V23990-P545-A20/ C20 -PM Maximum Ratings

V23990-P545-A20/ C20 -PM
preliminary datasheet
flowPIM 0
600V/20A
Features
flowPIM 0 housing
● Vincotech clip-in housing
● Trench Fieldstop IGBT's for low saturation losses
● Optional w/o BRC
Target Applications
Schematic
● Industrial Drives
● Embedded Generation
Types
● V23990-P545-A20-PM
● V23990-P545-C20-PM without BRC
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
27
37
A
220
A
200
A2s
33
50
W
Tjmax
150
°C
VCE
600
V
23
30
A
tp limited by Tjmax
60
A
VCE ≤ 1200V, Tj ≤ Top max
60
A
47
72
W
±20
V
6
360
μs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
27
35
A
40
A
36
55
W
Tjmax
175
°C
VCE
600
V
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Brake Transistor
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Th=80°C
Tc=80°C
Tj=Tjmax
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
17
22
A
45
A
45
A
37
56
W
±20
V
6
360
μs
V
175
°C
600
V
16
21
A
30
A
28
43
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tj≤150°C
VGE=15V
Tjmax
Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,20
1,17
0,93
0,80
11
15
1,8
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
25
1600
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,01
2,13
mA
K/W
Inverter Transistor
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
Gate-emitter leakage current
IGES
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0
600
20
0
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,55
1,75
2,2
0,0011
300
Rgoff=8 Ω
Rgon=16 Ω
±15
300
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
20
15
ICES
Integrated Gate resistor
0,00029
15
14
12
16
198
212
100
104
0,31
0,43
0,55
0,65
ns
mWs
1100
f=1MHz
0
Tj=25°C
25
pF
71
32
±15
480
20
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
120
nC
2,01
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
20
Rgon=16 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
20
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,81
1,76
19
21
33
192
0,45
1,35
1454
1052
0,06
0,27
2,63
3
1,95
V
A
ns
μC
A/μs
mWs
K/W
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,64
1,86
1,9
Brake Transistor
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
0,00021
15
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,00085
300
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=16 Ω
±15
300
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
15
14
11
14
128
145
91
94
0,20
0,28
0,32
0,40
ns
mWs
860
f=1MHz
0
55
Tj=25°C
25
pF
24
±15
480
15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
87
nC
2,55
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
Rgon=16 Ω
600
IRRM
trr
Peak rate of fall of recovery current
15
Rgon=16 Ω
±15
300
di(rec)max
/dt
Erec
RthJH
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,25
1,86
1,75
1,95
27
14
15
128
201
0,52
0,52
1307
657
0,10
0,21
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
3,35
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
Tj=25°C
3,5
mW/K
B(25/50)
Tol. ±3%
Tj=25°C
B(25/100)
Tol. ±3%
Tj=25°C
Tj=25°C
4
%
mW
B-value
Copyright by Vincotech
5
210
B-value
Vincotech NTC Reference
-5
Tc=100°C
K
4000
K
A
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
70
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
25
4
IC (A)
IF (A)
60
50
20
40
15
30
10
20
5
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
6
8
10
V GE (V)
0
12
At
tp =
5
1
250
2
3
V F (V)
4
μs
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,5
E (mWs)
E (mWs)
1,5
Eon High T
1,2
1,2
Eon High T
Eon Low T
Eoff High T
0,9
0,9
Eoff Low T
Eoff High T
Eon Low T
0,6
0,6
Eoff Low T
0,3
0,3
0,0
0,0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG(Ω)
150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
20
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Output inverter FWD
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,4
E (mWs)
E (mWs)
0,4
Erec
Tj = Tjmax -25°C
0,3
0,3
Tj = Tjmax -25°C
0,2
0,2
Erec
Erec
Tj = 25°C
0,1
0,1
Tj = 25°C
Erec
0,0
0,0
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Copyright by Vincotech
30
60
90
120
RG(Ω)
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
6
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t ( μs)
t ( μs)
1,00
tdoff
tf
0,10
0,10
tf
tdon
tr
tr
tdon
0,01
0,01
0,00
0,00
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG(Ω )
150
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,4
t rr( μs)
t rr( μs)
0,4
0,3
0,3
trr
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,2
0,2
trr
0,1
0,1
Tj = 25°C
trr
Tj = 25°C
0,0
0,0
0
10
At
Tj =
VCE =
VGE =
Rgon =
25/125
300
15
16
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
30
25/125
300
20
15
60
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2,0
Qrr( μC)
Qrr( μC)
2,0
Qrr
Tj = Tjmax -25°C
1,5
1,5
Qrr
1,0
1,0
Tj = Tjmax -25°C
Qrr
Tj = 25°C
0,5
0,5
Tj = 25°C
Qrr
0,0
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
30
I C (A)
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
40
60
90
R g on ( Ω)
150
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
30
120
IrrM (A)
IrrM (A)
30
IRRM
25
25
IRRM
Tj = Tjmax -25°C
20
20
IRRM
Tj = 25°C
Tj = Tjmax - 25°C
Tj = 25°C
IRRM
15
15
10
10
5
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
30
I C (A)
40
°C
V
V
Ω
Copyright by Vincotech
8
0
30
At
Tj =
VR =
IF =
VGE =
25/125
300
20
15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
2000
direc / dt (A/ μs)
2000
direc / dt (A/μ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
1600
dIrec/dt
dI0/dt
1600
1200
1200
800
800
400
400
0
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
16
20
I C (A)
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
60
90
120
R gon ( Ω )
40
25/125
300
20
15
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
150
1
ZthJH (K/W)
Zth-JH (K/W)
10
0
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
2,01
Thermal grease
R (C/W)
0,09
0,31
0,94
0,38
0,14
0,14
10-3
K/W
IGBT thermal model values
Phase change interface
Tau (s)
2,9E+00
3,5E-01
8,8E-02
1,6E-02
2,9E-03
3,3E-04
Copyright by Vincotech
R (C/W)
0,07
0,25
0,76
0,31
0,11
0,12
10-4
R (C/W)
0,10
0,31
1,14
0,52
0,31
0,26
9
10-2
10-1
100
t p (s)
1011
tp / T
2,63
Thermal grease
Tau (s)
2,4E+00
2,9E-01
7,1E-02
1,3E-02
2,4E-03
2,7E-04
10-3
K/W
FWD thermal model values
Phase change interface
Tau (s)
3,6E+00
3,6E-01
8,0E-02
1,7E-02
2,9E-03
3,3E-04
R (C/W)
0,08
0,25
0,92
0,42
0,25
0,21
Tau (s)
2,9E+00
3,0E-01
6,5E-02
1,4E-02
2,3E-03
2,7E-04
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
Ptot (W)
IC (A)
100
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
70
60
30
50
40
20
30
20
10
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
103
18
16
120V
2
10
14
480V
10uS
12
100uS
1mS
100mS
1
10
10
DC
8
10mS
0
10
6
4
10
-1
2
0
0
100
102
101
At
D=
Th =
VGE =
V CE (V)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
20
40
60
80
100
103
20
120
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
Q g (nC)
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
14
Ic(sc)
tsc (μS)
250
12
200
10
150
8
6
100
4
50
2
0
10
11
12
13
14
0
15
12
V GE (V)
14
16
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
11
18
V GE (V)
20
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
50
40
ICMAX
Ic CHIP
Ic MODULE
30
VCE MAX
20
10
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
Copyright by Vincotech
12
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Brake
Brake IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Brake IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
Brake IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
μs
125
°C
7 V to 17 V in steps of 1 V
Brake FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
20
V CE (V)
IF (A)
IC (A)
50
40
15
30
10
20
Tj = Tjmax-25°C
5
10
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
6
8
10
V GE (V)
0
12
At
tp =
13
1
250
2
3
V F (V)
4
μs
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Brake
Brake IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
1,0
E (mWs)
E (mWs)
0,8
Eon
Eon
0,8
Eoff
Tj = Tjmax -25°C
0,6
Eon
Eon
0,6
Eoff
0,4
Eoff
0,4
Tj = Tjmax -25°C
Tj = 25°C
Eoff
Tj = 25°C
0,2
0,2
0,0
0,0
0
10
20
0
I C (A) 30
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
30
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
Brake FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,30
E (mWs)
E (mWs)
0,30
Erec
0,25
0,25
Tj = Tjmax - 25°C
0,20
0,20
0,15
0,15
Tj = Tjmax -25°C
Erec
Erec
0,10
0,10
Tj = 25°C
Tj = 25°C
0,05
0,05
Erec
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Copyright by Vincotech
30
60
90
120
RG (Ω )
150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
14
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Brake
Brake IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t ( μs)
t ( μs)
1,00
tdoff
tf
0,10
tdoff
tf
0,10
tdon
tr
tdon
0,01
0,01
tr
0,00
0,00
0
5
10
15
20
25
I C (A)
0
30
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
Rgon =
16
Ω
Rgoff =
8
Ω
Brake IGBT
101
ZthJH (K/W)
ZthJH (K/W)
100
100
10
-2
90
120
RG (Ω )
150
Brake FWD
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
-1
60
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
15
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
-5
10-4
10-3
At
Thermal grease
RthJH =
2,55
D=
10
K/W
Copyright by Vincotech
10-2
10-1
100
t p (s)
101 1
10-5
tp / T
Phase change interface
RthJH =
0,60
K/W
-4
10
At
Thermal grease
RthJH =
3,35
15
-3
10
D=
K/W
-2
10
-1
10
0
10
t p (s)
1
10 1
tp / T
Phase change interface
RthJH =
1,27
K/W
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Brake
Brake IGBT
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
70
IC (A)
Ptot (W)
25
60
20
50
15
40
30
10
20
5
10
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
0
200
At
Tj =
VGE =
ºC
Brake FWD
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
ºC
V
Brake FWD
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
25
IF (A)
Ptot (W)
60
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
16
50
175
100
150
Th ( o C)
200
ºC
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
1
100
IF (A)
ZthJC (K/W)
10
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,5
1,0
1,5
V F (V)
2,0
10-2
10-5
At
D=
RthJH =
μs
250
10-4
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
1011
tp / T
2,13
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
80
t p (s)
Ptot (W)
IF (A)
50
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
17
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
18
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
=
8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
250
%
%
IC
tdoff
200
100
VGE 90%
VCE 90%
150
IC
VCE
50
100
tEoff
VGE
tdon
50
IC 1%
VCE
0
VGE
-50
-0,2
0
0,2
0,4
0
15
300
20
0,21
0,51
tEon
-50
0,6
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
3
3,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
VCE 3%
IC 10%
VGE 10%
0
0
15
300
20
0,01
0,19
time(us)
3,3
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,2
Turn-on Switching Waveforms & definition of tr
250
150
%
%
fitted
IC
200
VCE
100
IC 90%
150
IC 60%
VCE
50
100
IC 40%
IC 90%
tr
50
IC10%
tf
0
Ic
0
-50
IC 10%
-50
0,1
0,15
0,2
0,25
0,3
0,35
0,4
3
3,05
3,1
VC (100%) =
IC (100%) =
tf =
300
20
0,10
Copyright by Vincotech
3,15
3,2
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
19
300
20
0,02
V
A
μs
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
175
120
IC 1%
%
Pon
%
150
100
Poff
Eoff
125
80
Eon
100
60
75
40
50
20
25
VGE 90%
VGE 10%
0
tEoff
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
5,99
0,65
0,51
0,3
0,4
time (us)
tEon
-25
0,5
2,9
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FWD
Figure 7
Gate voltage vs Gate charge (measured)
VCE 3%
0
3,1
5,99
0,43
0,19
3,2
time(us)
3,3
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
20
Id
%
80
15
trr
40
10
Vd
fitted
0
IRRM 10%
5
-40
0
-80
IRRM 90%
IRRM 100%
-120
-5
-50
0
50
100
150
3
200
3,1
3,2
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
15
300
20
174,72
Copyright by Vincotech
3,3
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
300
20
21
0,19
V
A
A
μs
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Erec
Id
100
100
tErec
75
tQrr
50
50
Qrr
0
25
Prec
-50
0
-25
-100
2,9
Id (100%) =
Qrr (100%) =
tQrr =
3,1
3,3
20
1,35
0,41
Copyright by Vincotech
3,5
time(us)
3
3,7
3,2
3,4
3,6
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
21
5,99
0,27
0,41
kW
mJ
μs
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
V23990-P545-A20-PM
in DataMatrix as
P545-A20
in packaging barcode as
P545-A20
Outline
Pinout
Copyright by Vincotech
22
Revision: 2
V23990-P545-A20/ C20 -PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
23
Revision: 2