V23990-P543-*3* -PM flow PIM 0 600V/10A Features flow PIM 0 ● Clip-in housing ● Trench Fieldstop IGBT's for low saturation losses ● Optional w/o BRC 12mm housing 17mm housing Target Applications Schematic ● Industrial drives ● Embedded drives Types ● V23990-P543-A38-PM ● V23990-P543-C38-PM w/o BRC ● V23990-P543-C39-PM w/o BRC Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 46 A 250 A 310 A2s 37 59 W Tjmax 150 °C VCE 600 V 16 20 A tp limited by Tjmax 30 A VCE ≤ 600V, Tj ≤ Top max 30 A Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms 50Hz half sine wave Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C 39 60 W ±20 V 6 360 µs V 175 °C Revision: 4 V23990-P543-*3* -PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 25 25 A 20 A Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C Th=80°C IF Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C 22 Tc=80°C 32 W Tjmax 175 °C VCE 600 V 11 14 A tp limited by Tjmax 18 A VCE ≤ 600V, Tj ≤ Top max 18 A 31 47 W ±20 V Brake IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V 6 µs 360 V Tjmax 175 °C VRRM 600 V 10 10 A 12 A 22 34 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Brake FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature IF IFRM Ptot Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 4 V23990-P543-*3* -PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip 1500 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 2 1,89 mA K/W Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) 15 ICES 0 Gate-emitter leakage current IGES Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 10 600 0 20 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1 1,59 1,78 2,2 0,08 350 Rgoff=16 Ω Rgon=32 Ω 300 ±15 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 0,00015 15 14 11 14 155 170 89 98 0,16 0,22 0,24 0,29 ns mWs 551 f=1MHz 25 0 40 Tj=25°C pF 17 480 ±15 10 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 62 nC 2,41 K/W Inverter FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Copyright by Vincotech 10 Rgon=32 Ω 300 ±15 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 10 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,61 1,51 10 11 142 219 0,46 0,80 703 397 0,09 0,17 3,33 3 2,25 V A ns µC A/µs mWs K/W Revision: 4 V23990-P543-*3* -PM Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,55 1,72 2,1 Brake IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,00043 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 6 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,06 350 none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=16 Ω Rgon=32 Ω ±15 300 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 11 10 8 10 118 130 93 117 0,07 0,10 0,15 0,18 ns mWs 368 f=1MHz 0 Tj=25°C 25 pF 28 11 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 42 nC 3,07 K/W Brake FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=32 Ω 600 IRRM Reverse recovery time Peak rate of fall of recovery current 6 Rgon=32 Ω ±15 300 di(rec)max /dt Erec RthJH 6 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1 1,69 1,61 2,5 60 7 8 97 151 0,23 0,23 522 321 0,05 0,09 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 4,29 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant Tj=25°C 3,5 mW/K 4000 K B(25/50) Tol. ±3% Tj=25°C B(25/100) Tol. ±3% Tj=25°C Tj=25°C 4 % mW B-value Copyright by Vincotech 5 210 B-value Vincotech NTC Reference -5 Tc=100°C K A Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 14 V CE (V) IF (A) IC (A) 50 12 40 10 30 8 6 20 4 10 2 Tj = Tjmax-25°C 0 At tp = VCE = Tj = Tjmax-25°C Tj = 25°C 0 2 250 10 4 6 8 V GE (V) 0,0 10 At tp = µs V Copyright by Vincotech Tj = 25°C 0 5 0,5 250 1,0 1,5 2,0 2,5 V F (V) 3,0 µs Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 Eon High T 0,5 Eon High T E (mWs) E (mWs) 0,6 Eon Low T 0,6 Eoff High T 0,4 0,4 0,3 Eoff High T Eoff Low T 0,2 0,2 0,1 Eoff Low T Eon Low T 0,0 0,0 0 5 10 15 I C (A) 0 20 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 250 RG( Ω ) 300 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 10 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,20 E (mWs) E (mWs) 0,30 0,25 Tj = Tjmax -25°C 0,15 Erec 0,20 Erec Tj = 25°C 0,15 0,10 Tj = Tjmax -25°C Tj = 25°C Erec 0,10 Erec 0,05 0,05 0,00 0,00 0 5 10 15 I C (A) 20 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Copyright by Vincotech 50 100 150 200 250 RG( Ω ) 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 10 A 6 Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf tf 0,10 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 15 I C (A) 0 20 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 250 RG( Ω ) 300 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 10 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 0,3 0,3 trr Tj = Tjmax -25°C trr Tj = Tjmax -25°C t rr( µs) t rr( µs) 0,4 Tj = 25°C trr 0,2 0,2 Tj = 25°C trr 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 32 10 15 I C (A) 0 20 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 50 25/125 300 10 15 100 150 200 250 R g on ( Ω ) 300 °C V A V Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr Tj = Tjmax -25°C 1,0 Qrr( µC) 1,0 Qrr( µC) 1,2 Tj = Tjmax -25°C Qrr 0,8 0,8 0,6 Qrr 0,6 Tj = 25°C Qrr 0,4 Tj = 25°C 0,4 0,2 0,2 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 5 25/125 300 15 32 10 15 I C (A) 0 20 50 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) Output inverter FWD 100 25/125 300 10 15 150 200 R g on ( Ω) 300 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 15 IrrM (A) 12 250 Tj = Tjmax -25°C IRRM IRRM IRRM 10 12 IRRM Tj = 25°C Tj = Tjmax - 25°C 8 9 Tj = 25°C 6 6 4 3 2 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 32 10 15 I C (A) 0 20 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 50 25/125 300 10 15 100 150 200 250 R gon ( Ω ) 300 °C V A V Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1400 direc / dt (A/ µs) 1200 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt dI0/dt dIrec/dt 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At Tj = VCE = VGE = Rgon = 5 25/125 300 15 32 10 I C (A) 15 0 20 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 25/125 300 10 15 100 150 200 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Zth-JH (K/W) 101 ZthJH (K/W) 101 250 R ( Ω ) 300 gon 100 10 0 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10-5 10110 At D= RthJH = tp / T 2,41 Thermal grease R (C/W) 0,06 0,26 0,97 0,52 0,35 0,26 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 5,2E+00 5,0E-01 1,0E-01 1,9E-02 3,4E-03 3,5E-04 Copyright by Vincotech R (C/W) 0,05 0,21 0,78 0,42 0,28 0,21 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-4 R (C/W) 0,07 0,31 1,25 0,78 0,54 0,40 9 10-2 10-1 100 t p (s) 10110 tp / T 3,33 Thermal grease Tau (s) 4,2E+00 4,1E-01 8,1E-02 1,5E-02 2,8E-03 2,8E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 8,2E+00 5,2E-01 9,3E-02 2,0E-02 3,2E-03 4,1E-04 R (C/W) 0,05 0,25 1,01 0,63 0,43 0,33 Tau (s) 6,6E+00 4,3E-01 7,6E-02 1,6E-02 2,6E-03 3,3E-04 Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 25 Ptot (W) IC (A) 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 60 150 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 4 V23990-P543-*3* -PM Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(QGE) 3 VGE (V) 18 IC (A) 10 Output inverter IGBT Figure 26 Gate voltage vs Gate charge 16 10 120V 2 14 480V 12 1mS 10 10uS 100uS 1 10 100mS 8 DC 10 10mS 0 6 4 10-1 2 0 0 100 10 At D= Th = VGE = 1 10 V CE (V) 2 10 At IC = Output inverter IGBT Figure 27 40 60 80 100 Q g (nC) single pulse 80 ºC 15 V Tjmax ºC Tj = 20 3 10 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 175 IC(sc) tsc (µS) 14 12 150 10 125 8 100 6 75 4 50 2 25 0 0 10 11 12 13 14 V GE (V) 15 12 14 16 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 11 18 V GE (V) 20 Revision: 4 V23990-P543-*3* -PM IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 25 IC MAX Ic CHIP 20 Ic MODULE 15 VCE MAX 10 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 12 Revision: 4 V23990-P543-*3* -PM Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 15 IC (A) IC (A) 15 12 12 9 9 6 6 3 3 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V Brake IGBT 3 4 8 25 IF (A) V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IC (A) Figure 3 Typical transfer characteristics IC = f(VGE) 2 20 6 15 4 10 2 5 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = µs V Copyright by Vincotech 13 1 250 2 3 V F (V) 4 µs Revision: 4 V23990-P543-*3* -PM Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,30 E (mWs) 0,30 Eoff Eon 0,25 0,25 Eon Tj = Tjmax -25°C Eoff 0,20 0,20 Eon Eoff Tj = Tjmax -25°C 0,15 0,15 Eoff Eon 0,10 0,10 Tj = 25°C Tj = 25°C 0,05 0,05 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 50 100 150 200 250 RG (Ω ) 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 6 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,15 E (mWs) E (mWs) 0,15 Erec 0,12 0,12 Tj = Tjmax - 25°C Tj = Tjmax -25°C 0,09 0,09 Erec Erec 0,06 0,06 Tj = 25°C Tj = 25°C Erec 0,03 0,03 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω Copyright by Vincotech 50 100 150 200 250 RG (Ω ) 300 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 6 A 14 Revision: 4 V23990-P543-*3* -PM Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( µs) t ( µs) 1,00 tdoff tdoff tf 0,10 0,10 tf tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 100 150 200 250 R G ( Ω ) 300 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 6 A Brake IGBT Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 10 50 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 At Thermal grease RthJH = 3,068 10-3 D= K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 101 10 10 tp / T Phase change interface RthJH = 0,60 K/W -5 10 -4 At Thermal grease RthJH = 4,29 15 10 -3 D= K/W 10 -2 10 -1 10 0 t p (s) 1 10 10 tp / T Phase change interface RthJH = 1,27 K/W Revision: 4 V23990-P543-*3* -PM Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 18 Ptot (W) IC (A) 60 50 15 40 12 30 9 20 6 10 3 0 0 0 At Tj = 50 100 150 T h ( o C) 0 200 At Tj = VGE = ºC 175 Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 50 T h ( o C) 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 175 100 150 Th ( o C) 200 ºC Revision: 4 V23990-P543-*3* -PM Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 1 ZthJC (K/W) IF (A) 10 80 100 60 40 10 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 0,5 1,0 1,5 2,0 V F (V) 10 At tp = At D= RthJH = µs 250 -5 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 -4 10 -3 10 -2 10 10 0 t p (s) 1 1010 tp / T 1,89 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 100 -1 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 30 150 60 90 120 T h ( o C) 0 150 At Tj = ºC Copyright by Vincotech 17 30 150 60 90 120 T h ( o C) 150 ºC Revision: 4 V23990-P543-*3* -PM Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 18 Revision: 4 V23990-P543-*3* -PM Switching Definitions Output Inverter General conditions Tj = 125 °C Rgon = 32 Ω Rgoff = 16 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % VCE IC % 100 VGE 90% 150 VCE 90% 75 IC VCE 100 50 tEoff VGE tdon 25 50 IC 1% 0 VGE10% VGE tEon -25 -50 -0,1 VCE 3% IC 10% 0 -50 0 0,1 0,2 0,3 0,4 0,5 0,6 2,6 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 300 10 0,26 0,52 2,7 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 2,8 2,9 0 15 300 10 0,02 0,24 V V V A µs µs 3 time(us) 3,2 Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,1 Turn-on Switching Waveforms & definition of tr 150 200 % % 125 160 IC fitted 100 120 IC 90% VCE 75 IC 90% 80 IC 60% tr 50 IC 40% 40 25 VCE Ic IC10% 0 IC 10% 0 tf -25 -40 0,1 VC (100%) = IC (100%) = tf = 0,2 0,3 300 10 0,10 Copyright by Vincotech 0,4 time (us) 0,5 2,6 VC (100%) = IC (100%) = tr = V A µs 19 2,7 2,8 300 10 0,02 2,9 3 time(us) 3,1 V A µs Revision: 4 V23990-P543-*3* -PM Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 200 % IC 1% Poff 100 % Eoff Pon 160 80 120 Eon 60 80 40 40 20 VGE 10% VGE 90% VCE 3% 0 0 tEon tEoff -20 -0,2 -40 0 0,2 0,4 0,6 2,6 2,7 2,8 2,9 3 3,1 time (us) Poff (100%) = Eoff (100%) = tEoff = 2,99 0,30 0,52 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) 2,99 0,31 0,24 kW mJ µs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 20 VGE (V) Id 80 15 trr 40 10 % Vd fitted 0 IRRM 10% 5 -40 0 -80 IRRM 90% IRRM 100% -5 -120 -20 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 20 0 15 300 10 70,94 Copyright by Vincotech 40 60 Qg (nC) 80 2,6 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 2,7 2,8 2,9 300 10 9 0,26 V A A µs 3 3,1 time(us) 3,2 Revision: 4 V23990-P543-*3* -PM Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % Erec % 100 Id 100 tErec 75 tQrr 50 50 Qrr 0 25 Prec 0 -50 -25 -100 -50 2,6 2,8 3 3,2 3,4 3,6 2,6 time(us) Id (100%) = Qrr (100%) = tQrr = 10 0,82 0,56 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 21 2,8 3 2,99 0,16 0,56 3,2 3,4 time(us) 3,6 kW mJ µs Revision: 4 V23990-P543-*3* -PM Ordering Code and Marking - Features - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without thermal paste 12mm housing V23990-P543-A38-PM V23990-P543-C38-PM V23990-P543-C39-PM P543-A38 P543-C38 P543-C39 P543-A38 P543-C38 P543-C39 without thermal paste, w/o brake,12mm housing without thermal paste, w/o brake, 17mm housing Outline Pin Pin Table X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 25,5 25,5 22,8 20,1 16,2 13,5 10,8 8,1 5,4 2,7 0 0 0 7,5 7,5 2,7 0 0 0 0 0 0 0 0 0 0 19,8 22,5 19,8 22,5 16 17 18 19 20 21 15 15 22,8 25,5 33,5 33,5 33,5 33,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 22 23 Pinout Copyright by Vincotech 22 Revision: 4 V23990-P543-*3* -PM DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 4