA045FH01 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 25000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e [Ω] 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω BUCK MOSFET Figure 1 BUCK MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 400 140 IC 350 tdoff 110 VCE 300 VCE 90% VGE 90% 250 80 IC % 200 %50 150 tEoff ● FZ06NRA045FH01-P965F10 VCE 20 100 VGE IC 1% tdon VGE Ic10% 50 -10 VGE10% 0 -40 -0,3 tEon VCE3% -50 -0,1 0,1 0,3 0,5 0,7 2,9 time (us) VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdoff = tEoff = 0 15 350 30 0,30 0,31 2,95 VGS (0%) = VGS (100%) = VD (100%) = ID (100%) = tdon = tEon = V V V A μs μs BUCK MOSFET Figure 3 3 3,05 time(us) 0 15 350 30 0,04 0,05 3,1 3,2 V V V A μs μs BUCK MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf 3,15 Turn-on Switching Waveforms & definition of tr 140 450 fitted 120 Ic VCE IC 350 100 IC 90% 80 250 IC 60% %60 % 40 150 IC 40% VCE 20 0 -20 0,26 IC90% tr 50 IC10% IC10% tf 0,27 VD (100%) = ID (100%) = tf = copyright Vincotech 0,28 350 30 0,01 0,29 0,3 time (us) 0,31 0,32 -50 2,95 0,33 VD (100%) = ID (100%) = tr = V A μs 20 2,99 3,03 350 30 0,01 time(us) 3,07 3,11 3,15 V A μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET BUCK MOSFET Figure 5 BUCK MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % Eoff Poff Pon % 100 140 80 Eon 100 60 40 60 20 20 0 VGE90% -20 -0,2 -0,1 Poff (100%) = Eoff (100%) = tEoff = VGE10% VCE3% tEoff tEon IC 1% 0 0,1 0,2 time (us) 10,48 0,11 0,31 0,3 0,4 -20 2,95 0,5 2,99 3,07 3,11 3,15 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs BUCK MOSFET Figure 7 Gate voltage vs Gate charge (measured) 3,03 10,48 0,27 0,05 kW mJ μs BUCK FRED Figure 8 Turn-off Switching Waveforms & definition of trr 150 20 fitted 100 trr Id 15 50 0 Vd 10 IRRM10% VGE (V) -50 % -100 5 -150 -200 0 IRRM90% -250 IRRM100% -300 3,01 -5 -50 0 VGSoff = VGSon = VC (100%) = ID (100%) = Qg = copyright Vincotech 50 0 15 350 30 191,44 100 Qg (nC) 150 200 250 3,03 3,05 3,07 3,09 3,11 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 350 30 -70 0,02 V A A μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions BUCK MOSFET BUCK FRED Figure 9 BUCK FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 250 200 Qrr Prec Id 125 200 tQrr 50 150 Erec -25 100 % tErec % -100 50 -175 0 -250 -50 -325 -100 3 3,025 Id (100%) = Qrr (100%) = tQrr = 3,05 3,075 time(us) 30 0,98 0,05 A μC μs 3,1 3,125 3,15 3 3,025 Prec (100%) = Erec (100%) = tErec = 3,05 3,075 time(us) 10,48 0,31 0,05 kW mJ μs 3,1 3,125 3,15 Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions Boost IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω BOOST IGBT Figure 1 BOOST IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 520 150 ●solar inverter ●UPS 120 ●UPS IC 480 VCE 440 tdoff 400 360 90 VCE 90% VGE 90% 320 % 280 % 60 240 IC 200 tEoff ● FZ06NRA045FH01-P965F10 160 VGE 30 IC 1% VGE VCE 120 tdon 80 0 Ic10% 40 -30 -0,2 tEon VGE10% 0 VCE3% -40 -0,05 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,25 time (us) 0 15 350 30 0,50 0,70 0,4 0,55 0,7 3,9 3,98 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs BOOST IGBT Figure 3 4,06 time(us) 0 15 350 30 0,04 0,14 4,14 4,22 V V V A μs μs BOOST IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,3 Turn-on Switching Waveforms & definition of tr 120 490 VCE fitted IC 460 100 Ic 430 IC 90% 400 370 80 340 310 IC 60% 60 280 % 40 250 % 220 IC 40% tr 190 160 20 VCE 130 IC10% 100 0 IC90% 70 40 tf 0,3 0,34 0,38 0,42 0,46 VC (100%) = IC (100%) = tf = copyright Vincotech 350 30 0,09 0,5 IC10% 10 -20 0,54 0,58 0,62 0,66 time (us) 0,7 -20 0,74 0,78 3,9 3,94 VC (100%) = IC (100%) = tr = V A μs 23 3,98 4,02 350 30 0,01 4,06 time(us) 4,1 4,14 4,18 4,22 4,26 4,3 V A μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions Boost IGBT BOOST IGBT Figure 5 BOOST IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 240 % 220 % Eoff 100 Pon 200 Poff 180 80 160 140 60 120 Eon 100 40 80 60 20 40 20 0 tEoff VGE90% -20 -0,2 -0,1 IC 1% 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 10,55 1,16 0,70 0,3 time (us) 0,4 0,5 0,6 0,7 -20 3,95 3,97 3,99 4,01 4,03 4,05 4,07 4,09 4,11 4,13 4,15 4,17 4,19 time(us) 0,8 Pon (100%) = Eon (100%) = tEon = kW mJ μs BOOST IGBT Figure 7 Gate voltage vs Gate charge (measured) VCE3% tEon VGE10% 0 10,55 0,96 0,14 kW mJ μs BOOST FRED Figure 8 Turn-off Switching Waveforms & definition of trr 160 25 120 Id 80 20 trr 40 Vd 0 15 -40 IRRM10% -80 VGE (V) 10 %-120 -160 5 -200 fitted -240 0 -280 IRRM90% -320 -5 -360 IRRM100% -400 -10 -50 0 50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 100 150 0 15 350 30 407,76 200 Qg (nC) 250 300 350 400 4 450 4,02 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 4,04 4,06 350 30 -112 0,05 4,08 4,1 4,12 time(us) 4,14 4,16 4,18 4,2 V A A μs Revision: 2 FZ06NRA045FH01 preliminary datasheet Switching Definitions Boost IGBT BOOST FRED Figure 9 BOOST FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 240 Id 220 tQrr 50 200 Prec 180 Qrr 160 -50 140 Erec 120 % 100 -150 % tErec 80 -250 60 40 -350 20 -450 -20 0 4 4,02 4,04 4,06 4,08 Id (100%) = Qrr (100%) = tQrr = 30 5,74 0,16 4,1 4,12 4,14 4,16 4,18 time(us) 4,2 4 4,22 4,24 4,02 4,04 4,06 4,08 Prec (100%) = Erec (100%) = tErec = A μC μs 10,55 1,39 0,16 4,1 4,12 4,14 4,16 4,18 time(us) 4,2 4,22 4,24 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit copyright Vincotech Figure 12 BOOST stage switching measurement circuit 25 Revision: 2 FZ06NRA045FH01 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NRA045FH01-P965F10 in DataMatrix as P965F10 in packaging barcode as P965F10 Outline Condition Pinout copyright Vincotech 26 Revision: 2 FZ06NRA045FH01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 27 Revision: 2