V23990-P545-A20/ C20 -PM preliminary datasheet flowPIM 0 600V/20A Features flowPIM 0 housing ● Vincotech clip-in housing ● Trench Fieldstop IGBT's for low saturation losses ● Optional w/o BRC Target Applications Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P545-A20-PM ● V23990-P545-C20-PM without BRC Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 27 37 A 220 A 200 A2s 33 50 W Tjmax 150 °C VCE 600 V 23 30 A tp limited by Tjmax 60 A VCE ≤ 1200V, Tj ≤ Top max 60 A 47 72 W ±20 V 6 360 μs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 27 35 A 40 A 36 55 W Tjmax 175 °C VCE 600 V Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Brake Transistor Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Th=80°C Tc=80°C Tj=Tjmax tp limited by Tjmax VCE ≤ 1200V, Tj ≤ Top max Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C Tc=80°C Tj=Tjmax 17 22 A 45 A 45 A 37 56 W ±20 V 6 360 μs V 175 °C 600 V 16 21 A 30 A 28 43 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Tj≤150°C VGE=15V Tjmax Brake Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,8 1,20 1,17 0,93 0,80 11 15 1,8 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 25 1600 RthJH Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE V V mΩ 0,01 2,13 mA K/W Inverter Transistor Gate emitter threshold voltage Collector-emitter saturation voltage Collector-emitter cut-off current incl. Diode VCE(sat) Gate-emitter leakage current IGES Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0 600 20 0 tr td(off) tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1 1,55 1,75 2,2 0,0011 300 Rgoff=8 Ω Rgon=16 Ω ±15 300 20 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none td(on) Turn-on energy loss per pulse Thermal resistance chip to heatsink per chip 20 15 ICES Integrated Gate resistor 0,00029 15 14 12 16 198 212 100 104 0,31 0,43 0,55 0,65 ns mWs 1100 f=1MHz 0 Tj=25°C 25 pF 71 32 ±15 480 20 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 120 nC 2,01 K/W Inverter Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip Copyright by Vincotech 20 Rgon=16 Ω ±15 300 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 20 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,81 1,76 19 21 33 192 0,45 1,35 1454 1052 0,06 0,27 2,63 3 1,95 V A ns μC A/μs mWs K/W Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,64 1,86 1,9 Brake Transistor VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,00021 15 tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0,00085 300 none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=8 Ω Rgon=16 Ω ±15 300 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 15 14 11 14 128 145 91 94 0,20 0,28 0,32 0,40 ns mWs 860 f=1MHz 0 55 Tj=25°C 25 pF 24 ±15 480 15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 87 nC 2,55 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip Rgon=16 Ω 600 IRRM trr Peak rate of fall of recovery current 15 Rgon=16 Ω ±15 300 di(rec)max /dt Erec RthJH 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,25 1,86 1,75 1,95 27 14 15 128 201 0,52 0,52 1307 657 0,10 0,21 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 3,35 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant Tj=25°C 3,5 mW/K B(25/50) Tol. ±3% Tj=25°C B(25/100) Tol. ±3% Tj=25°C Tj=25°C 4 % mW B-value Copyright by Vincotech 5 210 B-value Vincotech NTC Reference -5 Tc=100°C K 4000 K A Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 80 IC (A) IC (A) 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 25 4 IC (A) IF (A) 60 50 20 40 15 30 10 20 5 10 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 μs V Copyright by Vincotech 6 8 10 V GE (V) 0 12 At tp = 5 1 250 2 3 V F (V) 4 μs Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,5 E (mWs) E (mWs) 1,5 Eon High T 1,2 1,2 Eon High T Eon Low T Eoff High T 0,9 0,9 Eoff Low T Eoff High T Eon Low T 0,6 0,6 Eoff Low T 0,3 0,3 0,0 0,0 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 RG(Ω) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 20 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Output inverter FWD Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,4 E (mWs) E (mWs) 0,4 Erec Tj = Tjmax -25°C 0,3 0,3 Tj = Tjmax -25°C 0,2 0,2 Erec Erec Tj = 25°C 0,1 0,1 Tj = 25°C Erec 0,0 0,0 0 10 20 30 I C (A) 0 40 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Copyright by Vincotech 30 60 90 120 RG(Ω) 150 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 20 A 6 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t ( μs) t ( μs) 1,00 tdoff tf 0,10 0,10 tf tdon tr tr tdon 0,01 0,01 0,00 0,00 0 10 20 30 I C (A) 0 40 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 RG(Ω ) 150 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 20 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,4 t rr( μs) t rr( μs) 0,4 0,3 0,3 trr trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,2 0,2 trr 0,1 0,1 Tj = 25°C trr Tj = 25°C 0,0 0,0 0 10 At Tj = VCE = VGE = Rgon = 25/125 300 15 16 20 30 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 30 25/125 300 20 15 60 90 120 R g on ( Ω ) 150 °C V A V Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2,0 Qrr( μC) Qrr( μC) 2,0 Qrr Tj = Tjmax -25°C 1,5 1,5 Qrr 1,0 1,0 Tj = Tjmax -25°C Qrr Tj = 25°C 0,5 0,5 Tj = 25°C Qrr 0,0 0,0 0 At At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 20 30 I C (A) °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 30 At Tj = VR = IF = VGE = 25/125 300 20 15 40 60 90 R g on ( Ω) 150 °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 30 120 IrrM (A) IrrM (A) 30 IRRM 25 25 IRRM Tj = Tjmax -25°C 20 20 IRRM Tj = 25°C Tj = Tjmax - 25°C Tj = 25°C IRRM 15 15 10 10 5 5 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 20 30 I C (A) 40 °C V V Ω Copyright by Vincotech 8 0 30 At Tj = VR = IF = VGE = 25/125 300 20 15 60 90 120 R gon ( Ω ) 150 °C V A V Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 2000 direc / dt (A/ μs) 2000 direc / dt (A/μ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 1600 dIrec/dt dI0/dt 1600 1200 1200 800 800 400 400 0 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 16 20 I C (A) 30 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 60 90 120 R gon ( Ω ) 40 25/125 300 20 15 °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 150 1 ZthJH (K/W) Zth-JH (K/W) 10 0 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 2,01 Thermal grease R (C/W) 0,09 0,31 0,94 0,38 0,14 0,14 10-3 K/W IGBT thermal model values Phase change interface Tau (s) 2,9E+00 3,5E-01 8,8E-02 1,6E-02 2,9E-03 3,3E-04 Copyright by Vincotech R (C/W) 0,07 0,25 0,76 0,31 0,11 0,12 10-4 R (C/W) 0,10 0,31 1,14 0,52 0,31 0,26 9 10-2 10-1 100 t p (s) 1011 tp / T 2,63 Thermal grease Tau (s) 2,4E+00 2,9E-01 7,1E-02 1,3E-02 2,4E-03 2,7E-04 10-3 K/W FWD thermal model values Phase change interface Tau (s) 3,6E+00 3,6E-01 8,0E-02 1,7E-02 2,9E-03 3,3E-04 R (C/W) 0,08 0,25 0,92 0,42 0,25 0,21 Tau (s) 2,9E+00 3,0E-01 6,5E-02 1,4E-02 2,3E-03 2,7E-04 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 40 Ptot (W) IC (A) 100 80 30 60 20 40 10 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 40 IF (A) Ptot (W) 70 60 30 50 40 20 30 20 10 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 103 18 16 120V 2 10 14 480V 10uS 12 100uS 1mS 100mS 1 10 10 DC 8 10mS 0 10 6 4 10 -1 2 0 0 100 102 101 At D= Th = VGE = V CE (V) At IC = single pulse 80 ºC 15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 20 40 60 80 100 103 20 120 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) Q g (nC) Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) 14 Ic(sc) tsc (μS) 250 12 200 10 150 8 6 100 4 50 2 0 10 11 12 13 14 0 15 12 V GE (V) 14 16 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 11 18 V GE (V) 20 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 50 40 ICMAX Ic CHIP Ic MODULE 30 VCE MAX 20 10 0 0 100 200 300 400 500 600 700 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching Copyright by Vincotech 12 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 μs 125 °C 7 V to 17 V in steps of 1 V Brake FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 20 V CE (V) IF (A) IC (A) 50 40 15 30 10 20 Tj = Tjmax-25°C 5 10 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 μs V Copyright by Vincotech 6 8 10 V GE (V) 0 12 At tp = 13 1 250 2 3 V F (V) 4 μs Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,0 E (mWs) E (mWs) 0,8 Eon Eon 0,8 Eoff Tj = Tjmax -25°C 0,6 Eon Eon 0,6 Eoff 0,4 Eoff 0,4 Tj = Tjmax -25°C Tj = 25°C Eoff Tj = 25°C 0,2 0,2 0,0 0,0 0 10 20 0 I C (A) 30 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω 30 60 90 120 RG (Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 15 A Brake FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,30 E (mWs) E (mWs) 0,30 Erec 0,25 0,25 Tj = Tjmax - 25°C 0,20 0,20 0,15 0,15 Tj = Tjmax -25°C Erec Erec 0,10 0,10 Tj = 25°C Tj = 25°C 0,05 0,05 Erec 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Copyright by Vincotech 30 60 90 120 RG (Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 15 A 14 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Brake Brake IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t ( μs) t ( μs) 1,00 tdoff tf 0,10 tdoff tf 0,10 tdon tr tdon 0,01 0,01 tr 0,00 0,00 0 5 10 15 20 25 I C (A) 0 30 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V Rgon = 16 Ω Rgoff = 8 Ω Brake IGBT 101 ZthJH (K/W) ZthJH (K/W) 100 100 10 -2 90 120 RG (Ω ) 150 Brake FWD Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 -1 60 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 15 A Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 -5 10-4 10-3 At Thermal grease RthJH = 2,55 D= 10 K/W Copyright by Vincotech 10-2 10-1 100 t p (s) 101 1 10-5 tp / T Phase change interface RthJH = 0,60 K/W -4 10 At Thermal grease RthJH = 3,35 15 -3 10 D= K/W -2 10 -1 10 0 10 t p (s) 1 10 1 tp / T Phase change interface RthJH = 1,27 K/W Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Brake Brake IGBT Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 70 IC (A) Ptot (W) 25 60 20 50 15 40 30 10 20 5 10 0 0 0 50 At Tj = 175 100 150 T h ( o C) 0 200 At Tj = VGE = ºC Brake FWD Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 ºC V Brake FWD Figure 16 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 60 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 16 50 175 100 150 Th ( o C) 200 ºC Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 1 100 IF (A) ZthJC (K/W) 10 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,5 1,0 1,5 V F (V) 2,0 10-2 10-5 At D= RthJH = μs 250 10-4 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 1011 tp / T 2,13 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 80 t p (s) Ptot (W) IF (A) 50 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 17 50 150 100 150 T h ( o C) 200 ºC Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 18 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 150 250 % % IC tdoff 200 100 VGE 90% VCE 90% 150 IC VCE 50 100 tEoff VGE tdon 50 IC 1% VCE 0 VGE -50 -0,2 0 0,2 0,4 0 15 300 20 0,21 0,51 tEon -50 0,6 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 3 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 VCE 3% IC 10% VGE 10% 0 0 15 300 20 0,01 0,19 time(us) 3,3 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,2 Turn-on Switching Waveforms & definition of tr 250 150 % % fitted IC 200 VCE 100 IC 90% 150 IC 60% VCE 50 100 IC 40% IC 90% tr 50 IC10% tf 0 Ic 0 -50 IC 10% -50 0,1 0,15 0,2 0,25 0,3 0,35 0,4 3 3,05 3,1 VC (100%) = IC (100%) = tf = 300 20 0,10 Copyright by Vincotech 3,15 3,2 time(us) time (us) VC (100%) = IC (100%) = tr = V A μs 19 300 20 0,02 V A μs Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 175 120 IC 1% % Pon % 150 100 Poff Eoff 125 80 Eon 100 60 75 40 50 20 25 VGE 90% VGE 10% 0 tEoff -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 5,99 0,65 0,51 0,3 0,4 time (us) tEon -25 0,5 2,9 3 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FWD Figure 7 Gate voltage vs Gate charge (measured) VCE 3% 0 3,1 5,99 0,43 0,19 3,2 time(us) 3,3 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 120 VGE (V) 20 Id % 80 15 trr 40 10 Vd fitted 0 IRRM 10% 5 -40 0 -80 IRRM 90% IRRM 100% -120 -5 -50 0 50 100 150 3 200 3,1 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 15 300 20 174,72 Copyright by Vincotech 3,3 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 300 20 21 0,19 V A A μs Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Erec Id 100 100 tErec 75 tQrr 50 50 Qrr 0 25 Prec -50 0 -25 -100 2,9 Id (100%) = Qrr (100%) = tQrr = 3,1 3,3 20 1,35 0,41 Copyright by Vincotech 3,5 time(us) 3 3,7 3,2 3,4 3,6 time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 21 5,99 0,27 0,41 kW mJ μs Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P545-A20-PM in DataMatrix as P545-A20 in packaging barcode as P545-A20 Outline Pinout Copyright by Vincotech 22 Revision: 2 V23990-P545-A20/ C20 -PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 23 Revision: 2