V23990 P545 x2x D5 14

V23990-P545-*2*-PM
flow PIM 0
600V/20A
Features
flow PIM 0 housing
● Vincotech clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
12mm housing
17mm housing
Schematic
Target Applications
● Industrial drives
● Embedded drives
Types
● V23990-P545-A28-PM
● V23990-P545-A29-PM
● V23990-P545-C28-PM w/o BRC
● V23990-P545-C29-PM w/o BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
28
37
A
200
A
200
A2s
33
50
W
Tjmax
150
°C
VCE
600
V
23
30
A
tp limited by Tjmax
60
A
VCE ≤ 1200V, Tj ≤ Top max
60
A
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
50 Hz half sine wave
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
47
72
W
±20
V
6
360
µs
V
175
°C
Revision: 5
V23990-P545-*2*-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
27
35
A
40
A
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
36
55
W
Tjmax
175
°C
VCE
600
V
17
22
A
45
A
45
A
37
56
W
±20
V
µs
Brake Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Th=80°C
Tc=80°C
Tj=Tjmax
tSC
Tj≤150°C
6
VCC
VGE=15V
360
V
Tjmax
175
°C
VRRM
600
V
16
21
A
30
A
28
43
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Short circuit ratings
Maximum Junction Temperature
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
copyright Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 5
V23990-P545-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=145°C
0,8
1,26
1,24
0,92
0,82
11
14
1,45
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
30
1500
RthJH
Thermal grease
thickness≤50µm
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
1,1
2,10
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
20
0
600
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,55
1,75
2,2
0,0011
300
Rgoff=8 Ω
Rgon=16 Ω
±15
300
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
15
ICES
Gate-emitter leakage current
0,00029
15
14
12
16
198
212
100
104
0,31
0,43
0,55
0,65
ns
mWs
1100
f=1MHz
0
Tj=25°C
25
pF
71
32
480
±15
20
Tj=25°C
Thermal grease
thickness≤50µm
λ = 1 W/mK
120
nC
2,01
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright Vincotech
20
Rgon=16 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50µm
λ = 1 W/mK
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,81
1,76
19
21
33
192
0,45
1,35
1454
1052
0,06
0,27
2,63
3
1,95
V
A
ns
µC
A/µs
mWs
K/W
Revision: 5
V23990-P545-*2*-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,64
1,86
1,9
Brake Transistor
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,00021
15
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,00085
300
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=16 Ω
300
±15
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
15
14
11
14
128
145
91
94
0,20
0,28
0,32
0,40
ns
mWs
860
f=1MHz
25
0
55
Tj=25°C
pF
24
±15
480
15
Tj=25°C
Thermal grease
thickness≤50µm
λ = 1 W/mK
87
nC
2,55
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=16 Ω
600
IRRM
trr
Peak rate of fall of recovery current
15
Rgon=16 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,86
1,75
1,95
27
14
15
128
201
0,52
0,52
1307
657
0,10
0,21
Thermal grease
thickness≤50µm
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
3,35
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
Tj=25°C
3,5
mW/K
4000
K
B(25/50)
Tol. ±3%
Tj=25°C
B(25/100)
Tol. ±3%
Tj=25°C
Tj=25°C
4
%
mW
B-value
copyright Vincotech
5
210
B-value
Vincotech NTC Reference
-5
Tc=100°C
K
A
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
60
IC (A)
IF (A)
25
4
50
20
40
15
30
10
20
5
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
5
1
250
2
3
V F (V)
4
µs
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
1,2
E (mWs)
Eon High T
Eoff High T
Eon High T
1,2
0,9
Eon Low T
Eoff Low T
0,9
Eon Low T
0,6
Eoff High T
0,6
Eoff Low T
0,3
0,3
0,0
0,0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
20
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,4
E (mWs)
0,4
Erec
Tj = Tjmax -25°C
0,3
0,3
Tj = Tjmax -25°C
0,2
0,2
Erec
Erec
Tj = 25°C
0,1
0,1
Tj = 25°C
Erec
0,0
0,0
0
10
20
30
I C (A)
0
40
With an inductive load at
25/125
Tj =
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
6
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( µs)
t ( µs)
1,00
tdoff
tf
0,10
0,10
tf
tdon
tr
tr
tdon
0,01
0,01
0,00
0,00
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( µs)
t rr( µs)
0,4
0,3
0,3
trr
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,2
0,2
trr
0,1
0,1
Tj = 25°C
trr
Tj = 25°C
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
copyright Vincotech
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
30
25/125
300
20
15
60
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
2,0
Qrr( µC)
2,0
Qrr
Tj = Tjmax -25°C
1,5
1,5
Qrr
1,0
1,0
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,5
0,5
Tj = 25°C
Qrr
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
30
I C (A)
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
40
60
90
R g on ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
30
IrrM (A)
IrrM (A)
30
120
IRRM
25
25
IRRM
Tj = Tjmax -25°C
20
20
IRRM
Tj = 25°C
Tj = Tjmax - 25°C
Tj = 25°C
IRRM
15
15
10
10
5
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
copyright Vincotech
20
30
I C (A)
40
°C
V
V
Ω
8
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
2000
2000
direc / dt (A/ µs)
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
1600
dIrec/dt
dI0/dt
1600
1200
1200
800
800
400
400
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
I C (A)
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
-1
90
120
R gon ( Ω )
25/125
300
20
15
150
°C
V
A
V
Output inverter FWD
Zth-JH (K/W)
101
ZthJH (K/W)
0
60
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
30
40
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10
-5
At
D=
RthJH =
10
10
-3
10
-2
10
-1
10
0
t p (s)
1
1010
10-5
At
D=
RthJH =
tp / T
2,01
Thermal grease
R (C/W)
0,09
0,31
0,94
0,38
0,14
0,14
-4
K/W
IGBT thermal model values
Phase change interface
Tau (s)
2,9E+00
3,5E-01
8,8E-02
1,6E-02
2,9E-03
3,3E-04
copyright Vincotech
R (C/W)
0,07
0,25
0,76
0,31
0,11
0,12
10-4
R (C/W)
0,10
0,31
1,14
0,52
0,31
0,26
9
10-2
10-1
100
t p (s)
10110
tp / T
2,63
Thermal grease
Tau (s)
2,4E+00
2,9E-01
7,1E-02
1,3E-02
2,4E-03
2,7E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
3,6E+00
3,6E-01
8,0E-02
1,7E-02
2,9E-03
3,3E-04
R (C/W)
0,08
0,25
0,92
0,42
0,25
0,21
Tau (s)
2,9E+00
3,0E-01
6,5E-02
1,4E-02
2,3E-03
2,7E-04
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
Ptot (W)
IC (A)
100
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
70
150
60
30
50
40
20
30
20
10
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 5
V23990-P545-*2*-PM
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
VGE (V)
3
IC (A)
10
10
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
18
16
120V
2
14
480V
10uS
12
100uS
1mS
100mS
101
10
DC
8
10mS
10
0
6
4
10-1
2
0
0
100
102
101
At
D=
Th =
VGE =
V CE (V)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
20
40
60
80
100
103
20
120
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
250
Ic(sc)
tsc (µS)
14
12
200
10
150
8
6
100
4
50
2
0
10
11
12
13
14
0
15
12
V GE (V)
14
16
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
copyright Vincotech
11
18
V GE (V)
20
Revision: 5
V23990-P545-*2*-PM
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
50
40
ICMAX
Ic CHIP
Ic MODULE
30
VCE MAX
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright Vincotech
12
Revision: 5
V23990-P545-*2*-PM
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
35
IC (A)
IC (A)
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IF (A)
IC (A)
20
V CE (V)
40
15
30
10
20
Tj = Tjmax-25°C
5
10
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
0
12
At
tp =
13
1
250
2
3
V F (V)
4
µs
Revision: 5
V23990-P545-*2*-PM
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
0,8
Eon
Eon
0,8
Eoff
Tj = Tjmax -25°C
0,6
Eon
Eon
0,6
Eoff
0,4
Eoff
0,4
Tj = Tjmax -25°C
Tj = 25°C
Eoff
Tj = 25°C
0,2
0,2
0,0
0,0
0
10
20
0
I C (A) 30
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,30
E (mWs)
E (mWs)
0,30
Erec
0,25
0,25
Tj = Tjmax - 25°C
0,20
0,20
0,15
0,15
Tj = Tjmax -25°C
Erec
Erec
0,10
0,10
Tj = 25°C
Tj = 25°C
0,05
0,05
Erec
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
25/125
Tj =
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
copyright Vincotech
30
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
14
Revision: 5
V23990-P545-*2*-PM
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( µs)
t ( µs)
1,00
tdoff
tf
0,10
tdoff
tf
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
Brake IGBT
101
101
ZthJH (K/W)
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
30
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-2
10-5
10
-4
At
Thermal grease
RthJH =
2,55
copyright Vincotech
10
-3
D=
K/W
10
-2
10
-1
10
0
t p (s)
10-5
1
10 10
tp / T
Phase change interface
RthJH =
0,60
K/W
10
-4
At
Thermal grease
RthJH =
3,35
15
10
-3
D=
K/W
10
-2
10
-1
10
0
t p (s)
1
10 10
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 5
V23990-P545-*2*-PM
Brake
Brake IGBT
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
70
25
IC (A)
Ptot (W)
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
60
20
50
15
40
30
10
20
5
10
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
T h ( o C)
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 5
V23990-P545-*2*-PM
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
IF (A)
ZthJC (K/W)
10
80
10
0
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,5
1,0
1,5
V F (V)
10-2
2,0
10-5
At
D=
RthJH =
µs
250
10-4
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
10110
tp / T
2,1
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
80
100
40
60
30
40
20
20
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
0
150
At
Tj =
ºC
17
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 5
V23990-P545-*2*-PM
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
Revision: 5
V23990-P545-*2*-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 16 Ω
Rgoff
8Ω
=
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
250
%
%
IC
tdoff
200
100
VGE 90%
VCE 90%
150
IC
VCE
50
100
tEoff
VGE
tdon
50
IC 1%
VCE
0
VGE
-50
-0,2
0
0,2
0,4
0
15
300
20
0,21
0,51
tEon
-50
0,6
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
VCE 3%
IC 10%
VGE 10%
0
0
15
300
20
0,01
0,19
time(us)
3,3
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
150
250
%
%
fitted
IC
200
VCE
100
IC 90%
150
IC 60%
VCE
50
100
IC 40%
IC 90%
tr
50
IC10%
tf
0
Ic
0
-50
IC 10%
-50
0,1
0,15
0,2
0,25
0,3
0,35
0,4
3
3,05
3,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
300
20
0,10
3,15
3,2
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
300
20
0,02
V
A
µs
Revision: 5
V23990-P545-*2*-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
175
120
IC 1%
%
Pon
%
150
100
Poff
Eoff
125
80
Eon
100
60
75
40
50
20
25
VGE 90%
VGE 10%
0
tEoff
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
5,99
0,65
0,51
0,3
0,4
time (us)
tEon
-25
0,5
2,9
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
VCE 3%
0
3,1
5,99
0,43
0,19
3,2
time(us)
3,3
kW
mJ
µs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-120
-5
-50
0
50
100
150
3
200
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
0
15
300
20
174,72
3,3
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
300
20
21
0,19
V
A
A
µs
Revision: 5
V23990-P545-*2*-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Erec
Id
100
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
-50
0
-25
-100
2,9
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,1
3,3
20
1,35
0,41
3,5
time(us)
3
3,7
3,2
3,4
3,6
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
21
5,99
0,27
0,41
kW
mJ
µs
Revision: 5
V23990-P545-*2*-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 17mm housing
without thermal paste, w/o brake,12mm housing
without thermal paste, w/o brake, 17mm housing
Ordering Code
V23990-P545-A28-PM
V23990-P545-A29-PM
V23990-P545-C28-PM
V23990-P545-C29-PM
in DataMatrix as
P545-A28
P545-A29
P545-C28
P545-C29
in packaging barcode as
P545-A28
P545-A29
P545-C28
P545-C29
Outline
Pin
Pin table
X
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25,5
25,5
22,8
20,1
16,2
13,5
10,8
8,1
5,4
2,7
0
0
0
7,5
7,5
15
15
22,8
25,5
33,5
33,5
33,5
33,5
Y
2,7
0
0
0
0
0
0
0
0
0
0
19,8
22,5
19,8
22,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
Pinout
copyright Vincotech
22
Revision: 5
V23990-P545-*2*-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
Revision: 5